1
|
Wu B, Yang X, Chen F, Song Z, Ding X, Wang X. Apolipoprotein E is a prognostic factor for pancreatic cancer and associates with immune infiltration. Cytokine 2024; 179:156628. [PMID: 38704962 DOI: 10.1016/j.cyto.2024.156628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The expression level of apolipoprotein E (APOE) in pancreatic ductal adenocarcinoma (PDAC) and its effect on the prognosis of PDAC patients are not clear. The effect of APOE on the immune status of patients with PDAC has not been elucidated. METHODS We obtained pancreatic cancer data from the TCGA and GETx databases. Patients with PDAC who underwent pancreatic surgery at the Second Affiliated Hospital of Jiaxing University between 2012 and 2021 were included. Clinical pathological data were recorded, plasma APOE levels were measured, and tissue samples were collected. A tissue microarray was generated using the collected tissue samples. APOE and CD4 staining was performed to determine immunoreactive scores (IRSs). The expression of APOE in the plasma and tumour tissues of pancreatic cancer patients was analysed and compared. The correlations between plasma APOE levels, tissue APOE levels and clinicopathological characteristics were analysed. Survival prognosis was analysed using Kaplan-Meier survival analysis and Cox multivariate regression analysis. The correlations between APOE expression levels and immune biomarkers and immune cells were further analysed. Single-cell analysis of APOE distribution in various cells was performed on the TISCH website. RESULTS APOE was highly expressed in the tumour tissue of pancreatic cancer patients, and high plasma APOE levels were associated with poor prognosis. Females, patients with high-grade disease and patients with pancreatic head carcinoma had high plasma APOE levels. High APOE expression in tumour tissues was associated with good prognosis. Mononuclear macrophages in the pancreatic cancer microenvironment primarily expressed APOE. APOE levels positively correlated with immune biomarkers, such as CD8A, PDCD1, GZMA, CXCL10, and CXCL9, in the tumour microenvironment. APOE promoted CD4 + T cell or dendritic cell infiltration in the tumour microenvironment. CONCLUSIONS APOE may affect the occurrence and development of pancreatic cancer by regulating the infiltration of immune cells in the tumour microenvironment.
Collapse
Affiliation(s)
- Bin Wu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaodan Yang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xuhui Ding
- Department of Hospital Sense,The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China.
| | - Xiaoguang Wang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China.
| |
Collapse
|
2
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Xu J, Xu W, Choi J, Brhane Y, Christiani DC, Kothari J, McKay J, Field JK, Davies MPA, Liu G, Amos CI, Hung RJ, Briollais L. Large-scale whole exome sequencing studies identify two genes,CTSL and APOE, associated with lung cancer. PLoS Genet 2023; 19:e1010902. [PMID: 37738239 PMCID: PMC10516417 DOI: 10.1371/journal.pgen.1010902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/07/2023] [Indexed: 09/24/2023] Open
Abstract
Common genetic variants associated with lung cancer have been well studied in the past decade. However, only 12.3% heritability has been explained by these variants. In this study, we investigate the contribution of rare variants (RVs) (minor allele frequency <0.01) to lung cancer through two large whole exome sequencing case-control studies. We first performed gene-based association tests using a novel Bayes Factor statistic in the International Lung Cancer Consortium, the discovery study (European, 1042 cases vs. 881 controls). The top genes identified are further assessed in the UK Biobank (European, 630 cases vs. 172 864 controls), the replication study. After controlling for the false discovery rate, we found two genes, CTSL and APOE, significantly associated with lung cancer in both studies. Single variant tests in UK Biobank identified 4 RVs (3 missense variants) in CTSL and 2 RVs (1 missense variant) in APOE stongly associated with lung cancer (OR between 2.0 and 139.0). The role of these genetic variants in the regulation of CTSL or APOE expression remains unclear. If such a role is established, this could have important therapeutic implications for lung cancer patients.
Collapse
Affiliation(s)
- Jingxiong Xu
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - David C. Christiani
- T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Jui Kothari
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Michael P. A. Davies
- Department of Molecular and Clinical Cancer Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I. Amos
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
5
|
Wu C, Li T, Cheng W. The correlation between APOE expression and the clinical characteristics and prognosis of patients with endometrial cancer. Medicine (Baltimore) 2022; 101:e30536. [PMID: 36123916 PMCID: PMC9478276 DOI: 10.1097/md.0000000000030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To analyze the expression of apolipoprotein E (APOE) in endometrial cancer and its influence on the long-term prognostic survival of endometrial cancer patients. The specimens of tumor tissues and adjacent normal tissues from 96 endometrial cancer patients from January 2013 to December 2015 were included in this study. Immunohistochemistry was used to measure the expression of APOE in tumor tissues and adjacent normal tissues. Statistical analysis was used to examine the correlation between APOE expression and the clinicopathological characteristics and survival of patients. Kaplan-Meier survival curve was drawn to study the effects of APOE on the prognosis of patients. The positive rate of APOE in endometrial cancer tissue was higher than that in adjacent normal tissues. The expression level of APOE in endometrial cancer was correlated with histological grade, lymph node metastasis, and FIGO stage (P < .05). Lymph node metastasis and APOE were independent risk factors affecting the prognosis and survival of patients (P < .05). The results of Kaplan-Meier survival analysis showed that the survival time of APOE high expression group was shorter than that of low APOE expression. APOE is overexpressed in endometrial cancer tissues, and its expression level can provide important information for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaoying Wu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gynecology, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ting Li
- Department of Pathology, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * Correspondence: Wenjun Cheng, Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China (e-mail: )
| |
Collapse
|
6
|
Kemp SB, Carpenter ES, Steele NG, Donahue KL, Nwosu ZC, Pacheco A, Velez-Delgado A, Menjivar RE, Lima F, The S, Espinoza CE, Brown K, Long D, Lyssiotis CA, Rao A, Zhang Y, Pasca di Magliano M, Crawford HC. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res 2021; 81:4305-4318. [PMID: 34049975 PMCID: PMC8445065 DOI: 10.1158/0008-5472.can-20-3929] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few effective therapeutic options. PDAC is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells. Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression. TAMs in human and murine PDAC are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDAC. We report here that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma ApoE protein levels stratify patient survival. Orthotopic implantation of mouse PDAC cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice. Histologic and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice. Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-κB signaling. Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDAC microenvironment. SIGNIFICANCE: This study shows that elevated apolipoprotein E in PDAC mediates immune suppression and high serum apolipoprotein E levels correlate with poor patient survival.See related commentary by Sherman, p. 4186.
Collapse
Affiliation(s)
- Samantha B Kemp
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Katelyn L Donahue
- Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Amanda Pacheco
- Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Rosa E Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J, Du G. Apolipoproteins and cancer. Cancer Med 2019; 8:7032-7043. [PMID: 31573738 PMCID: PMC6853823 DOI: 10.1002/cam4.2587] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of apolipoproteins in cardiovascular disease has been well investigated, but their participation in cancer has only been explored in a few published studies which showed a close link with certain kinds of cancer. In this review, we focused on the function of different kinds of apolipoproteins in cancers, autophagy, oxidative stress, and drug resistance. The potential application of apolipoproteins as biomarkers for cancer diagnosis and prognosis was highlighted, together with an investigation of their potential as drug targets for cancer treatment. Many important roles of apolipoproteins and their mechanisms in cancers were reviewed in detail and future perspectives of apolipoprotein research were discussed.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
An HJ, Koh HM, Song DH. Apolipoprotein E is a predictive marker for assessing non-small cell lung cancer patients with lymph node metastasis. Pathol Res Pract 2019; 215:152607. [PMID: 31472996 DOI: 10.1016/j.prp.2019.152607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Apolipoprotein E (APOE) modulates lipid homeostasis in the systemic circulation and induces inflammatory immune responses in the tumor microenvironment. We evaluated APOE expression in order to assess tumor progression in non-small cell lung cancer (NSCLC). METHODS Immunohistochemical staining for APOE was performed on tissue microarray blocks from 148 patients who had undergone surgery for NSCLC. The staining intensity and the proportion of APOE-positive tumor cells (based on distinct membranous and cytoplasmic staining) were scored. The relationships between APOE expression and clinical (age, sex, and smoking history) and pathological (TNM stage and histological type) factors were evaluated. RESULTS Positive APOE staining was observed in 93 (64.6%) patients. APOE expression patterns differed among NSCLC histological types (p-value = 0.016). Negative APOE expression was significantly associated with lymph node metastasis in NSCLC (p-value = 0.040). Both cases of N2 (stage IIIA) disease showed negative APOE expression. CONCLUSIONS APOE is a useful marker for assessing NSCLC patients with lymph node metastasis.
Collapse
Affiliation(s)
- Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea; Gyeongsang National University School of Medicine, Jinju, South Korea; Gyeongsang Institute of Health Science, Jinju, South Korea.
| |
Collapse
|
9
|
Lee YS, Yeo IJ, Kim KC, Han SB, Hong JT. Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity. Front Immunol 2019; 10:1379. [PMID: 31275318 PMCID: PMC6592261 DOI: 10.3389/fimmu.2019.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (ApoE) is known to regulate lipid homeostasis and associated with atherosclerogenesis. Eventhough atherosclerogenesis is associated with tumor development, the role of ApoE in lung tumorigenesis and metastasis is not clear. Thus, the tumor growth and metastasis were compared in WT and ApoE knockout (KO) mice. Urethane-induced lung tumor incidence and B16F10 lung metastasis in ApoE knockout (KO) mice were significantly reduced in comparison to that in WT mice. Knockdown of ApoE expression in lung cancer cells and B16F10 cells also decreased cancer cell growth and metastasis. The inhibitory effect of ApoE KO on tumor development and metastasis was associated with increase of infiltration of NK cells. NK cells derived from ApoE KO mice showed much greater cytotoxicity than those from WT mice. These cytotoxic effect of NK cells derived from ApoE KO mice was associated with higher expression of Granzyme B, Fas Ligand, IFN-γ, TNF-α, NKG2D, NKp46, and DNAM-1 expression. Triggering receptor expressed on myeloid cell (TREM)-1 is a proinflammatory mediator expressed on NK cells, and is known to be associated with NK cell cytotoxicity. Thus, we investigated the role of TREM-1 on ApoE KO mice originated NK cell mediated cytotoxicity for cancer cells. Blockade of TREM-1 expression with a TREM-1 antagonist prevented NK cell-mediated cytotoxicity. TREM-1 antibody recovered cytotoxic effect of NK cells derived from KO mice of T-bet, which upregulating gene for TREM-1. These data indicate that ApoE KO suppressed lung tumor development and metastasis via increase of TREM-1-dependent anti-tumor activity of NK cells.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Ki Cheon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
10
|
Shi J, Yang H, Duan X, Li L, Sun L, Li Q, Zhang J. Apolipoproteins as Differentiating and Predictive Markers for Assessing Clinical Outcomes in Patients with Small Cell Lung Cancer. Yonsei Med J 2016; 57:549-56. [PMID: 26996551 PMCID: PMC4800341 DOI: 10.3349/ymj.2016.57.3.549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The present study aimed to investigate the value of apolipoproteins, including ApoA-1, ApoC-III, and ApoE, in patients with small cell lung cancer (SCLC) as potential biomarkers for diagnosis, prognosis, and cancer progression. MATERIALS AND METHODS Lung samples were collected from 89 patients with SCLC. Nineteen lung samples from non-small cell lung cancer (NSCLC) patients and 12 normal lung tissues were used as controls. Expression profiles of ApoA-1, ApoC-III, and ApoE in different samples were examined using immunohistochemical methods, and the expression levels were correlated with cancer types, treatment, and outcomes using chi-square and Mann-Whitney tests. RESULTS Expression of ApoA-1 and ApoC-III in SCLC was significantly different, compared with that in NSCLC and normal lung tissues, and was correlated with recurrence of SCLC. Patients undergoing neoadjuvant chemotherapy before surgery showed significantly reduced expression of ApoA-1 and increased expression of ApoC-III and ApoE. Nevertheless, the expression levels of ApoA-1, ApoC-III, and ApoE were not correlated with SCLC staging. CONCLUSION ApoA-1 and ApoC-III may be used as differentiating and predictive markers for SCLC. ApoA-1, ApoC-III, and ApoE may be used to monitor the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Jian Shi
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Huichai Yang
- Department of Pathology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoyang Duan
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lihua Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lulu Sun
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Qian Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Junjun Zhang
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Zinrajh D, Hörl G, Jürgens G, Marc J, Sok M, Cerne D. Increased phosphatidylethanolamine N-methyltransferase gene expression in non-small-cell lung cancer tissue predicts shorter patient survival. Oncol Lett 2014; 7:2175-2179. [PMID: 24932311 PMCID: PMC4049682 DOI: 10.3892/ol.2014.2035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/14/2014] [Indexed: 01/31/2023] Open
Abstract
Lipid mobilization is of great importance for tumor growth and studies have suggested that cancer cells exhibit abnormal choline phospholipid metabolism. In the present study, we hypothesized that phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is increased in non-small-cell lung cancer (NSCLC) tissues and that increased gene expression acts as a predictor of shorter patient survival. Forty-two consecutive patients with resected NSCLC were enrolled in this study. Paired samples of lung cancer tissues and adjacent non-cancer lung tissues were collected from resected specimens for the estimation of PEMT expression. SYBR Green-based real-time polymerase chain reaction was used for quantification of PEMT mRNA in lung cancer tissues. Lipoprotein lipase (LPL) and fatty acid synthase (FASN) activities had already been measured in the same tissues. During a four-year follow-up, 21 patients succumbed to tumor progression. One patient did not survive due to non-cancer reasons and was not included in the analysis. Cox regression analysis was used to assess the prognostic value of PEMT expression. Our findings show that elevated PEMT expression in the cancer tissue, relative to that in the adjacent non-cancer lung tissue, predicts shorter patient survival independently of standard prognostic factors and also independently of increased LPL or FASN activity, the two other lipid-related predictors of shorter patient survival. These findings suggest that active phosphatidylcholine and/or choline metabolism are essential for tumor growth and progression.
Collapse
Affiliation(s)
- David Zinrajh
- Chair of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Gerd Hörl
- Department of Physiological Chemistry, Center for Physiological Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Günther Jürgens
- Department of Physiological Chemistry, Center for Physiological Medicine, Medical University of Graz, A-8010 Graz, Austria
| | - Janja Marc
- Chair of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Miha Sok
- Department of Thoracic Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Darko Cerne
- Chair of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Chen J, Wu W, Zhen C, Zhou H, Yang R, Chen L, Hu L. Expression and clinical significance of complement C3, complement C4b1 and apolipoprotein E in pancreatic cancer. Oncol Lett 2013; 6:43-48. [PMID: 23946775 PMCID: PMC3742809 DOI: 10.3892/ol.2013.1326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/05/2013] [Indexed: 12/05/2022] Open
Abstract
Pancreatic cancer (PC) remains a devastating disease with a five-year survival rate of <5%. The difficulty in making an early diagnosis and the frequent occurrence of metastasis are important reasons for this poor prognosis. In China, the incidence of PC has been increasing steadily. Therefore, the present study aimed to identify effective markers in the early and advanced stages of PC. The expression levels of complement C3, complement C4b1 and apolipoprotein E (ApoE) in the various stages of PC were assessed by immunohistochemistry, RT-PCR and western blotting. Additionally, the statistical significance of the results was analyzed. The expression levels of complement C3, complement C4b1 and apoE were higher in PC compared with normal pancreatic tissues. No correlations were observed between complement C3 and tumor TNM staging or lymph node metastasis. However, complement C4b1 and apoE were markedly correlated with tumor TNM staging and lymph node metastasis. Complement C3 may be used as a marker for the diagnosis of early-stage PC, while complement C4b1 and apoE are closely correlated with tumor development, reflecting the biological behavior of PC, and thus may be used as diagnostic markers of advanced PC.
Collapse
Affiliation(s)
- Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | | | | | | | | | | | | |
Collapse
|
13
|
Imbernon M, Beiroa D, Vázquez MJ, Morgan DA, Veyrat–Durebex C, Porteiro B, Díaz–Arteaga A, Senra A, Busquets S, Velásquez DA, Al–Massadi O, Varela L, Gándara M, López–Soriano F, Gallego R, Seoane LM, Argiles JM, López M, Davis RJ, Sabio G, Rohner–Jeanrenaud F, Rahmouni K, Dieguez C, Nogueiras R. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 2013; 144:636-649.e6. [PMID: 23142626 PMCID: PMC3663042 DOI: 10.1053/j.gastro.2012.10.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. METHODS Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. RESULTS We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. CONCLUSIONS Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways.
Collapse
Affiliation(s)
- Monica Imbernon
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Daniel Beiroa
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - María J. Vázquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Donald A. Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christelle Veyrat–Durebex
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Begoña Porteiro
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Adenis Díaz–Arteaga
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Silvia Busquets
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Douglas A. Velásquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Omar Al–Massadi
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Luis Varela
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Marina Gándara
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | | | - Rosalía Gallego
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | - Luisa M. Seoane
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain,Grupo Fisiopatología Endocrina, Complejo Hospitalario Universitario de Santiago-Instituto de Investigación Sanitaria (IDIS/SERGAS) Santiago de Compostela, Spain
| | - Josep M. Argiles
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Roger J. Davis
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Françoise Rohner–Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S. Francisco s/n, Santiago de Compostela (A Coruña), Spain,Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Su WP, Chen YT, Lai WW, Lin CC, Yan JJ, Su WC. Apolipoprotein E expression promotes lung adenocarcinoma proliferation and migration and as a potential survival marker in lung cancer. Lung Cancer 2011; 71:28-33. [PMID: 20430468 DOI: 10.1016/j.lungcan.2010.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/20/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Many human lung cancer cell lines express apolipoprotein E (ApoE), especially cells derived from malignant pleural effusions (MPE) in patients with lung adenocarcinoma. This study aimed to investigate the influence of ApoE expression on lung cancer. In lung cancer tissues, ApoE expression was more frequently found in malignant pleural effusions (MPE)-associated lung adenocarcinoma than in lung adenocarcinoma or squamous cell carcinoma without MPE (P<0.05), indicating that ApoE is associated with the pathogenesis of MPE in patients with lung adenocarcinoma. Next, we examined the roles of ApoE in an MPE-derived lung adenocarcinoma cell line that endogenously over-expresses ApoE, PC14PE6/AS2 (AS2). In that experiment we inhibited ApoE expression by transfection of a plasmid carrying ApoE siRNAs into AS2 cells to generate AS-S2 and AS-S3 cells. Compared to vector-control cells and parental AS2 cells, AS2-S2 and AS2-S3 cells grew slower (P<0.05), were more sensitive to cisplatin, and had significantly impaired cellular migration (P<0.05). Furthermore, over-expression of ApoE was independently associated with poor survival in lung adenocarcinoma patients who had MPE at the time of diagnosis (P<0.001). Conclusively, ApoE over-expression promotes cancer proliferation and migration and contributes to an aggressive clinical course in patients with lung adenocarcinoma and MPE.
Collapse
Affiliation(s)
- Wen-Pin Su
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, Blaney SM, Phillips P, Packer R, Gordish-Dressman H, Rood BR. Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: A pediatric brain tumor consortium study. Proteomics 2011; 11:935-43. [PMID: 21271676 PMCID: PMC3088509 DOI: 10.1002/pmic.201000198] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/24/2010] [Accepted: 12/05/2010] [Indexed: 01/25/2023]
Abstract
The aims of this study were to demonstrate the feasibility of centrally collecting and processing high-quality cerebrospinal fluid (CSF) samples for proteomic studies within a multi-center consortium and to identify putative biomarkers for medulloblastoma in CSF. We used 2-DE to investigate the CSF proteome from 33 children with medulloblastoma and compared it against the CSF proteome from 25 age-matched controls. Protein spots were subsequently identified by a combination of in-gel tryptic digestion and MALDI-TOF TOF MS analysis. On average, 160 protein spots were detected by 2-DE and 76 protein spots corresponding to 25 unique proteins were identified using MALDI-TOF. Levels of prostaglandin D2 synthase (PGD2S) were found to be six-fold decreased in the tumor samples versus control samples (p<0.00001). These data were further validated using ELISA. Close examination of PGD2S spots revealed the presence of complex sialylated carbohydrates at residues Asn(78) and Asn(87) . Total PGD2S levels are reduced six-fold in the CSF of children with medulloblastoma most likely representing a host response to the presence of the tumor. In addition, our results demonstrate the feasibility of performing proteomic studies on CSF samples collected from patients at multiple institutions within the consortium setting.
Collapse
Affiliation(s)
- Meena U. Rajagopal
- Center for Genetic Medicine, Children’s National Medical Center, Washington DC USA
| | - Yetrib Hathout
- Center for Genetic Medicine, Children’s National Medical Center, Washington DC USA
| | - Tobey J. MacDonald
- Center for Cancer and Immunology, Children’s National Medical Center, Washington DC USA
- Pediatric Brain Tumor Consortium (PBTC)
| | - Mark W. Kieran
- Pediatric Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | | | - Susan M. Blaney
- Pediatric Brain Tumor Consortium (PBTC)
- Texas Children’s Cancer Center/Baylor College of Medicine, Houston, TX USA
| | | | | | | | - Brian R. Rood
- Center for Cancer and Immunology, Children’s National Medical Center, Washington DC USA
- Pediatric Brain Tumor Consortium (PBTC)
| |
Collapse
|