1
|
Mann AE, Aumend C, Crull S, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Rowe M, Blouin T, Soule A, Kelly C, DOMHaIN Study Team, Burne RA, Coker MO, Richards VP. HIV infection and exposure is associated with increased cariogenic taxa, reduced taxonomic turnover, and homogenized spatial differentiation for the supragingival microbiome. MICROBIOME 2025; 13:144. [PMID: 40524270 PMCID: PMC12168284 DOI: 10.1186/s40168-025-02123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/25/2025] [Indexed: 06/19/2025]
Abstract
BACKGROUND The oral microbiome consists of distinct microbial communities that colonize various ecological niches within the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g., gut, urogenital), the oral microbiome is directly and frequently exposed to external influences, contributing to its relatively lower stability over time. In individuals with compromised immunity, such as those living with HIV, the composition and stability of the oral microbiome may be especially vulnerable to disruption. Cross-sectional studies of the oral microbiome in children living with HIV capture a glimpse of this temporal dynamism, yet a full appreciation of the relative stability, robusticity, and spatial structure of the oral environment is necessary to understand the role of microbial communities in promoting health or disease in the context of HIV. Here, we investigate the spatial and temporal stability of the oral microbiome over three sampling time points in the context of HIV infection and exposure. Individual teeth were sampled from a cohort of 565 Nigerian children with varying levels of tooth decay severity (i.e., caries disease). We collected 1960 supragingival plaque samples and characterized the oral microbiome using a metataxonomic approach targeting an approximately 478 bp region of the bacterial rpoC gene. RESULTS Both HIV infection and exposure have significant, if subtle, effects on the stability of the supragingival plaque microbiome. Specifically, we observed (1) a slight but significant reduction in taxonomic turnover among HIV-exposed and infected children; (2) an association between HIV infection and a more homogenized oral community across the anterior and posterior dentition in children living with HIV; and (3) a relationship between impaired immunity, lower taxonomic turnover over time, and an elevated frequency of cariogenic taxa, including Streptococcus mutans, in children living with HIV. CONCLUSIONS Despite the influence of various contributing factors, we observe an effect of HIV status on both the temporal and spatial stability of the oral microbiome. Specifically, the results presented here indicate that the oral microbiome shows less community change over time in children living with or exposed to HIV, which we hypothesize may be linked to a reduced capacity to adapt to environmental changes. The observed taxonomic rigidity among children living with HIV may signal community dysfunction, potentially leading to a higher incidence of oral diseases, including caries, in this cohort. Video Abstract.
Collapse
Affiliation(s)
- Allison E Mann
- Department of Anthropology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Ciara Aumend
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Suzanne Crull
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lauren M O'Connell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ozoemene Obuekwe
- University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | | | - Matthew Rowe
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Colton Kelly
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Modupe O Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria.
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Clinical and Translational Research, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, USA.
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
Collaborators
Oghenenero Igedegbe, Ruxton Adebiyi, Matron Christy Ndekwu, Uwagboe Odigie, Oyemwen Olaye, Ehioze Awanlemhen, Samuel Chukwumaeze, Matthew Imoe, Daniel Oakhu, Susan Dare, Nosakhare Idemudia, Osasumwen Ehigie, Kelly Avenbuan, Amara Godwins, Nneka Chukwumah, Stanley Iyorzor, Owen Omorogbe, Chioma Ugorji,
Collapse
|
2
|
Zhu Y, Liang X, Zhi M, Li L, Zhang G, Chen C, Wang L, Wang P, Zhong N, Feng Q, Li Z. Succession of the multi-site microbiome along pancreatic ductal adenocarcinoma tumorigenesis. Front Immunol 2024; 15:1487242. [PMID: 39575247 PMCID: PMC11580624 DOI: 10.3389/fimmu.2024.1487242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Background To investigate microbial characteristics across multibody sites from chronic pancreatitis (CP), through pancreatic benign tumors, to pancreatic ductal adenocarcinoma (PDAC) at different stages. Methods 16S ribosomal RNA (rRNA) amplicon sequencing was conducted on saliva, duodenal fluid, and pancreatic tissue obtained via endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of patients with CP, pancreatic benign tumors, PDAC in stage I/II, III, and IV. The neutral community model (NCM) assessed the microbial assembly contribution and MaAslin2 identified the differential microbes. Results From CP to stage IV PDAC patients, there was a marked surge in influence of salivary and duodenal microbiota on constitution of pancreatic microbial communities. Our observations revealed a successive alteration in microbial species across various bodily sites during PDAC tumorigenesis. Notably, Porphyromonas gingivalis, Treponema denticola, Peptoanaerobacter stomatis, Propionibacterium acidifaciens, Porphyromonas endodontalis, Filifactor alocis, etc., sequentially increased along PDAC progression in pancreatic tissue, whereas bacteria commonly used as probiotics Bifidobacterium breve, Lactiplantibacillus plantarum, etc., declined. Furthermore, the sequentially escalating trends of Peptoanaerobacter stomatis and Propionibacterium acidifaciens during PDAC tumorigenesis were mirrored in duodenal fluid and saliva. Porphyromonas gingivalis, Porphyromonas endodontalis, and Filifactor alocis, which intensified from CP to stage IV PDAC in pancreatic tissue, were also found to be enriched in saliva of patients with short-term survival (STS) compared with those with long-term survival (LTS). Conclusions Salivary and duodenal microorganisms were prominent factors in shaping pancreatic microbial landscape in PDAC context. Further exploration of these microbial entities is imperative to unravel their specific roles in PDAC pathogenesis, potentially yielding insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Liang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengfan Zhi
- Shandong Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guoming Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changxu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Limei Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Feng
- Shandong Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Mann AE, Aumend C, Crull S, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Rowe M, Blouin T, Soule A, Kelly C, Burne RA, Coker MO, Richards VP. HIV Infection and Exposure Increases Cariogenic Taxa, Reduces Taxonomic Turnover, and Homogenizes Spatial Differentiation for the Supragingival Microbiome. RESEARCH SQUARE 2024:rs.3.rs-4720457. [PMID: 39149457 PMCID: PMC11326420 DOI: 10.21203/rs.3.rs-4720457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background The oral microbiome comprises distinct microbial communities that colonize diverse ecological niches across the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g., gut, urogenital), the oral microbiome is regularly and directly exposed to the external environment and is therefore likely less stable over time. Cross sectional studies of the oral microbiome capture a glimpse of this temporal dynamism, yet a full appreciation of the relative stability, robusticity, and spatial structure of the oral environment is necessary to understand the role of microbial communities in promoting health or disease. Results Here we investigate the spatial and temporal stability of the oral microbiome over three sampling time points in the context of HIV infection and exposure. Individual teeth were sampled from a cohort of 565 Nigerian children with varying levels of tooth decay severity (i.e., caries disease). We collected 1,960 supragingival plaque samples and characterized the oral microbiome using a metataxonomic approach targeting an approximately 478 bp region of the bacterial rpoC gene. We found that both infection and exposure to HIV have significant effects on the stability of the supragingival plaque microbiome at both the spatial and temporal scale. Specifically, we detect (1) significantly lower taxonomic turnover of the oral community among exposed and infected children compared to unexposed children, (2) we find that HIV infection homogenizes the oral community across the anterior and posterior dentition, and (3) that impaired immunity (i.e., low CD4 count) and low taxonomic turnover over time in children living with HIV is associated with higher frequency of cariogenic taxa including Streptococcus mutans. Conclusions Our results document substantial community fluctuations over time in children unexposed to HIV independent of oral health status. This suggests that the oral community, under typical conditions, rapidly adapts to environmental perturbations to maintain homeostasis and that long-term taxonomic rigidity is a signal of community dysfunction, potentially leading to a higher incidence of oral disease including caries.
Collapse
|
4
|
Mann AE, Chakraborty B, O'Connell LM, Nascimento MM, Burne RA, Richards VP. Heterogeneous lineage-specific arginine deiminase expression within dental microbiome species. Microbiol Spectr 2024; 12:e0144523. [PMID: 38411054 PMCID: PMC10986539 DOI: 10.1128/spectrum.01445-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Arginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question. Here, we use a multivariate approach, combining ultra-deep metatranscriptomic sequencing with paired metataxonomic and in vitro citrulline quantification to characterize the microbial community and ADS operon expression in healthy and late-stage cavitated teeth. While ADS activity is higher in healthy teeth, we identify multiple bacterial lineages with upregulated ADS activity on cavitated teeth that are distinct from those found on healthy teeth using both reference-based mapping and de novo assembly methods. Our dual metataxonomic and metatranscriptomic approach demonstrates the importance of species abundance for gene expression data interpretation and that patterns of differential expression can be skewed by low-abundance groups. Finally, we identify several potential candidate probiotic bacterial lineages within species that may be useful therapeutic targets for the prevention of tooth decay and propose that the development of a strain-specific, mixed-microbial probiotic may be a beneficial approach given the heterogeneity of taxa identified here across health groups. IMPORTANCE Tooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay.
Collapse
Affiliation(s)
- Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Marcelle M. Nascimento
- Division of Operative Dentistry, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
Wang H, Chen Y, Feng L, Lu S, Zhu J, Zhao J, Zhang H, Chen W, Lu W. A gut aging clock using microbiome multi-view profiles is associated with health and frail risk. Gut Microbes 2024; 16:2297852. [PMID: 38289284 PMCID: PMC10829834 DOI: 10.1080/19490976.2023.2297852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Age-related changes in the microbiome have been reported in previous studies; however, direct evidence for their association with frailty is lacking. Here, we introduce biological age based on gut microbiota (gAge), an integrated prediction model that integrates gut microbiota data from different perspectives with potential background factors for aging assessment. Simulation results show that, compared with a single model, the ensemble model can not only significantly improve the prediction accuracy, but also make full use of the data in unpaired samples. From this, we identified markers associated with age development and grouped markers into accelerated aging and mitigated aging according to their effect on the prediction. Importantly, the application of gAge to an elderly cohort with different frailty levels confirmed that gAge and its predictive residuals are closely related to the individual's health status and frailty stage, and age-related markers overlap significantly with disease and frailty characteristics. Furthermore, we applied the gAge prediction model to another independent cohort of the elderly population for aging assessment and found that gAge could effectively represent the aging population. Overall, our study explains the association between the gut microbiota and frailty, providing potential targets for the development of gut microbiota-based targeted intervention strategies for aging.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shourong Lu
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Shao Q, Feng D, Yu Z, Chen D, Ji Y, Ye Q, Cheng D. The role of microbial interactions in dental caries: Dental plaque microbiota analysis. Microb Pathog 2023; 185:106390. [PMID: 37858633 DOI: 10.1016/j.micpath.2023.106390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Dental caries is a result of the ecological dysfunction of the polymicrobial community on the tooth surface, which evolves through microbial interactions. In this study, we conducted a thorough analysis of the dental plaque microbiome to comprehend its multi-microbial aetiology. MATERIALS AND METHOD In this study, plaque was collected from healthy tooth surfaces, shallow carious teeth and deep carious teeth, and bacterial composition and abundance were assessed using 16S rRNA high-throughput sequencing. Random forest and LEfSe were used to profile various microorganisms at each stage. Additionally, we developed a molecular ecological network (MEN) based on random matrix theory (RMT) to examine microbial interactions for the first time. RESULTS Our results reveal that Scardovia wiggsiae, Streptococcus mutans, and Propionibacterium acidifaciens may be associated with initial caries, and Propionibacterium acidifaciens differentiates between shallow and deep caries. As caries progressed, the alpha diversity index declined, indicating a decrease in microbial variety. The network topological indices such as centralization betweenness revealed that the caries network had become more complex, involving more microbial interactions. The shallow network revealed a high negative correlation ratio across nodes, indicating that microbes competed heavily. In contrast, the positive correlation ratio of deep network nodes was high, and microorganisms transitioned from a competitive to a synergistic state. CONCLUSIONS This study suggests that microbial diversity and interactions are critical to caries progression and that future caries research should give greater consideration to the role of microbial interaction factors in caries progression.
Collapse
Affiliation(s)
- Qingyi Shao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Danfeng Feng
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Danlei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Youqi Ji
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qing Ye
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China.
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
7
|
Mann AE, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Kelly C, the DOMHaIN Study Team, Coker MO, Richards VP. Impact of HIV on the Oral Microbiome of Children Living in Sub-Saharan Africa, Determined by Using an rpoC Gene Fragment Metataxonomic Approach. Microbiol Spectr 2023; 11:e0087123. [PMID: 37428077 PMCID: PMC10434123 DOI: 10.1128/spectrum.00871-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Children living with HIV have a higher prevalence of oral diseases, including caries, but the mechanisms underlying this higher prevalence are not well understood. Here, we test the hypothesis that HIV infection is associated with a more cariogenic oral microbiome, characterized by an increase in bacteria involved in the pathogenesis of caries. We present data generated from supragingival plaques collected from 484 children representing three exposure groups: (i) children living with HIV (HI), (ii) children who were perinatally exposed but uninfected (HEU), and (iii) unexposed and therefore uninfected children (HUU). We found that the microbiome of HI children is distinct from those of HEU and HUU children and that this distinction is more pronounced in diseased teeth than healthy teeth, suggesting that the impact of HIV is more severe as caries progresses. Moreover, we report both an increase in bacterial diversity and a decrease in community similarity in our older HI cohort compared to our younger HI cohort, which may in part be a prolonged effect of HIV and/or its treatment. Finally, while Streptococcus mutans is often a dominant species in late-stage caries, it tended to be found at lower frequency in our HI cohort than in other groups. Our results highlight the taxonomic diversity of the supragingival plaque microbiome and suggest that broad and increasingly individualistic ecological shifts are responsible for the pathogenesis of caries in children living with HIV, coupled with a diverse and possibly severe impact on known cariogenic taxa that potentially exacerbates caries. IMPORTANCE Since its recognition as a global epidemic in the early 1980s, approximately 84.2 million people have been diagnosed with HIV and 40.1 million people have died from AIDS-related illnesses. The development and increased global availability of antiretroviral treatment (ART) regimens have dramatically reduced the mortality rate of HIV and AIDS, yet approximately 1.5 million new infections were reported in 2021, 51% of which are in sub-Saharan Africa. People living with HIV have a higher prevalence of caries and other chronic oral diseases, the mechanisms of which are not well understood. Here, we used a novel genetic approach to characterize the supragingival plaque microbiome of children living with HIV and compared it to the microbiomes of uninfected and perinatally exposed children to better understand the role of oral bacteria in the etiology of tooth decay in the context of HIV exposure and infection.
Collapse
Affiliation(s)
- Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ozoemene Obuekwe
- University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | | | - Colton Kelly
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - the DOMHaIN Study Team
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Institute of Human Virology Nigeria, Abuja, Nigeria
- University of Benin Teaching Hospital, Benin, Edo State, Nigeria
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
- School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
9
|
Tang Z, Xu W, Zhou Z, Qiao Y, Zheng S, Rong W. Taxonomic and functional alterations in the salivary microbiota of children with and without severe early childhood caries (S-ECC) at the age of 3. PeerJ 2022; 10:e13529. [PMID: 35669952 PMCID: PMC9165595 DOI: 10.7717/peerj.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background Primary dental caries is the most prevalent oral disease among preschool children, which can cause severe damage to teeth and even affect the mental well-being of children. Various studies have demonstrated that the oral microbiome plays a pivotal role in the onset and development of dental caries. However, it remains uncertain about the key microbial markers associated with caries, owing to the limited evidence. Methods Fifteen S-ECC children and fifteen healthy controls were selected from three-year-old children in this study. Their clinical data and oral saliva samples were collected. Shotgun sequencing was conducted to investigate the microbial differences and the relevant functions between the two groups. Results We observed no apparent difference in oral microbial community diversity between the two groups. Still, at the genus/species levels, several characteristic genera/species such as Propionibacterium, Propionibacterium acidifaciens, Prevotella denticola, Streptococcus mutans and Actinomyces sp. oral taxon 448/414 increased significantly in S-ECC children, compared with the oral health group. Furthermore, we found that functional pathways involving glycolysis and acid production, such as starch and sucrose metabolism, fructose and mannose metabolism, glycolysis/gluconeogenesis, were prominently up-regulated in the high-caries group. Conclusions Our study showed that dental caries in children were associated with the alterations in the oral microbiota at the composition and functional levels, which may potentially inspire the exploration of microbial diagnosis or therapeutic treatments.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenyi Xu
- Beijing QuantiHealth Technology Co., Ltd., Beijing QuantiHealth Technology Co., Ltd., Beijing, China
| | - Zhifang Zhou
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanchun Qiao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wensheng Rong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
10
|
Pang L, Wang Y, Ye Y, Zhou Y, Zhi Q, Lin H. Metagenomic Analysis of Dental Plaque on Pit and Fissure Sites With and Without Caries Among Adolescents. Front Cell Infect Microbiol 2021; 11:740981. [PMID: 34778105 PMCID: PMC8579706 DOI: 10.3389/fcimb.2021.740981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Caries is one of the most prevalent infectious diseases worldwide and is driven by the dysbiosis of dental biofilms adhering to tooth surfaces. The pits and fissured surfaces are the most susceptible sites of caries. However, information on the taxonomic composition and functional characteristics of the plaque microbiota in the pit and fissure sites is very limited. This study aimed to use metagenomic sequencing analyses to investigate the relationship between the plaque microbiome in the pit and fissure site and caries in adolescents. A total of 20 adolescents with active pit and fissure surface caries were involved as well as 20 age-matched, caries-free teenagers for control tests. Plaque samples were collected from the pit and fissure site and were subjected to metagenomic analyses, in which the microbial communities were investigated. Our results showed that the microbiota diversity was similar between those two groups. At the species level, the relative abundances of A. gerencseriae, P. acidifaciens, P. multisaccharivorax, S. oralis, S. mutans, and P. denticolens were higher in the caries-active group. N. elongata, C. hominis, and A. johnsonii were relatively more abundant in the caries-free groups. Functional analysis suggested that the metabolic pathway was the most abundant pathway, and the functional traits of the level 2 pathways included amino acid metabolism, metabolism of cofactors, and vitamins and carbohydrate metabolism. Our results also revealed that the caries group displayed several alterations in metabolic pathways, including enriched functions in carbohydrate digestion and absorption. This study suggested that in addition to the specific anatomical structures of the pit and fissured surfaces, the fundamental differences in the plaque microbiome may also be related to the susceptibility of pit and fissure caries.
Collapse
Affiliation(s)
- Liangyue Pang
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yinuo Wang
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yun Ye
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qinghui Zhi
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Yang X, He L, Yan S, Chen X, Que G. The impact of caries status on supragingival plaque and salivary microbiome in children with mixed dentition: a cross-sectional survey. BMC Oral Health 2021; 21:319. [PMID: 34172026 PMCID: PMC8229229 DOI: 10.1186/s12903-021-01683-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Supragingival plaque and saliva are commonly used for microbiome analysis. Many epidemiological studies have identified deciduous teeth caries as a risk factor for caries development in first permanent molar (FPM); nevertheless, to the best of our knowledge, there are no reports on the effects of deciduous teeth caries on the microbiome of healthy FPM. Additionally, it remains unclear whether saliva can be used instead of supragingival plaque for caries microbial studies. Therefore, we aimed to elucidate this issue, and to characterize and compare the oral microbiome of healthy FPMs in children with different caries statuses and that from children with and without caries in a similar microhabitat, by PacBio sequencing. Currently, few studies have investigated the oral microbiome of children using this technique. Methods Thirty children (aged 7–9 years) with mixed dentition were enrolled; 15 had dental caries, and 15 did not. Supragingival plaques of deciduous molars and maxillary FPMs, and non-stimulating saliva samples were collected. DNA was extracted and the v1–v9 regions of 16S rRNA were amplified. Subsequently, PacBio sequencing and bioinformatic analyses were performed for microbiome identification. Results The microbial alpha diversity of the saliva samples was lower than that of the supragingival plaque (p < 0.05); however, no differences were detected between deciduous teeth and FPMs (p > 0.05). In addition, the alpha and beta diversity of children with and without caries was also similar (p > 0.05). Nonmetric multidimensional scaling and Adonis analyses indicated that the microbial structure of salivary and supragingival plaque samples differ (p < 0.05). Further analysis of deciduous teeth plaque showed that Streptococcus mutans, Propionibacterium acidifaciens, and Veillonella dispar were more abundant in children with caries than in those without (p < 0.05); while in FPMs plaque, Selenomonas noxia was more abundant in healthy children (p < 0.05). No differences in microorganisms abundance were found in the saliva subgroups (p > 0.05). Conclusion We have determined that supragingival plaque was the best candidate for studying carious microbiome. Furthermore, S. mutans, V. dispar, and P. acidifaciens were highly associated with deciduous teeth caries. S. noxia may be associated with the abiding health of FPM; however, this requires additional studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01683-0.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lidan He
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Siqi Yan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xinyi Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Guoying Que
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
12
|
Chen X, Daliri EBM, Chelliah R, Oh DH. Isolation and Identification of Potentially Pathogenic Microorganisms Associated with Dental Caries in Human Teeth Biofilms. Microorganisms 2020; 8:E1596. [PMID: 33081291 PMCID: PMC7603000 DOI: 10.3390/microorganisms8101596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental caries is attributed to the predominance of cariogenic microorganisms. Cariogenic microorganisms are pathological factors leading to acidification of the oral microenvironment, which is related to the initiation and progression of caries. The accepted cariogenic microorganism is Streptococcus mutans (S. mutans). However, studies have found that caries could occur in the absence of S. mutans. This study aimed to assess the presence of potentially cariogenic microorganisms in human teeth biofilm. The microorganisms were isolated from human mouth and freshly extracted human maxillary incisors extracted for reasons of caries. The isolates were sorted based on their acidogenic and aciduric properties, and the S. mutans was used as the reference strain. Four potentially cariogenic strains were selected. The selected strains were identified as Streptococcus salivarius (S. salivarius), Streptococcus anginosus (S. anginosus), Leuconostoc mesenteroides (L. mesenteroides), and Lactobacillus sakei (L. sakei) through morphological analysis followed by 16S rRNA gene sequence analysis. The cariogenicity of isolates was analyzed. We show, for the first time, an association between L. sakei (present in fermented food) and dental caries. The data provide useful information on the role of lactic acid bacteria from fermented foods and oral commensal streptococci in dental caries.
Collapse
Affiliation(s)
| | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (R.C.)
| |
Collapse
|
13
|
Chen X, Daliri EBM, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020; 9:E569. [PMID: 32674310 PMCID: PMC7400585 DOI: 10.3390/pathogens9070569] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Dental caries is one of the most common microbe-mediated oral diseases in human beings. At present, the accepted etiology of caries is based on a four-factor theory that includes oral microorganisms, oral environment, host, and time. Excessive exposure to dietary carbohydrates leads to the accumulation of acid-producing and acid-resistant microorganisms in the mouth. Dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Effective preventive methods include inhibiting the cariogenic microorganisms, treatment with an anti-biofilm agent, and sugar intake control. The goal is to reduce the total amount of biofilm or the levels of specific pathogens. Natural products could be recommended for preventing dental caries, since they may possess fewer side effects in comparison with synthetic antimicrobials. Herein, the mechanisms of oral microbial community development and functional specialization are discussed. We highlight the application of widely explored natural products in the last five years for their ability to inhibit cariogenic microorganisms.
Collapse
Affiliation(s)
- Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Namhyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Jong-Rae Kim
- Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju, Gyeonggi 10808, Korea;
| | - Daesang Yoo
- H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi, Gyung Gi-Do 12041, Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| |
Collapse
|