1
|
Bahap Y, Kayhan G. A Cockayne-Syndrome-Like Phenotype with a Homozygous Truncating UVSSA Variant: Might This Be a New Cause? Mol Syndromol 2024; 15:324-327. [PMID: 39119453 PMCID: PMC11305656 DOI: 10.1159/000536420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/18/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction UV-sensitive syndrome and Cockayne syndrome (CS) are rare autosomal recessive and transcription-coupled nucleotide excision repair disorders with different clinical manifestations, although some types are allelic. Case Presentation We report on a patient who passed away at 15 years old with a progeroid-like appearance, cachexia, hearing loss, and dental anomalies, which led us to the diagnosis of Cockayne-like progeroid syndromes. Our clinical exome sequencing including all the known genes of progeroid syndromes revealed a homozygous stop-gain variant in the UVSSA gene. Conclusion Although truncating variants in the UVSSA are known to cause UVsS3, their association with CS has not yet been defined. This case might be the first report of a CS-like phenotype caused by a defective UVSSA.
Collapse
Affiliation(s)
- Yusuf Bahap
- Medical Genetics Department, Gazi University Hospital, Ankara, Turkey
| | - Gulsum Kayhan
- Medical Genetics Department, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Worm C, Schambye MER, Mkrtchyan GV, Veviorskiy A, Shneyderman A, Ozerov IV, Zhavoronkov A, Bakula D, Scheibye-Knudsen M. Defining the progeria phenome. Aging (Albany NY) 2024; 16:2026-2046. [PMID: 38345566 PMCID: PMC10911340 DOI: 10.18632/aging.205537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/17/2023] [Indexed: 02/22/2024]
Abstract
Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.
Collapse
Affiliation(s)
- Cecilie Worm
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | | | - Garik V. Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Alexander Veviorskiy
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | | | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Limited, Science Park West Avenue, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Limited, Science Park West Avenue, Hong Kong, China
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Joudeh LA, DiCintio AJ, Ries MR, Gasperson AS, Griffin KE, Robbins VP, Bonner M, Nolan S, Black E, Waldman AS. Corruption of DNA end-joining in mammalian chromosomes by progerin expression. DNA Repair (Amst) 2023; 126:103491. [PMID: 37018982 PMCID: PMC10133198 DOI: 10.1016/j.dnarep.2023.103491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.
Collapse
Affiliation(s)
- Liza A Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alannah J DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Madeline R Ries
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew S Gasperson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kennedy E Griffin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Victoria P Robbins
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Makenzie Bonner
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Nolan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Emma Black
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
4
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
5
|
Komari CJ, Guttman AO, Carr SR, Trachtenberg TL, Orloff EA, Haas AV, Patrick AR, Chowdhary S, Waldman BC, Waldman AS. Alteration of genetic recombination and double-strand break repair in human cells by progerin expression. DNA Repair (Amst) 2020; 96:102975. [PMID: 33010688 DOI: 10.1016/j.dnarep.2020.102975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare autosomal, dominant genetic condition characterized by many features of accelerated aging. On average, children with HGPS live to about fourteen years of age. The syndrome is commonly caused by a point mutation in the LMNA gene which normally codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The LMNA mutation alters splicing, leading to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at very low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting corruption of DNA repair. In this work, we investigated the influence of progerin expression on DSB repair in the human genome at the nucleotide level. We used a model system that involves a reporter DNA substrate inserted in the genome of cultured human cells. A DSB could be induced within the substrate through exogenous expression of endonuclease I-SceI, and DSB repair events occurring via either homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recoverable. Additionally, spontaneous HR events were recoverable in the absence of artificial DSB induction. We compared DSB repair and spontaneous HR in cells overexpressing progerin versus cells expressing no progerin. We report that overexpression of progerin correlated with an increase in DSB repair via NHEJ relative to HR, as well as an increased fraction of HR events occurring via gene conversion. Progerin also engendered an apparent increase in spontaneous HR events, with a highly significant shift toward gene conversion events, and an increase in DNA amplification events. Such influences of progerin on DNA transactions may impact genome stability and contribute to aging.
Collapse
Affiliation(s)
- Celina J Komari
- Department of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Anne O Guttman
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Shelby R Carr
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor L Trachtenberg
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Elise A Orloff
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Ashley V Haas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew R Patrick
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sona Chowdhary
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Barbara C Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
6
|
Debnath S, Sharma S. RECQ1 Helicase in Genomic Stability and Cancer. Genes (Basel) 2020; 11:E622. [PMID: 32517021 PMCID: PMC7348745 DOI: 10.3390/genes11060622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
RECQ1 (also known as RECQL or RECQL1) belongs to the RecQ family of DNA helicases, members of which are linked with rare genetic diseases of cancer predisposition in humans. RECQ1 is implicated in several cellular processes, including DNA repair, cell cycle and growth, telomere maintenance, and transcription. Earlier studies have demonstrated a unique requirement of RECQ1 in ensuring chromosomal stability and suggested its potential involvement in tumorigenesis. Recent reports have suggested that RECQ1 is a potential breast cancer susceptibility gene, and missense mutations in this gene contribute to familial breast cancer development. Here, we provide a framework for understanding how the genetic or functional loss of RECQ1 might contribute to genomic instability and cancer.
Collapse
Affiliation(s)
- Subrata Debnath
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
- National Human Genome Center, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|
7
|
Benign prostatic hyperplasia in a 23 year old man with progeroid syndrome. AFRICAN JOURNAL OF UROLOGY 2018. [DOI: 10.1016/j.afju.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Misiak M, Vergara Greeno R, Baptiste BA, Sykora P, Liu D, Cordonnier S, Fang EF, Croteau DL, Mattson MP, Bohr VA. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell 2017; 16:162-172. [PMID: 27686631 PMCID: PMC5242308 DOI: 10.1111/acel.12541] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase‐β (Polβ) levels renders OB neurons vulnerable to degeneration in the 3xTgAD mouse model of AD. We interrogated OB histopathology and olfactory function in wild‐type and 3xTgAD mice with normal or reduced Polβ levels. Compared to wild‐type control mice, Polβ heterozygous (Polβ+/−), and 3xTgAD mice, 3xTgAD/Polβ+/− mice exhibited impaired performance in a buried food test of olfaction. Polβ deficiency did not affect the proliferation of OB neural progenitor cells in the subventricular zone. However, numbers of newly generated neurons were reduced by approximately 25% in Polβ+/− and 3xTgAD mice, and by over 60% in the 3xTgAD/Polβ+/− mice compared to wild‐type control mice. Analyses of DNA damage and apoptosis revealed significantly greater degeneration of OB neurons in 3xTgAD/Polβ+/− mice compared to 3xTgAD mice. Levels of amyloid β‐peptide (Aβ) accumulation in the OB were similar in 3xTgAD and 3xTgAD/Polβ+/− mice, and cultured Polβ‐deficient neurons exhibited increased vulnerability to Aβ‐induced death. Olfactory deficit is an early sign in human AD, but the mechanism is not yet understood. Our findings in a new AD mouse model demonstrate that diminution of BER can endanger OB neurons, and suggest a mechanism underlying early olfactory impairment in AD.
Collapse
Affiliation(s)
- Magdalena Misiak
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
- Laboratory of Neurosciences; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Rebeca Vergara Greeno
- Laboratory of Neurosciences; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Beverly A. Baptiste
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Peter Sykora
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Dong Liu
- Laboratory of Neurosciences; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Stephanie Cordonnier
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
- Laboratory of Neurosciences; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Evandro F. Fang
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Mark P. Mattson
- Laboratory of Neurosciences; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology; National Institute on Aging Intramural Research Program; Biomedical Research Center; 251 Bayview Blvd Baltimore MD 21224 USA
| |
Collapse
|
9
|
Tang W, Robles AI, Beyer RP, Gray LT, Nguyen GH, Oshima J, Maizels N, Harris CC, Monnat RJ. The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum Mol Genet 2016; 25:2060-2069. [PMID: 26984941 DOI: 10.1093/hmg/ddw079] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 11/12/2022] Open
Abstract
The Werner syndrome (WS) is a prototypic adult Mendelian progeroid syndrome in which signs of premature aging are associated with genomic instability and an elevated risk of cancer. The WRN RECQ helicase protein binds and unwinds G-quadruplex (G4) DNA substrates in vitro, and we identified significant enrichment in G4 sequence motifs at the transcription start site and 5' ends of first introns (false discovery rate < 0.001) of genes down-regulated in WS patient fibroblasts. This finding provides strong evidence that WRN binds G4 DNA structures at many chromosomal sites to modulate gene expression. WRN appears to bind a distinct subpopulation of G4 motifs in human cells, when compared with the related Bloom syndrome RECQ helicase protein. Functional annotation of the genes and miRNAs altered in WS provided new insight into WS disease pathogenesis. WS patient fibroblasts displayed altered expression of multiple, mechanistically distinct, senescence-associated gene expression programs, with altered expression of disease-associated miRNAs, and dysregulation of canonical pathways that regulate cell signaling, genome stability and tumorigenesis. WS fibroblasts also displayed a highly statistically significant and distinct gene expression signature, with coordinate overexpression of nearly all of the cytoplasmic tRNA synthetases and associated ARS-interacting multifunctional protein genes. The 'non-canonical' functions of many of these upregulated tRNA charging proteins may together promote WS disease pathogenesis. Our results identify the human WRN RECQ protein as a G4 helicase that modulates gene expression in G4-dependent fashion at many chromosomal sites and provide several new and unexpected mechanistic insights into WS disease pathogenesis.
Collapse
Affiliation(s)
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA and
| | | | | | - Giang H Nguyen
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Junko Oshima
- Department of Pathology, Department of Medicine, Chiba University, Chiba, Japan
| | - Nancy Maizels
- Department of Pathology, Department of Immunology, Department of Biochemistry
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Raymond J Monnat
- Department of Pathology, Department of Genome Sciences, University of Washington, Seattle, WA, USA,
| |
Collapse
|
10
|
Ganley ARD, Kobayashi T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 2014; 14:49-59. [DOI: 10.1111/1567-1364.12133] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
- Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences; Massey University; Auckland New Zealand
| | - Takehiko Kobayashi
- Division of Cytogenetics; National Institute of Genetics; Mishima Shizuoka Japan
- Department of Genetics; The Graduate University for Advanced Studies; SOKENDAI; Mishima Shizuoka Japan
| |
Collapse
|
11
|
Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42. [PMID: 23562425 DOI: 10.1016/j.mad.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | |
Collapse
|
12
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
13
|
de Graaf EL, Vermeij WP, de Waard MC, Rijksen Y, van der Pluijm I, Hoogenraad CC, Hoeijmakers JHJ, Altelaar AFM, Heck AJR. Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum. Mol Cell Proteomics 2013; 12:1350-62. [PMID: 23399551 DOI: 10.1074/mcp.m112.024950] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The accumulation of cellular damage, including DNA damage, is hypothesized to contribute to aging-related neurodegenerative changes. DNA excision repair cross-complementing group 1 (Ercc1) knock-out mice represent an accepted model of neuronal aging, showing gradual neurodegenerative changes, including loss of synaptic contacts and cell body shrinkage. Here, we used the Purkinje cell-specific Ercc1 DNA-repair knock-out mouse model to study aging in the mouse cerebellum. We performed an in-depth quantitative proteomics analysis, using stable isotope dimethyl labeling, to decipher changes in protein expression between the early (8 weeks), intermediate (16 weeks), and late (26 weeks) stages of the phenotypically aging Ercc1 knock-out and healthy littermate control mice. The expression of over 5,200 proteins from the cerebellum was compared quantitatively, whereby 79 proteins (i.e. 1.5%) were found to be substantially regulated during aging. Nearly all of these molecular markers of the early aging onset belonged to a strongly interconnected network involved in excitatory synaptic signaling. Using immunohistological staining, we obtained temporal and spatial profiles of these markers confirming not only the proteomics data but in addition revealed how the change in protein expression correlates to synaptic changes in the cerebellum. In summary, this study provides a highly comprehensive spatial and temporal view of the dynamic changes in the cerebellum and Purkinje cell signaling in particular, indicating that synapse signaling is one of the first processes to be affected in this premature aging model, leading to neuron morphological changes, neuron degeneration, inflammation, and ultimately behavior disorders.
Collapse
Affiliation(s)
- Erik L de Graaf
- Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Andrade LNDS, Nathanson JL, Yeo GW, Menck CFM, Muotri AR. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum Mol Genet 2012; 21:3825-34. [PMID: 22661500 DOI: 10.1093/hmg/dds211] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patient's fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.
Collapse
|
15
|
Changes in Ribosomal Protein S3 Immunoreactivity and its Protein Levels in the Gerbil Hippocampus Following Subacute and Chronic Restraint Stress. Neurochem Res 2012; 37:1428-35. [DOI: 10.1007/s11064-012-0727-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/30/2011] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
|
16
|
Wang L, Yang W, Ju W, Wang P, Zhao X, Jenkins EC, Brown WT, Zhong N. A proteomic study of Hutchinson-Gilford progeria syndrome: Application of 2D-chromotography in a premature aging disease. Biochem Biophys Res Commun 2011; 417:1119-26. [PMID: 22210539 DOI: 10.1016/j.bbrc.2011.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022]
Abstract
The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process.
Collapse
Affiliation(s)
- Li Wang
- Peking University Center of Medical Genetics, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Musich PR, Zou Y. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem Soc Trans 2011; 39:1764-9. [PMID: 22103522 PMCID: PMC4271832 DOI: 10.1042/bst20110687] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression.
Collapse
Affiliation(s)
- Phillip R. Musich
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, U.S.A
| | - Yue Zou
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, U.S.A
| |
Collapse
|
18
|
Haigis MC, Yankner BA. The aging stress response. Mol Cell 2010; 40:333-44. [PMID: 20965426 DOI: 10.1016/j.molcel.2010.10.002] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 12/25/2022]
Abstract
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.
Collapse
Affiliation(s)
- Marcia C Haigis
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
19
|
Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany NY) 2010; 1:28-37. [PMID: 19851476 PMCID: PMC2765059 DOI: 10.18632/aging.100012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Progeria syndromes have in common a premature aging phenotype and increased genome instability. The susceptibility to DNA damage arises from a compromised repair system, either in the repair proteins themselves or in the DNA damage response pathways. The most severe progerias stem from mutations affecting lamin A production, a filamentous protein of the nuclear lamina. Hutchinson-Gilford progeria syndrome (HGPS) patients are heterozygous for aLMNA gene mutation while Restrictive Dermopathy (RD) individuals have a homozygous deficiency in the processing protease Zmpste24. These mutations generate the mutant lamin A proteins progerin and FC-lamina A, respectively, which cause nuclear deformations and chromatin perturbations. Genome instability is observed even though genome maintenance and repair genes appear normal. The unresolved question is what features of the DNA damage response pathways are deficient in HGPS and RD cells. Here we review and discuss recent findings which resolve some mechanistic details of how the accumulation of progerin/FC-lamin A proteins may disrupt DNA damage response pathways in HGPS and RD cells. As the mutant lamin proteins accumulate they sequester replication and repair factors, leading to stalled replication forks which collapse into DNA double-strand beaks (DSBs). In a reaction unique to HGPS and RD cells these accessible DSB termini bind Xeroderma pigmentosum group A (XPA) protein which excludes normal binding by DNA DSB repair proteins. The bound XPA also signals activation of ATM and ATR, arresting cell cycle progression, leading to arrested growth. In addition, the effective sequestration of XPA at these DSB damage sites makes HGPS and RD cells more sensitive to ultraviolet light and other mutagens normally repaired by the nucleotide excision repair pathway of which XPA is a necessary and specific component.
Collapse
Affiliation(s)
- Phillip R Musich
- Department of Biochemistry & Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, USA
| | | |
Collapse
|
20
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
21
|
Davies BSJ, Fong LG, Yang SH, Coffinier C, Young SG. The posttranslational processing of prelamin A and disease. Annu Rev Genomics Hum Genet 2009; 10:153-74. [PMID: 19453251 DOI: 10.1146/annurev-genom-082908-150150] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human geneticists have shown that some progeroid syndromes are caused by mutations that interfere with the conversion of farnesyl-prelamin A to mature lamin A. For example, Hutchinson-Gilford progeria syndrome is caused by LMNA mutations that lead to the accumulation of a farnesylated version of prelamin A. In this review, we discuss the posttranslational modifications of prelamin A and their relevance to the pathogenesis and treatment of progeroid syndromes.
Collapse
Affiliation(s)
- Brandon S J Davies
- Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
22
|
Aamodt RM. Age-and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle. Exp Gerontol 2009; 44:586-93. [PMID: 19563879 DOI: 10.1016/j.exger.2009.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 06/07/2009] [Accepted: 06/18/2009] [Indexed: 11/26/2022]
Abstract
I report here an investigation of the age- and caste-specific expression patterns of nine honeybee orthologs of genes involved in repair of oxidative and methylation damage of DNA, and possibly RNA, in wing muscle tissue of the honeybee Apis mellifera. mRNA expression levels were measured in a comparative study of queens and ageing workers. Two of these genes, both potentially involved in repair and prevention of oxidative damage, showed higher expression in queens than workers and a distinct downregulation during the ageing trajectory in workers. These were an ortholog of mammalian NTH1 and a gene encoding a fusion protein which seems to be unique for the honeybee, consisting of one domain homologous to mammalian MTH1/Nudix/bacterial mutT and another domain homologous to the mitochondrial ribosomal protein gene S23. Orthologs of aag, apn1, msh6, ogg1, smug1 and two orthologs of human ABH/E. coli alkB, had stable expression levels during the ageing trajectory except high apn1 levels in overwintering workers. To estimate eventual age-dependent mitochondrial maintenance, batches of mitochondrial DNA from young and old workers and young queens were re-sequenced using Solexa/Illumina high-throughput sequencing. The results indicate at least a 50% reduction of intact mitochondrial fragments in foragers compared to young workers, winter bees and queens.
Collapse
Affiliation(s)
- Randi M Aamodt
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway.
| |
Collapse
|
23
|
A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci U S A 2009; 106:6209-14. [PMID: 19329487 DOI: 10.1073/pnas.0902113106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.
Collapse
|
24
|
Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V. Common gene signature of cancer and longevity. Mech Ageing Dev 2009; 130:33-9. [DOI: 10.1016/j.mad.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/23/2008] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
|
25
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
26
|
Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 2008; 33:609-20. [PMID: 18926708 DOI: 10.1016/j.tibs.2008.09.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The RecQ helicases are guardians of the genome. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. The results of in vitro cellular and biochemical studies have been complimented by recent in vivo studies using genetically modified mouse strains. Together, these approaches are helping to unravel the mechanism(s) of action and biological functions of the RecQ helicases.
Collapse
Affiliation(s)
- Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol Neurobiol 2008; 38:167-77. [PMID: 18759009 DOI: 10.1007/s12035-008-8040-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/14/2008] [Indexed: 12/23/2022]
Abstract
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.
Collapse
|
28
|
Xu X, Zhan M, Duan W, Prabhu V, Brenneman R, Wood W, Firman J, Li H, Zhang P, Ibe C, Zonderman AB, Longo DL, Poosala S, Becker KG, Mattson MP. Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol 2008; 8:R234. [PMID: 17988385 PMCID: PMC2258177 DOI: 10.1186/gb-2007-8-11-r234] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/13/2007] [Accepted: 11/07/2007] [Indexed: 01/05/2023] Open
Abstract
The transcriptional profiles of five regions of the central nervous system (CNS) of mice varying in age, gender and dietary intake were measured by microarray. The resulting data provide insights into the mechanisms of age-, diet- and gender-related CNS plasticity and vulnerability in mammals. Background The structural and functional complexity of the mammalian central nervous system (CNS) is organized and modified by complicated molecular signaling processes that are poorly understood. Results We measured transcripts of 16,896 genes in 5 CNS regions from cohorts of young, middle-aged and old male and female mice that had been maintained on either a control diet or a low energy diet known to retard aging. Each CNS region (cerebral cortex, hippocampus, striatum, cerebellum and spinal cord) possessed its own unique transcriptome fingerprint that was independent of age, gender and energy intake. Less than 10% of genes were significantly affected by age, diet or gender, with most of these changes occurring between middle and old age. The transcriptome of the spinal cord was the most responsive to age, diet and gender, while the striatal transcriptome was the least responsive. Gender and energy restriction had particularly robust influences on the hippocampal transcriptome of middle-aged mice. Prominent functional groups of age- and energy-sensitive genes were those encoding proteins involved in DNA damage responses (Werner and telomere-associated proteins), mitochondrial and proteasome functions, cell fate determination (Wnt and Notch signaling) and synaptic vesicle trafficking. Conclusion Mouse CNS transcriptomes responded to age, energy intake and gender in a regionally distinctive manner. The systematic transcriptome dataset also provides a window into mechanisms of age-, diet- and sex-related CNS plasticity and vulnerability.
Collapse
Affiliation(s)
- Xiangru Xu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Andreassi MG. DNA damage, vascular senescence and atherosclerosis. J Mol Med (Berl) 2008; 86:1033-43. [DOI: 10.1007/s00109-008-0358-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/07/2008] [Accepted: 03/31/2008] [Indexed: 01/21/2023]
|
30
|
Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 2008; 129:441-8. [PMID: 18541289 DOI: 10.1016/j.mad.2008.04.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
Cockayne Syndrome (CS) is a rare human genetic disorder characterized by progressive multisystem degeneration and segmental premature aging. The CS complementation group B (CSB) protein is engaged in transcription coupled and global nucleotide excision repair, base excision repair and general transcription. However, the precise molecular function of the CSB protein is still unclear. In the current review we discuss the involvement of CSB in some of these processes, with focus on the role of CSB in repair of oxidative damage, as deficiencies in the repair of these lesions may be an important aspect of the premature aging phenotype of CS.
Collapse
Affiliation(s)
- Tinna Stevnsner
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
31
|
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7:83-105. [PMID: 17964225 DOI: 10.1016/j.arr.2007.09.002] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
Innate and adaptive immunity are the major defence mechanisms of higher organisms against inherent and environmental threats. Innate immunity is present already in unicellular organisms but evolution has added novel adaptive immune mechanisms to the defence armament. Interestingly, during aging, adaptive immunity significantly declines, a phenomenon called immunosenescence, whereas innate immunity seems to be activated which induces a characteristic pro-inflammatory profile. This process is called inflamm-aging. The recognition and signaling mechanisms involved in innate immunity have been conserved during evolution. The master regulator of the innate immunity is the NF-kB system, an ancient signaling pathway found in both insects and vertebrates. The NF-kB system is in the nodal point linking together the pathogenic assault signals and cellular danger signals and then organizing the cellular resistance. Recent studies have revealed that SIRT1 (Sir2 homolog) and FoxO (DAF-16), the key regulators of aging in budding yeast and Caenorhabditis elegans models, regulate the efficiency of NF-kB signaling and the level of inflammatory responses. We will review the role of innate immunity signaling in the aging process and examine the function of NF-kB system in the organization of defence mechanisms and in addition, its interactions with the protein products of several gerontogenes. Our conclusion is that NF-kB signaling seems to be the culprit of inflamm-aging, since this signaling system integrates the intracellular regulation of immune responses in both aging and age-related diseases.
Collapse
|
32
|
Raghavendran S, Brown KA, Buu N. Perioperative management of patients with Cockayne syndrome - recognition of accelerated aging with growth arrest. Paediatr Anaesth 2008; 18:360-1. [PMID: 18315666 DOI: 10.1111/j.1460-9592.2006.02067.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Passtoors WM, Beekman M, Gunn D, Boer JM, Heijmans BT, Westendorp RGJ, Zwaan BJ, Slagboom PE. Genomic studies in ageing research: the need to integrate genetic and gene expression approaches. J Intern Med 2008; 263:153-66. [PMID: 18226093 DOI: 10.1111/j.1365-2796.2007.01904.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide and hypothesis-based approaches to the study of ageing and longevity have been dominated by genetic investigations. To identify essential mechanisms of a complex trait such as ageing in higher species, a holistic understanding of interacting pathways is required. More information on such interactions is expected to be obtained from global gene expression analysis if combined with genetic studies. Genetic sequence variation often provides a functional gene marker for the trait, whereas a gene expression profile may provide a quantitative biomarker representing complex cellular pathway interactions contributing to the trait. Thus far, gene expression studies have associated multiple pathways to ageing including mitochondrial electron transport and the oxidative stress response. However, most of the studies are underpowered to detect small age-changes. A systematic survey of gene expression changes as a function of age in human individuals and animal models is lacking. Well designed gene expression studies, especially at the level of biological processes, will provide hypotheses on gene-environmental interactions determining biological ageing rate. Cross-sectional studies monitoring the profile as a chronological marker of ageing must be integrated with prospective studies indicating which profiles represent biomarkers preceding and predicting physiological decline and mortality. New study designs such as the Leiden Longevity Study, including two generations of subjects from longevity families, aim to achieve these combined approaches.
Collapse
Affiliation(s)
- W M Passtoors
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Marfella R, Filippo CD, Laieta MT, Vestini R, Barbieri M, Sangiulo P, Crescenzi B, Ferraraccio F, Rossi F, D'Amico M, Paolisso G. Effects of Ubiquitin-Proteasome System Deregulation on the Vascular Senescence and Atherosclerosis Process in Elderly Patients. J Gerontol A Biol Sci Med Sci 2008; 63:200-3. [DOI: 10.1093/gerona/63.2.200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Hematopoietic stem cell aging: wrinkles in stem cell potential. ACTA ACUST UNITED AC 2008; 3:201-11. [PMID: 17917133 DOI: 10.1007/s12015-007-0027-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) continuously replenish the blood and immune systems. Their activity must be sustained throughout life to support optimal immune responses. It has been thought that stem cells may be somewhat protected from age because of their perpetual requirement to replenish the blood, however studies over the past 10 years have revealed dramatic changes in HSC function and phenotype with respect to age. When the number of HSC within murine bone marrow is measured, an increase in concentration and absolute number of HSC within the bone marrow is observed as the animal ages, paralleled with increased homogeneity of stem cell marker expression. Results from transplantation studies demonstrate that although there is a decline in hematopoietic output on a per-cell basis, the increase in number provides sufficient, yet abnormal, blood production throughout the lifespan of the animal. HSC may play a role in immunosenescence through cell-fate decisions leading to an overproduction of myeloid cells and an underproduction of lymphocytes. When examining gene expression of aged HSC, recent studies have highlighted several key factors contributing to increased inflammation, stress response and genomic instability. Here, we will review the general phenotype observed with aging of the hematopoietic system, focusing on the HSC, and compile recent expression profiling efforts that have examined HSC aging.
Collapse
|
36
|
Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 36:144-56. [PMID: 17999996 PMCID: PMC2248735 DOI: 10.1093/nar/gkm986] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/14/2007] [Accepted: 10/19/2007] [Indexed: 11/24/2022] Open
Abstract
Although well studied in vitro, the in vivo functions of G-quadruplexes (G4-DNA and G4-RNA) are only beginning to be defined. Recent studies have demonstrated enrichment for sequences with intramolecular G-quadruplex forming potential (QFP) in transcriptional promoters of humans, chickens and bacteria. Here we survey the yeast genome for QFP sequences and similarly find strong enrichment for these sequences in upstream promoter regions, as well as weaker but significant enrichment in open reading frames (ORFs). Further, four findings are consistent with roles for QFP sequences in transcriptional regulation. First, QFP is correlated with upstream promoter regions with low histone occupancy. Second, treatment of cells with N-methyl mesoporphyrin IX (NMM), which binds G-quadruplexes selectively in vitro, causes significant upregulation of loci with QFP-possessing promoters or ORFs. NMM also causes downregulation of loci connected with the function of the ribosomal DNA (rDNA), which itself has high QFP. Third, ORFs with QFP are selectively downregulated in sgs1 mutants that lack the G4-DNA-unwinding helicase Sgs1p. Fourth, a screen for yeast mutants that enhance or suppress growth inhibition by NMM revealed enrichment for chromatin and transcriptional regulators, as well as telomere maintenance factors. These findings raise the possibility that QFP sequences form bona fide G-quadruplexes in vivo and thus regulate transcription.
Collapse
Affiliation(s)
- Steve G. Hershman
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Qijun Chen
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Julia Y. Lee
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Marina L. Kozak
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Peng Yue
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Li-San Wang
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - F. Brad Johnson
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Cell and Molecular Biology Graduate Program, Penn Center for Bioinformatics, and Penn Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Sedelnikova OA, Horikawa I, Redon C, Nakamura A, Zimonjic DB, Popescu NC, Bonner WM. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 2008; 7:89-100. [PMID: 18005250 DOI: 10.1111/j.1474-9726.2007.00354.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous gamma-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of gamma-H2AX foci than those taken from normal donors of comparable age. Further increases in gamma-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to gamma-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of gamma-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of gamma-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.
Collapse
Affiliation(s)
- Olga A Sedelnikova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Arad S, Konnikov N, Goukassian DA, Gilchrest BA. Quantification of Inducible SOS-Like Photoprotective Responses in Human Skin. J Invest Dermatol 2007; 127:2629-36. [PMID: 17522706 DOI: 10.1038/sj.jid.5700893] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To document and quantify inducible photoprotective effects in human skin, explant cultures were treated once with thymidine dinucleotide (pTT) or diluent alone or UV-irradiated. Both pTT and UV increased the melanogenic protein levels on days 1-5 and comparably increased melanocyte dendricity and epidermal melanin content. Explants treated with pTT or UV but not with diluent alone showed initial inhibition of epidermal proliferation followed by mild reactive hyperplasia; melanocyte proliferation was minimal. To determine whether pTT and UV provide comparable protection against subsequent UV-induced DNA damage, explants were pTT- or diluent-treated or UV-irradiated. All explants were then irradiated with the same UV dose 72 hours later. Compared to diluent alone, pTT or UV pretreatment decreased the number of epidermal cells positive for cyclobutane pyrimidine dimers (CPDs) 50% immediately post-irradiation. In pTT- and UV- versus diluent-pretreated explants, the rate of CPD removal was also more rapid, approximately 80 vs 45% of the initial burden within 72 hours. These data confirm and quantify comparable SOS-like responses in human skin after pTT or UV irradiation, attributable to both increased epidermal melanin and increased DNA repair rate, in the case of pTT in the absence of initial damage.
Collapse
Affiliation(s)
- Simin Arad
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
39
|
Abstract
In this review, the evidence for changes in the human brain with ageing at both the macroscopic and microscopic levels is summarized. Loss of neurons is now recognized to be more modest than initial studies suggested and only affects some neuron populations. Accompanying loss of neurons is some reduction in the size of remaining neurons. This reflects a reduced size of dendritic and axonal arborizations. Some of the likely causes of these changes, including free radical damage resulting from a high rate of oxidative metabolism in neurons, glycation and dysregulation of intracellular calcium homeostasis, are discussed. The roles of genes and environmental factors in causing and responding to ageing changes are explored.
Collapse
Affiliation(s)
- M M Esiri
- Department of Clinical Neurology, University of Oxford, and Department of Neuropathology, Oxford Radcliffe NHS Trust, Oxford, UK
| |
Collapse
|
40
|
Genetic instability syndromes with progeroid features. Z Gerontol Geriatr 2007; 40:339-48. [DOI: 10.1007/s00391-007-0483-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 01/09/2023]
|
41
|
Bohr VA, Ottersen OP, Tønjum T. Genome instability and DNA repair in brain, ageing and neurological disease. Neuroscience 2007; 145:1183-6. [PMID: 17400394 DOI: 10.1016/j.neuroscience.2007.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- V A Bohr
- Laboratory of Molecular Gerontology, National Institute of Aging, IRP, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
42
|
Budovsky A, Abramovich A, Cohen R, Chalifa-Caspi V, Fraifeld V. Longevity network: Construction and implications. Mech Ageing Dev 2007; 128:117-24. [PMID: 17116322 DOI: 10.1016/j.mad.2006.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vast majority of studies on longevity have focused on individual genes/proteins, without adequately addressing the possible role of interactions between them. This study is the first attempt towards constructing a "longevity network" via analysis of human protein-protein interactions (PPIs). For this purpose, we (i) compiled a complete list of established longevity genes from different species, including those that most probably affect the longevity in humans, (ii) defined the human orthologs of the longevity genes, and (iii) determined whether the encoded proteins could be organized as a network. The longevity gene-encoded proteins together with their interacting proteins form a continuous network, which fits the criteria for a scale-free network with an extremely high contribution of hubs to the network connectivity. Most of them have never been annotated before in connection with longevity. Remarkably, almost all of the hubs of the "longevity network" were reported to be involved in at least one age-related disease (ARD), with many being involved in several ARDs. This may be one of the ways by which the proteins with multiple interactions affect the longevity. The hubs offer the potential of being primary targets for longevity-promoting interventions.
Collapse
Affiliation(s)
- Arie Budovsky
- Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research in Aging, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
43
|
Rao KS. DNA repair in aging rat neurons. Neuroscience 2006; 145:1330-40. [PMID: 17156934 DOI: 10.1016/j.neuroscience.2006.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/14/2022]
Abstract
This laboratory, using post-mitotic rat brain neurons as a model system, has been testing the hypothesis that the inherited DNA repair potential would have profound influence on the aging process of the individual. It has been found that both single and double strand breaks in DNA accumulate in neurons with age. Since base excision repair (BER) is the pathway to effect repair of the type of DNA damage that is likely to occur in neurons, model oligo duplexes were used to assess the BER pathway. Both extension of a primer and one or four nucleotide gap repair are markedly reduced in aging neurons as compared with the young. The extension activity could be restored by supplementing the neuronal extracts with pure DNA polymerase beta (pol beta) while the restoration of gap repair needed the addition of both pol beta and DNA ligase. It thus appears that both pol beta and DNA ligase are deficient in aging neurons. We have also established a system to study the non-homologous end joining (NHEJ) mode of DNA repair in neurons. The end joining of cohesive but not of blunt or non-matching ends, is reduced with age and attempts to identify the limiting factor(s) in this case have been unsuccessful so far. These results are reviewed vis-à-vis the existing literature.
Collapse
Affiliation(s)
- K Subba Rao
- ICMR Advanced Center for Research on Aging and Brain, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500 046, India.
| |
Collapse
|
44
|
Grillari J, Katinger H, Voglauer R. Aging and the ubiquitinome: traditional and non-traditional functions of ubiquitin in aging cells and tissues. Exp Gerontol 2006; 41:1067-79. [PMID: 17052881 DOI: 10.1016/j.exger.2006.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 01/01/2023]
Abstract
Ubiquitination of endogenous proteins is one of the key regulatory steps of protein degradation followed by regulation of proteasome activity. During the last years evidence has increased that proteasome activity is decreased during the aging process in various model systems and that these changes might be causally related to aging and aging associated diseases. Since in most instances ubiquitination is the primary event in target selection, the system of ubiquitination and deubiquitination might be of similar importance. Furthermore, ubiquitination and proteasomal degradation are not completely congruent, since ubiquitination also confers functions different from giving "the kiss of death" to proteins. Depending on mono- and polyubiquitination and on how ubiquitin chains are linked together, ubiquitination is involved in transcriptional regulation, receptor internalization, DNA repair, and stabilization of protein complexes. This review is therefore the first to summarize the current knowledge regarding the ubiquitinome and the underlying ubiquitin ligases and deubiquitinating enzymes in replicative senescence, tissue aging as well as in segmental progeroid syndromes and to discuss potential causes and consequences for aging.
Collapse
Affiliation(s)
- Johannes Grillari
- Department of Biotechnology, Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna Muthgasse 18, A-1190 Vienna, Austria.
| | | | | |
Collapse
|
45
|
Abstract
Everyone ages, but only some will develop a neurodegenerative disorder in the process. Disease might occur when cells fail to respond adaptively to age-related increases in oxidative, metabolic and ionic stress, thereby resulting in the accumulation of damaged proteins, DNA and membranes. Determinants of neuronal vulnerability might include cell size and location, metabolism of disease-specific proteins and a repertoire of signal transduction pathways and stress resistance mechanisms. Emerging evidence on protein interaction networks that monitor and respond to the normal ageing process suggests that successful neural ageing is possible for most people, but also cautions that cures for neurodegenerative disorders are unlikely in the near future.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224-6825, USA.
| | | |
Collapse
|