1
|
Regis WFM, Mustafa Gomes Muniz FW, Rocha FR, de Araújo Sales EM, Guedes Peixoto Vieira PHA, Barros MMAF, de Almeida Alves S, Brilhante RSN, Duarte S, Neves BG, Rodrigues LKA. Streptococcus mutans serotyping, collagen-binding genes and Candida albicans in dentin carious lesions: a molecular approach. Clin Oral Investig 2025; 29:52. [PMID: 39779540 DOI: 10.1007/s00784-024-06140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This cross-sectional study aimed to evaluate the occurrence of Streptococcus spp., Streptococcus mutans, its serotypes (c, e, f, and k), collagen-binding genes (cnm/cbm), and Candida albicans in medium deep (D2) and deep (D3) dentin carious lesions of permanent teeth. MATERIALS AND METHODS Carious dentin was collected from D2 (n = 23) and D3 (n = 24) lesions in posterior teeth from 31 individuals. DNA was extracted and analyzed using polymerase chain reaction (PCR). RESULTS Streptococcus spp. exhibited a high prevalence in both D2 and D3 lesions, with a 100% occurrence rate in D3. Although S. mutans was prevalent in both lesion types, serotype distribution highlighted differences in complexity. Serotype e was the most frequently detected in D2 samples. Serotype c was absent in D2 but present in 19.0% of D3; serotype k was exclusively found in multi-serotype D3 alongside f, c, and e. The cbm gene and undetermined serotypes were detected only in D3. Candida albicans was not found in any samples, regardless of lesion depth. CONCLUSION Dentinal lesions exhibited a complex array of S. mutans serotypes, with a notable prevalence of the genus Streptococcus and an overall S. mutans prevalence of approximately 35%. Candida albicans was absent. In addition, a high diversity of serotypes was observed, including multiple and indeterminate serotypes, along with the presence of the collagen-binding cbm gene. CLINICAL RELEVANCE The identification of diverse Streptococcus mutans serotypes and the cbm gene in carious dentin from permanent teeth offers insights into microbial factors potentially linked to dentinal caries lesions. Additionally, the absence of Candida albicans suggests a limited role in this context.
Collapse
Affiliation(s)
- Wanessa Fernandes Matias Regis
- Department of Operative Dentistry, Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisco Ruliglésio Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Ernanda Maria de Araújo Sales
- Department of Operative Dentistry, Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Stephanie de Almeida Alves
- Department of Operative Dentistry, Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Simone Duarte
- School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | | | - Lidiany Karla Azevedo Rodrigues
- Department of Operative Dentistry, Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil.
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
2
|
Ucuncu MK, Ucuncu MY, Topcuoglu N, Kitin E, Yazicioglu O, Ortaakarsu AB, Aydın M, Erol A. The impact of a-tomatine on shear bonding strength in different dentin types and on cariogenic microorganisms: an in vitro and in silico study. BMC Oral Health 2024; 24:1220. [PMID: 39402520 PMCID: PMC11476542 DOI: 10.1186/s12903-024-05001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION The objective of this study is to investigate the shear bonding strength of a glycoalkaloid, also a novel matrix metalloproteinase enzyme known as α-tomatine, on two different surfaces of dentin (sound & caries-affected) and its efficacy against cariogenic microorganisms using in vitro and in silico methods. METHODS The effect of a-tomatine at different concentrations (0.75 / 1 / 1.5 µM) on shear bonding strength in caries-affected and sound dentin was also investigated (n = 10; each per subgroup). The analysis of shear bonding and failure tests was conducted after a 24-hour storage period. Fracture surfaces were examined under a scanning electron microscope. A stock solution 3 mM of a-tomatine was prepared for antimicrobial evaluation. Antimicrobial activities of the agents against Streptococcus mutans ATCC 25175, Lactobacillus casei ATCC 4646, and Candida albicans ATCC 10231 standard strains were investigated by microdilution method. In addition, through the method of molecular docking and dynamic analysis, the affinity of a-tomatine for certain enzymes of these microorganisms was examined. RESULTS The pretreatment agent and dentin type significantly influenced shear bonding strength values (p < 0.05). As the molarity of a-tomatine increased, the bonding value decreased in sound dentin, while the opposite was true in caries-affected dentin. According to molecular docking and dynamic analysis, the highest affinity was observed in L. casei's signaling protein. Microdilution assays revealed a-tomatine to exhibit fungicidal activity against C. albicans and bacteriostatic effects against S. mutans. No antimicrobial effect was observed on L. casei. CONCLUSION a-tomatine demonstrates a positive impact by serving as both a pretreatment agent for bonding strength and an inhibitor against certain cariogenic microorganisms.
Collapse
Affiliation(s)
- Musa Kazim Ucuncu
- Faculty of Dentistry, Department of Restorative Dentistry, Altinbas University, Istanbul, Turkey.
| | - Merve Yildirim Ucuncu
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Nursen Topcuoglu
- Faculty of Dentistry, Department of Basic Sciences, Istanbul University, Istanbul, Turkey
| | - Emine Kitin
- Faculty of Dentistry, Depatment of Restorative Dentistry, Istanbul University, Istanbul, Turkey
| | - Oktay Yazicioglu
- Faculty of Dentistry, Depatment of Restorative Dentistry, Istanbul University, Istanbul, Turkey
| | | | - Mustafa Aydın
- Faculty of Science, Department of Physics, Istanbul University, Istanbul, Turkey
| | - Ayşe Erol
- Faculty of Science, Department of Physics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Lapirattanakul J, Nomura R, Okawa R, Tantivitayakul P, Kaypetch R, Lehrkinder A, Lingström P, Birkhed D, Matsumoto-Nakano M, Nakano K. Multilocus sequence typing and phenotypic properties of Streptococcus mutans from Thai children with different caries statuses. BMC Oral Health 2024; 24:1063. [PMID: 39261810 PMCID: PMC11391724 DOI: 10.1186/s12903-024-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Streptococcus mutans is studied for its acidogenic and aciduric characteristics, notably its biofilm formation in the presence of sucrose, toward its role in the caries process. Variations in both genotype and phenotype have been reported among clinical isolates of S. mutans. This study aimed to examine genotypic and phenotypic characteristics of S. mutans obtained from Thai children with varying caries statuses. METHODS We determined the presence of S. mutans and caries status in 395 children aged 3-4 years. From 325 children carrying S. mutans, we selected 90 with different caries statuses-caries-free (CF; n = 30), low severity of caries (LC; n = 30), or high severity of caries (HC; n = 30). Three isolates of S. mutans were taken from each child, thus, a total of 270 isolates were obtained. Multilocus sequence typing (MLST) was used to genotype the isolates and assess their clonal relationships. The properties, including biofilm formation, collagen binding, and acid production and tolerance were also evaluated. RESULTS Children with carious lesions showed a higher detection rate and number of S. mutans in saliva than those without caries. S. mutans from individuals with HC status showed the lowest biofilm formation ability, while this group had the highest detection rate of collagen-binding isolates. There was no difference in acid production or tolerance by caries status. Genotyping by MLST did not reveal any clone of S. mutans specific to CF status. This result remained even when we included MLST data from the open-access PubMLST database. MLST did identify clones containing only strains from caries-affected hosts, but tests of their phenotypic properties did not reveal any differences between S. mutans from these clones and clones that were from both caries-free and caries-affected children. CONCLUSIONS The clonal relationships of S. mutans indicated by MLST were not associated with the status of dental caries in the host.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400, Thailand.
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok, 10400, Thailand
| | - Rattiporn Kaypetch
- Research Office, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Anna Lehrkinder
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
4
|
Veenman F, van Dijk A, Arredondo A, Medina-Gomez C, Wolvius E, Rivadeneira F, Àlvarez G, Blanc V, Kragt L. Oral microbiota of adolescents with dental caries: A systematic review. Arch Oral Biol 2024; 161:105933. [PMID: 38447351 DOI: 10.1016/j.archoralbio.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE This systematic review summarizes the current knowledge on the association between the oral microbiota and dental caries in adolescents. DESIGN An electronic search was carried out across five databases. Studies were included if they conducted research on generally healthy adolescents, applied molecular-based microbiological analyses and assessed caries status. Data extraction was performed by two reviewers and the Newcastle-Ottawa Scale was applied for quality assessment. RESULTS In total, 3935 records were reviewed which resulted in a selection of 20 cross-sectional studies (published 2005-2022) with a sample size ranging from 11 to 614 participants including adolescents between 11 and 19 years. The studies analyzed saliva, dental biofilm or tongue swabs with Checkerboard DNA-DNA hybridization, (q)PCR or Next-Generation Sequencing methods. Prevotella denticola, Scardoviae Wiggsiae, Streptococcus sobrinus and Streptococcus mutans were the most frequently reported species presenting higher abundance in adolescents with caries. The majority of the studies reported that the microbial diversity was similar between participants with and without dental caries. CONCLUSION This systematic review is the first that shows how the oral microbiota composition in adolescents appears to differ between those with and without dental caries, suggesting certain taxa may be associated with increased caries risk. However, there is a need to replicate and expand these findings in larger, longitudinal studies that also focus on caries severity and take adolescent-specific factors into account.
Collapse
Affiliation(s)
- Francien Veenman
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Anne van Dijk
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alexandre Arredondo
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eppo Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Vanessa Blanc
- Department of Microbiology, DENTAID Research Center, Cerdanyola del Vallès, Spain
| | - Lea Kragt
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
5
|
Farva K, Sattar H, Ullah H, Raziq A, Mehmood MD, Tareen AK, Sultan IN, Zohra Q, Khan MW. Phenotypic Analysis, Molecular Characterization, and Antibiogram of Caries-Causing Bacteria Isolated from Dental Patients. Microorganisms 2023; 11:1952. [PMID: 37630520 PMCID: PMC10457851 DOI: 10.3390/microorganisms11081952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Despite scientific advances in cariology, dental caries remains a severe global concern. The aim of this study was to determine the optimization of microbial and molecular techniques for the detection of cariogenic pathogens in dental caries patients, the prevalence of cariogenic bacteria on the basis of socioeconomic, climatological, and hygienic factors, and in vitro evaluation of the antimicrobial activity of selected synthetic antibiotics and herbal extracts. In this study, oral samples were collected from 900 patients for bacterial strain screening on a biochemical and molecular basis. Plant extracts, such as ginger, garlic, neem, tulsi, amla, and aloe vera, were used to check the antimicrobial activity against the isolated strains. Synthetic antimicrobial agents, such as penicillin, amoxicillin, erythromycin, clindamycin, metronidazole, doxycycline, ceftazidime, levofloxacin, and ciprofloxacin, were also used to access the antimicrobial activity. Among 900 patients, 63% were males and 37% were females, patients aged between 36 and 58 (45.7%) years were prone to disease, and the most common symptom was toothache (61%). For oral diseases, 21% used herbs, 36% used antibiotics, and 48% were self-medicated, owing to sweets consumption (60.66%) and fizzy drinks and fast food (51.56%). Staphylococcus mutans (29.11%) and Streptococcus sobrinus (28.11%) were found as the most abundant strains. Seven bacterial strains were successfully screened and predicted to be closely related to genera S. sobrinus, S. mutans, Actinomyces naeslundii, Lactobacillus acidophilus, Eubacterium nodatum, Propionibacterium acidifaciens, and Treponema Pallidum. Among plant extracts, the maximum zone of inhibition was recorded by ginger (22.36 mm) and amla (20.01 mm), while among synthetic antibiotics, ciprofloxacin and levofloxacin were most effective against all microbes. This study concluded that phyto extracts of ginger and amla were considered suitable alternatives to synthetic antibiotics to treat dental diseases.
Collapse
Affiliation(s)
- Khushbu Farva
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Huma Sattar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Hayat Ullah
- Metabolic Engineering Lab, Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Abdur Raziq
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Danish Mehmood
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Quratulaain Zohra
- Department of Biotechnology, Project of Sahara for Life Trust, The Sahara College Narowal, Punjab 51601, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
6
|
Iacopetta D, Ceramella J, Catalano A, D’Amato A, Lauria G, Saturnino C, Andreu I, Longo P, Sinicropi MS. Diarylureas: New Promising Small Molecules against Streptococcus mutans for the Treatment of Dental Caries. Antibiotics (Basel) 2023; 12:112. [PMID: 36671313 PMCID: PMC9855158 DOI: 10.3390/antibiotics12010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Dental caries is a biofilm-mediated disease that represents a worldwide oral health issue. Streptococcus mutans has been ascertained as the main cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms, regulated by the quorum sensing. Diarylureas represent a class of organic compounds that show numerous biological activities, including the antimicrobial one. Two small molecules belonging to this class, specifically to diphenylureas, BPU (1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea) and DMTU (1,3-di-m-tolyl-urea), showed interesting results in studies regarding the antimicrobial activity against the cariogenic bacterium S. mutans. Since there are not many antimicrobials used for the prevention and treatment of caries, further studies on these two interesting compounds and other diarylureas against S. mutans may be useful to design new effective agents for the treatment of caries with generally low cytotoxicity.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Graziantonio Lauria
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Tolpeznikaite E, Starkute V, Zokaityte E, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Ruibys R, Rocha JM, Bartkiene E. Effect of solid-state fermentation and ultrasonication processes on antimicrobial and antioxidant properties of algae extracts. Front Nutr 2022; 9:990274. [PMID: 36091232 PMCID: PMC9453264 DOI: 10.3389/fnut.2022.990274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Algal biomass (AB) is prospective source of valuable compounds, however, Baltic Sea macroalgae have some challenges, because of their high microbial and chemical contamination. These problems can be solved, by using appropriate technologies for AG pre-treatment. The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on the antioxidant and antimicrobial characteristics of macro- (Cladophora rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and LUHS135 were developed and their characteristics were evaluated. The total phenolic compound content was determined from the calibration curve and expressed in mg of gallic acid equivalents; antioxidant activity was measured by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods. Antimicrobial activity was measured by using agar well diffusion assay and in a liquid medium. The highest DPPH• and ABTS•+ was shown by C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest FRAP - by non-pretreated C.rupestris and F.lumbricalis extract × LUHS135 combinations. Ultrasonicated samples inhibited four out of seven tested pathogens. Finally, the tested pre-treatments showed good perspectives and can be recommended for AB valorization.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Vytautas Magnus University, Agriculture Academy, Kaunas, Lithuania
| | - João M. Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Elena Bartkiene
| |
Collapse
|