1
|
Svensson JE, Schain M, Plavén-Sigray P. In vivo medical imaging for assessing geroprotective interventions in humans. GeroScience 2025:10.1007/s11357-025-01514-y. [PMID: 39913033 DOI: 10.1007/s11357-025-01514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
There is a growing interest in developing drugs with a general geroprotective effect, aimed at slowing down aging. Several compounds have been shown to increase the lifespan and reduce the incidence of age-related diseases in model organisms. Translating these results is challenging, due to the long lifespan of humans. To address this, we propose using a battery of medical imaging protocols that allow for assessments of age-related processes known to precede disease onset. These protocols, based on magnetic resonance imaging, positron emission-, computed-, and optical coherence tomography, are already in use in drug development and are available at most modern hospitals. Here, we outline how an informed use of these techniques allows for detecting changes in the accumulation of age-related pathologies in a diverse set of physiological systems. This in vivo imaging battery enables efficient screening of candidate geroprotective compounds in early phase clinical trials, within reasonable trial durations.
Collapse
Affiliation(s)
- Jonas E Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Vaziri Y. The Mediterranean Diet: A powerful defense against Alzheimer disease-A comprehensive review. Clin Nutr ESPEN 2024; 64:160-167. [PMID: 39349103 DOI: 10.1016/j.clnesp.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Recent studies have explored the impact of lifestyle, particularly diet, on cognitive decline and Alzheimer's disease (AD) risk. The Mediterranean diet has emerged as a potential safeguard, with observational studies indicating it might help defend against cognitive disorders. High adherence is linked with lower cognitive impairment risk, while low adherence elevates the risk for AD. Though these studies suggest connections between the Mediterranean diet and reduced cognitive decline or AD, they do not establish causality. Potential mechanisms might involve vascular factors, glucose/lipid metabolism, and anti-inflammatory effects. Specific Mediterranean diet components like vegetables, fruits, legumes, cereals, fish, and monounsaturated fats might contribute to cognitive benefits. Large-scale randomized controlled trials are needed to ascertain the diet's influence on AD and cognitive health. Currently, the Mediterranean diet cannot be definitively named as a preventive strategy for AD due to insufficient evidence. More research is essential to identify key ingredients and processes that might have preventive effects on AD. In summary, while the Mediterranean diet shows promise against cognitive decline and AD, further research is needed.
Collapse
Affiliation(s)
- Yashar Vaziri
- Department of Nutrition and Dietetics, Sarab Branch, Islamic Azad University, Sarab, Iran.
| |
Collapse
|
3
|
Yakupova E, Semenovich D, Abramicheva P, Zorova L, Pevzner I, Andrianova N, Popkov V, Manskikh V, Bocharnikov A, Voronina Y, Zorov D, Plotnikov E. Effects of caloric restriction and ketogenic diet on renal fibrosis after ischemia/reperfusion injury. Heliyon 2023; 9:e21003. [PMID: 37928038 PMCID: PMC10623167 DOI: 10.1016/j.heliyon.2023.e21003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The beneficial effects of caloric restriction (CR) and a ketogenic diet (KD) have been previously shown when performed prior to kidney injury. We investigated the effects of CR and KD on fibrosis development after unilateral kidney ischemia/reperfusion (UIR). Post-treatment with CR significantly (p < 0.05) affected blood glucose (2-fold decrease), ketone bodies (3-fold increase), lactate (1.5-fold decrease), and lipids (1.4-fold decrease). In the kidney, CR improved succinate dehydrogenase and malate dehydrogenase activity by 2-fold each, but worsened fibrosis progression. Similar results were shown for the KD, which restored the post-UIR impaired activities of succinate dehydrogenase, malate dehydrogenase, and α-ketoglutarate dehydrogenase (which was decreased 2-fold) but had no effect on fibrosis progression. Thus, our study shows that the use of CR or KD after UIR did not reduce the development of fibrosis, as shown by hydroxyproline content, western-blotting, and RT-PCR, whereas it caused significant metabolic changes in kidney tissue after UIR.
Collapse
Affiliation(s)
- E.I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - D.S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - P.A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - L.D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - I.B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - N.V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - V.A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - V.N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A.D. Bocharnikov
- Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Y.A. Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow 119234, Russia
- Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow 121552, Russia
| | - D.B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - E.Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
4
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
5
|
Guo Z, Wang M, Ying X, Yuan J, Wang C, Zhang W, Tian S, Yan X. Caloric restriction increases the resistance of aged heart to myocardial ischemia/reperfusion injury via modulating AMPK-SIRT 1-PGC 1a energy metabolism pathway. Sci Rep 2023; 13:2045. [PMID: 36739302 PMCID: PMC9899227 DOI: 10.1038/s41598-023-27611-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
A large number of data suggest that caloric restriction (CR) has a protective effect on myocardial ischemia/reperfusion injury (I/R) in the elderly. However, the mechanism is still unclear. In this study, we created the I/R model in vivo by ligating the mice left coronary artery for 45 min followed by reperfusion. C57BL/6J wild-type mice were randomly divided into a young group fed ad libitum (y-AL), aged fed ad libitum (a-AL) and aged calorie restriction group (a-CR, 70% diet restriction), and fed for 6 weeks. The area of myocardial infarction was measured by Evan's blue-TTC staining, plasma cholesterol content quantified by ELISA, fatty acids and glucose measured by Langendorff working system, as well as protein expression of AMPK/SIRT1/PGC1a signaling pathway related factors in myocardial tissue detected by immunoblotting. Our results showed that CR significantly reduced infarct size in elderly mice after I/R injury, promoted glycolysis regardless of I/R injury, and restored myocardial glucose uptake in elderly mice. Compared with a-AL group, CR significantly promoted the expression of p-AMPK, SIRT1, p-PGC1a, and SOD2, but decreased PPARγ expression in aged mice. In conclusion, our results suggest that CR protects elderly mice from I/R injury by altering myocardial substrate energy metabolism via the AMPK/SIRT1/PGC1a pathway.
Collapse
Affiliation(s)
- Zhijia Guo
- 1st Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenggang Wang
- Shanxi Traditional Chinese Medicine Hospital, Taiyuan, Shanxi, China
| | - Wenjie Zhang
- 1st Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shouyuan Tian
- 1st Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
7
|
Lv S, Shen Q, Li H, Chen Q, Xie W, Li Y, Wang X, Ding G. Caloric restriction delays age-related muscle atrophy by inhibiting 11β-HSD1 to promote the differentiation of muscle stem cells. Front Med (Lausanne) 2023; 9:1027055. [PMID: 36687405 PMCID: PMC9849809 DOI: 10.3389/fmed.2022.1027055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Calorie restriction (CR) is an important direction for the delay of sarcopenia in elderly individuals. However, the specific mechanisms of CR against aging are still unclear. Methods In this study, we used a CR model of elderly mice with muscle-specific 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) knockout mice and 11β-HSD1 overexpression mice to confirm that CR can delay muscle aging by inhibiting 11β-HSD1 which can transform inactive GC(cortisone) into active GC(cortisol). The ability of self-proliferation and differentiation into muscle fibers of these mouse muscle stem cells (MuSCs) was observed in vitro. Additionally, the mitochondrial function and mitochondrial ATP production capacity of MuSCs were measured by mitochondrial oxygen consumption. Results It was found that the 11β-HSD1 expression level was increased in age-related muscle atrophy. Overexpression of 11β-HSD1 led to muscle atrophy in young mice, and 11β-HSD1 knockout rescued age-related muscle atrophy. Moreover, CR in aged mice reduced the local effective concentration of glucocorticoid (GC) through 11β-HSD1, thereby promoting the mitochondrial function and differentiation ability of MuSCs. Conclusions Together, our findings highlight promising sarcopenia protection with 40% CR in older ages. Furthermore, we speculated that targeting an 11β-HSD1-dependent metabolic pathway may represent a novel strategy for developing therapeutics against age-related muscle atrophy.
Collapse
Affiliation(s)
- Shan Lv
- Department of Geriatric Endocrinology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qianjin Shen
- Department of Emergency Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qun Chen
- Department of Orthopedics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Yusheng Li,
| | - Xiaodong Wang
- Department of Geriatric Endocrinology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China,Xiaodong Wang,
| | - Guoxian Ding
- Department of Geriatric Endocrinology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China,Guoxian Ding,
| |
Collapse
|
8
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
9
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Advances in energy metabolism in renal fibrosis. Life Sci 2022; 312:121033. [PMID: 36270427 DOI: 10.1016/j.lfs.2022.121033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Renal fibrosis is a common pathway toward chronic kidney disease (CKD) and is the main pathological predecessor for end-stage renal disease; thus, preventing progressive CKD and renal fibrosis is essential to reducing their consequential morbidity and mortality. Emerging evidence has connected renal fibrosis to metabolic reprogramming; abnormalities in energy metabolism pathways, such as glycolysis, the tricarboxylic acid cycle, and lipid metabolism, are known to cause diseases of diverse etiologies. Cytokine interventions in affected metabolic pathways may significantly reduce the degree of fibrosis, highlighting therapeutic targets for drug development for renal fibrosis. Here, we discuss the relationship between glycolysis, lipid metabolism, mitochondrial and peroxisome dysfunction, and renal fibrosis in detail and propose that targeted therapies for specific metabolic pathways are expected to represent the next generation of treatments for renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
de Oliveira TQ, de Moura AC, Feistauer V, Damiani R, Braga MF, Almeida S, Guedes RP, Giovenardi M. Caloric restriction in mice improves short-term recognition memory and modifies the neuroinflammatory response in the hippocampus of male adult offspring. Behav Brain Res 2022; 425:113838. [PMID: 35283195 DOI: 10.1016/j.bbr.2022.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Restrictive diets (RD) can influence the inflammatory phenotype of dams and their offspring. Thus, this study aimed to evaluate the effects of caloric restriction on the neuroinflammatory profile in the hippocampus and the short-term recognition memory of male offspring from RD-fed dams. Mice dams received standard diet ad libitum (CONT) or restrictive diet (RD; 30% reduction of CONT consumption) during pregnancy and lactation. Male pups were weaned at 21 days and randomly divided into two groups that received CONT or RD; groups were named according to maternal/offspring diets: CONT/CONT, CONT/RD, RD/CONT, and RD/RD. At 90 days old, short-term memory was assessed by the object recognition test (ORT); the inflammatory state of the hippocampus was analyzed by gene expression of sirtuin-1 (Sirt1) and inflammasome Nlrp3; and by protein expression of toll-like receptor-4 (TLR-4) and zonula occludens-1 (ZO-1). Our results showed an improvement in short-term memory in RD-fed offspring. The expression of Sirt1 was higher in RD/CONT compared to CONT/CONT and decreased in RD/RD compared to CONT/RD. Nlrp3 gene expression showed an offspring effect, being decreased in RD-fed mice. TLR-4 expression was higher in RD/CONT compared to CONT/CONT, similarly to ZO-1 expression. However, ZO-1 also showed a maternal diet effect and increased expression in the offspring of RD dams. Our findings demonstrate that caloric restriction improved short-term recognition memory. However, a restrictive diet should be applied with caution; depending on the offspring's diet, it may not benefit the neuroinflammatory phenotype or cognition.
Collapse
Affiliation(s)
- Tharcila Quadros de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Vanessa Feistauer
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Roberto Damiani
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Matheus Filipe Braga
- Acadêmico do Curso de Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul CEP 90050-170, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil.
| |
Collapse
|
11
|
Yakupova EI, Zorov DB, Plotnikov EY. Bioenergetics of the Fibrosis. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1599-1606. [PMID: 34937539 DOI: 10.1134/s0006297921120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
12
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
13
|
Fang D, Wang Y, Zhang Z, Yang D, Gu D, He B, Zhang X, He D, Wang H, Jose PA, Han Y, Zeng C. Calorie Restriction Protects against Contrast-Induced Nephropathy via SIRT1/GPX4 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2999296. [PMID: 34712381 PMCID: PMC8548166 DOI: 10.1155/2021/2999296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Calorie restriction (CR) extends lifespan and increases resistance to multiple forms of stress, including renal ischemia-reperfusion (I/R) injury. However, whether CR has protective effects on contrast-induced nephropathy (CIN) remains to be determined. In this study, we evaluated the therapeutic effects of CR on CIN and investigated the potential mechanisms. CIN was induced by the intravenous injection of iodinated contrast medium (CM) iopromide (1.8 g/kg) into Sprague Dawley rats with normal food intake or 40% reduced food intake, 4 weeks prior to iopromide administration. We found that CR was protective of CIN, assessed by renal structure and function. CM increased apoptosis, reactive oxygen species (ROS), and inflammation in the renal outer medulla, which were decreased by CR. The silent information regulator 1 (SIRT1) participated in the protective effect of CR on CIN, by upregulating glutathione peroxidase 4 (GPX4), a regulator of ferroptosis, because this protective effect was reversed by EX527, a specific SIRT1 antagonist. Our study showed that CR protected CIN via SIRT1/GPX4 activation. CR may be used to mitigate CIN.
Collapse
Affiliation(s)
- Dandong Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yongbin Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Xiaoqun Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - HongYong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Pedro A. Jose
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology& Chongqing Key Laboratory of Hypertension Research, Chongqing, China
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
14
|
McReynolds MR, Chellappa K, Chiles E, Jankowski C, Shen Y, Chen L, Descamps HC, Mukherjee S, Bhat YR, Lingala SR, Chu Q, Botolin P, Hayat F, Doke T, Susztak K, Thaiss CA, Lu W, Migaud ME, Su X, Rabinowitz JD, Baur JA. NAD + flux is maintained in aged mice despite lower tissue concentrations. Cell Syst 2021; 12:1160-1172.e4. [PMID: 34559996 DOI: 10.1016/j.cels.2021.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.
Collapse
Affiliation(s)
- Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Chiles
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yihui Shen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Li Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashaswini R Bhat
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth R Lingala
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Botolin
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faisal Hayat
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Henderson CG, Turner DL, Swoap SJ. Health Effects of Alternate Day Fasting Versus Pair-Fed Caloric Restriction in Diet-Induced Obese C57Bl/6J Male Mice. Front Physiol 2021; 12:641532. [PMID: 33732170 PMCID: PMC7959851 DOI: 10.3389/fphys.2021.641532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Alternate day fasting (ADF) induces weight loss and improves various markers of health in rodents and humans. However, it is unclear whether the benefits of ADF are derived from the lower caloric intake of ADF or from the 24-h fasting period. Therefore, this study directly compared selected markers for health – such as glucose control, body weight, liver triglycerides, T cell frequencies, and others – in high-fat (60% calories from fat) diet-induced obese mice subjected to either ADF or caloric restriction (CR). Obese mice were randomly assigned to one of four groups: (1) ADF: remained on the high-fat diet, but fed on alternate days (n = 5), (2) PF: remained on the high-fat diet, but pair-fed to the ADF group (n = 5), (3) LF: moved to a chow ad libitum diet (n = 5; 17% calories from fat), and (4) HF: remained on the high-fat ad libitum diet (n = 5). An additional group of non-obese mice maintained on a chow diet since weaning were used as controls (CON: n = 5). After 10 weeks, ADF, PF, and LF mice ate fewer kcals, had a lower body mass, had smaller epididymal fat pads, improved glucose tolerance, and had a lower hepatic triglyceride content relative to HF mice (p < 0.05), but none reached that of CON mice in these measures. T cell frequencies of the spleen, blood, and mesenteric lymph nodes were reduced in ADF, PF, and HF compared to the CON group. Importantly, there were no significant differences between the ADF and PF groups in any of the measurements made in the current study. These data suggest that ADF, PF, and LF diets each lead to improved markers of health relative to high-fat diet-induced obese mice, and that the caloric restriction associated with ADF is the major factor for the noted improvements.
Collapse
Affiliation(s)
- Chloe G Henderson
- Department of Biology, Williams College, Williamstown, MA, United States
| | - Damian L Turner
- Department of Biology, Williams College, Williamstown, MA, United States
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA, United States
| |
Collapse
|
16
|
Xie WQ, Xiao WF, Tang K, Wu YX, Hu PW, Li YS, Duan Y, Lv S. Caloric restriction: implications for sarcopenia and potential mechanisms. Aging (Albany NY) 2020; 12:24441-24452. [PMID: 33226962 PMCID: PMC7762489 DOI: 10.18632/aging.103987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022]
Abstract
Sarcopenia is a potential risk factor for weakness, disability and death in elderly individuals. Therefore, seeking effective methods to delay and treat sarcopenia and to improve the quality of life of elderly individuals is a trending topic in geriatrics. Caloric restriction (CR) is currently recognized as an effective means to extend the lifespan and delay the decline in organ function caused by aging. In this review, we describe the effects of CR on improving muscle protein synthesis, delaying muscle atrophy, regulating muscle mitochondrial function, maintaining muscle strength, promoting muscle stem cell (MuSC) regeneration and differentiation, and thus protecting against sarcopenia. We also summarize the possible cellular mechanisms by which CR delays sarcopenia. CR can delay sarcopenia by reducing the generation of oxygen free radicals, reducing oxidative stress damage, enhancing mitochondrial function, improving protein homeostasis, reducing iron overload, increasing autophagy and apoptosis, and reducing inflammation. However, the relationships between CR and genetics, sex, animal strain, regimen duration and energy intake level are complex. Therefore, further study of the proper timing and application method of CR to prevent sarcopenia is highly important for the aging population.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Pei-Wu Hu
- Department of Scientific Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu Duan
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Shan Lv
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
17
|
Koppold-Liebscher D, Kessler CS, Steckhan N, Bähr V, Kempter C, Wischnewsky M, Hübner M, Kunz B, Paul M, Zorn S, Sari S, Jeitler M, Stange R, Michalsen A. Short-term fasting accompanying chemotherapy as a supportive therapy in gynecological cancer: protocol for a multicenter randomized controlled clinical trial. Trials 2020; 21:854. [PMID: 33059765 PMCID: PMC7559781 DOI: 10.1186/s13063-020-04700-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background/objectives A few preliminary studies have documented the safety and feasibility of repeated short-term fasting in patients undergoing chemotherapy. However, there is a lack of data from larger randomized trials on the effects of short-term fasting on quality of life, reduction of side effects during chemotherapy, and a possible reduction of tumor progression. Moreover, no data is available on the effectiveness of fasting approaches compared to so-called healthy diets. We aim to investigate whether the potentially beneficial effects of short-term fasting can be confirmed in a larger randomized trial and can compare favorably to a plant-based wholefood diet. Methods This is a multicenter, randomized, controlled, two-armed interventional study with a parallel group assignment. One hundred fifty patients, including 120 breast cancer patients and 30 patients with ovarian cancer, are to be randomized to one of two nutritional interventions accompanying chemotherapy: (1) repeated short-term fasting with a maximum energy supply of 350–400 kcal on fasting days or (2) repeated short-term normocaloric plant-based diet with restriction of refined carbohydrates. The primary outcome is disease-related quality of life, as assessed by the functional assessment of the chronic illness therapy measurement system. Secondary outcomes include changes in the Hospital Anxiety and Depression Score and as well as frequency and severity of chemotherapy-induced side effects based on the Common Terminology Criteria of Adverse Events. Explorative analysis in a subpopulation will compare histological complete remissions in patients with neoadjuvant treatments. Discussion/planned outcomes Preclinical data and a small number of clinical studies suggest that repeated short-term fasting may reduce the side effects of chemotherapy, enhance quality of life, and eventually slow down tumor progression. Experimental research suggests that the effects of fasting may partly be caused by the restriction of animal protein and refined carbohydrates. This study is the first confirmatory, randomized controlled, clinical study, comparing the effects of short-term fasting to a short-term, plant-based, low-sugar diet during chemotherapy on quality of life and histological tumor remission. Trial registration ClinicalTrials.gov NCT03162289. Registered on 22 May 2017
Collapse
Affiliation(s)
- Daniela Koppold-Liebscher
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Christian S Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Nico Steckhan
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vanessa Bähr
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Manfred Wischnewsky
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Marisa Hübner
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Barbara Kunz
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Paul
- Vivantes Hospital Breast Centre, Berlin, Germany
| | - Stefanie Zorn
- Department of Medicine I, Section of Clinical Nutrition and Dietetics, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Sophia Sari
- Department of Nutrition, Technische Universität München, Munich, Germany
| | - Michael Jeitler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Rainer Stange
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| |
Collapse
|
18
|
Andrianova NV, Zorova LD, Pevzner IB, Popkov VA, Chernikov VP, Silachev DN, Plotnikov EY, Zorov DB. Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging (Albany NY) 2020; 12:18693-18715. [PMID: 32970613 PMCID: PMC7585108 DOI: 10.18632/aging.103960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
Dietary restriction (DR) is the strategy ameliorating the morbidity of various pathologies, including age-associated diseases. Acute kidney injury (AKI) remains a problem for the elderly with DR being a promising approach for diminishing its consequences. We evaluated the possible nephroprotective potential of short-term DR in young and old rats. DR in young rats resulted in pronounced beneficial effects normalizing lipid metabolism (triglycerides concentration, adiponectin level) activating autophagic-lysosomal system evaluated by LC3II/LC3I ratio, LAMP1, p62/SQSTM1 levels, and LysoTracker Green staining. DR had a remarkable recovering effect on mitochondrial structure and functions including regaining of mitochondrial membrane potential, the elevation of SIRT-3, PGC-1α, Bcl-XL levels and partial restoration of ultrastructure. The beneficial effects of DR resulted in the mitigation of oxidative stress including a decrease in levels of protein carbonylation and lipid peroxidation. Aging led to decreased activity of autophagy, elevated oxidative stress and impaired kidney regenerative capacity. Eventually, in old rats, even 8-week DR was not able to ameliorate AKI, but it caused some rejuvenating effects including elevation of mitochondrial membrane potential and Bcl-XL levels, as well as lowered severity of the oxidative stress. Thus, the age-associated decline of protective signaling demands extended DR to achieve nephroprotective potential in old animals.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | | | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| |
Collapse
|
19
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, Guo G, Chan P, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell 2020; 180:984-1001.e22. [PMID: 32109414 DOI: 10.1016/j.cell.2020.02.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingling Geng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiran Zou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | | | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Brandhorst S, Longo VD. Protein Quantity and Source, Fasting-Mimicking Diets, and Longevity. Adv Nutr 2019; 10:S340-S350. [PMID: 31728501 PMCID: PMC6855936 DOI: 10.1093/advances/nmz079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 11/12/2022] Open
Abstract
Dietary modifications, including caloric restriction, dietary restriction, various intervals of fasting, and even limiting the time when food is consumed can have a pronounced impact on longevity. In addition, dietary modifications are powerful interventions to delay, prevent, or treat many aging-related diseases such as cancer and diabetes. Restricting amino acid and protein intake generally decreases aging-related comorbidities and thereby increases health and longevity. However, chronic dietary interventions are likely not feasible for most people due to low adherence to dietary protocols or resistance to drastic changes to lifestyle, and might even cause detrimental effects, possibly by negatively affecting the immune system and wound healing. The periodic use of low-protein, low-calorie fasting-mimicking diets (FMDs) has the potential to promote health benefits, while minimizing the burden of chronic restriction. Protein restriction and FMDs together have the potential to play an important complementary role in medicine by promoting disease prevention and treatment, and by delaying the aging process at least in part by stimulating stem cell-based regeneration in periods of normal food intake after periodic FMD cycles. The aim of this narrative review is to summarize research on the impact of protein restriction on health and longevity in model organisms and to discuss the implementation of an FMD in mice and in human clinical trials and its effects on biomarkers of healthy aging. Taking into account the importance of sex on aging and diet, we include this information in all discussed studies. Whereas for some model organisms of aging, such as rodents, many studies are available, results are more limited for primates and/or humans.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA,FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy,Address correspondence to VDL (e-mail: )
| |
Collapse
|
23
|
Yamada K, Takizawa S, Ohgaku Y, Asami T, Furuya K, Yamamoto K, Takahashi F, Hamajima C, Inaba C, Endo K, Matsui R, Kitamura H, Tanaka S. MicroRNA 16-5p is upregulated in calorie-restricted mice and modulates inflammatory cytokines of macrophages. Gene 2019; 725:144191. [PMID: 31654705 DOI: 10.1016/j.gene.2019.144191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decrease mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. However, the detailed mechanisms of immunomodulation by CR remain unclear. In this study, we established a mouse model for CR and analyzed the changes of immune cells in these mice. The CR mice fed a calorie-restricted diet for 4 weeks had lower body weight and fat mass compared with control mice. The proportions of CD4+, CD8+, and naïve CD4+ T cells in spleen cells from CR mice were higher than those in of control mice. Additionally, the proportion of CD8+ T cells was significantly decreased and the mRNA expression of proinflammatory cytokines in the colon of CR mice was significantly decreased compared with those of control mice. To determine the effect of CR on microRNA (miRNA) expression, serum and tissues were collected from mice and the expression level of miRNA was analyzed by real-time RT-PCR. As a result, the expressions of miR-16-5p, miR-196b-5p, and miR-218-5p in serum from CR mice were higher than those in control mice. The expression of miR-16-5p increased in the spleen, thymus, colon, and stomach of CR mice compared with expression in control mice. Furthermore, RAW264 cells transfected with a miR-16-5p mimic significantly decreased the mRNA expression of IL-1β, IL-6, and TNF-α under LPS stimulation. These results suggested that miR-16-5p might be a critical factor involving the anti-inflammatory effects of calorie-restricted feeding.
Collapse
Affiliation(s)
- Kazuki Yamada
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Seiya Takizawa
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Yuki Ohgaku
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Takuya Asami
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Kanon Furuya
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Kana Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Fuka Takahashi
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Chisato Hamajima
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Chihiro Inaba
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Katsunori Endo
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Rina Matsui
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 090-0815, Japan
| | - Sachi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan.
| |
Collapse
|
24
|
Ekmekcioglu C. Nutrition and longevity – From mechanisms to uncertainties. Crit Rev Food Sci Nutr 2019; 60:3063-3082. [DOI: 10.1080/10408398.2019.1676698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Long GY, Yang JY, Xu JJ, Ni YH, Zhou XL, Ma JY, Fu YC, Luo LL. SIRT1 knock-in mice preserve ovarian reserve resembling caloric restriction. Gene 2019; 686:194-202. [PMID: 30340050 DOI: 10.1016/j.gene.2018.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Previous studies have proposed that caloric restriction (CR) regulates many cell functions and prolongs the lifespan of an organism. Our previous studies proposed that CR also prevents follicular activation and preserves the ovarian reserve in mice by activating SIRT1. To test if SIRT1 preserves the ovarian reserve and prolongs the ovarian longevity, we generated SIRT1 knock-in mice that can overexpress SIRT1 in oocytes of the mouse. Ovaries of the mice at ages 35 days and 15 months were collected, and the follicular development and follicular reserve were examined. The vaginal opening and onset of estrus of transgenic female mice (both the homozygous and heterozygous for SIRT1 overexpression) were later than that of wild-type mice. Both the homozygous and heterozygous SIRT1-overexpressing mice had a larger and stronger reproductive capacity than wild-type mice. Moreover, 35-day-old and 15-month-old homozygous and heterozygous SIRT1-overexpressing mice also had a higher mean number and percentage of healthy follicles, fewer atretic follicles than wild-type mice, and the mean number and percentage of primordial follicles in both the homozygous and heterozygous SIRT1-overexpressing mice were higher than wild-type mice at the same age. However, the phenotypes of heterozygous and homozygous transgenic mice came no difference. Immunohistochemistry showed increased expression of SIRT1 and FOXO3a, and decreased expression of mTOR in both the homozygous and heterozygous SIRT1-overexpressing mice compared with wild-type mice. Thus, oocyte-specific SIRT1-overexpressing mice continuously activate FOXO3a and suppress mTOR and have a larger reproductive capacity, larger follicle reserve and longer ovarian lifespan.
Collapse
Affiliation(s)
- Guan-Yun Long
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jie-Ying Yang
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jin-Jie Xu
- Laboratory of Cell Senescence, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, People's Republic of China
| | - Yan-Hong Ni
- Department of Gynaecology, Obstetrics of Shantou Municipal Central Hospital, Shantou, Guangdong Province 515041, People's Republic of China
| | - Xiao-Ling Zhou
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Jia-Yi Ma
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, 22 Xin Ling Rd, Jinping District, Shantou, Guangdong Province 515041, People's Republic of China
| | - Li-Li Luo
- Department of Gynaecology and Obstetrics of the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province 515041, People's Republic of China.
| |
Collapse
|
26
|
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179:51-59. [PMID: 30659860 DOI: 10.1016/j.mad.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the most effective intervention to improve health span and extend lifespan in preclinical models. This anti-aging effect of CR is related to attenuation of oxidative damage in various tissues, with divergent results in the brain. We addressed how brain oxidoreductive balance would be modulated in male Sprague-Dawley (SD) rats submitted to a 40% CR from 8 to 19 months of age, by reference to ad libitum-fed (AL) rats at 2 and 19 months of age. Four brain structures were compared: hippocampus, striatum, parietal cortex, cerebellum. Our CR diet elicits significant prevention of oxidative damages with the upregulation of antioxidant defenses (levels of glutathione [GSH], mRNAs of clusterin and of three key antioxidant enzymes) as compared to age-matched AL controls, in a strikingly region-specific pattern. CR also prevented a drastic rise of the glial fibrillary acidic protein in the hippocampus of old AL rats. Besides, the CR effects at age 19 months mainly consist in improving endogenous defenses before the onset of age-related redox alterations. These effects are more prominent in the hippocampus.
Collapse
Affiliation(s)
- Emmanuel Moyse
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Physiology of Reproduction and Behaviour Unit (PRC), University of Tours, INRA Centre of Tours, F-37380, Nouzilly, France
| | - Madeleine Arsenault
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, H4J 1C5, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H1T 1C8, Canada
| | - Charles Ramassamy
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, G1V 4L3, Canada.
| |
Collapse
|
27
|
Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 2019; 115:69-78. [DOI: 10.1016/j.exger.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
|
28
|
|
29
|
Fabersani E, Russo M, Marquez A, Abeijón-Mukdsi C, Medina R, Gauffin-Cano P. Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria. Food Res Int 2018; 124:188-199. [PMID: 31466639 DOI: 10.1016/j.foodres.2018.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Emanuel Fabersani
- Universidad Nacional de Tucumán, Tucumán, Argentina; Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Matías Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Antonela Marquez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | | | - Roxana Medina
- Universidad Nacional de Tucumán, Tucumán, Argentina; Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Tucumán, Argentina.
| |
Collapse
|
30
|
Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106:198-221. [DOI: 10.1016/j.exger.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
|
31
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 2017; 38:18-27. [PMID: 28709692 DOI: 10.1016/j.arr.2017.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023]
Abstract
Fibrosis is a common process characterized by excessive extracellular matrix (ECM) accumulation after inflammatory injury, which is also a crucial cause of aging. The process of fibrosis is involved in the pathogenesis of most diseases of the heart, liver, kidney, lung, and other organs/tissues. However, there are no effective therapies for this pathological alteration. Annually, fibrosis represents a huge financial burden for the USA and the world. 5'-AMP-activated protein kinase (AMPK) is a pivotal energy sensor that alleviates or delays the process of fibrogenesis. In this review, we first present basic background information on AMPK and fibrogenesis and describe the protective roles of AMPK in three fibrogenic phases. Second, we analyze the protective action of AMPK during fibrosis in myocardial, hepatic, renal, pulmonary, and other organs/tissues. Third, we present a comprehensive discussion of AMPK during fibrosis and draw a conclusion. This review highlights recent advances, vital for basic research and clinical drug design, in the regulation of AMPK during fibrosis.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
32
|
Abstract
BACKGROUND Approximately 1.6 million Americans were diagnosed with cancer in 2014. To combat their disease, many individuals received either curative or palliative treatments that produced undesired symptoms. These symptoms, which often cause significant distress for individuals coping with cancer, may share biologic underpinnings such as epigenetic changes and immune dysregulation. Alterations in the normal flora of the gut may also influence cancer symptoms. OBJECTIVE The aim of this review is to describe the emerging role for the gut microbiome in cancer research, especially the potential relationship between the gut microbiome and cancer symptoms. METHODS Extant literature was reviewed and synthesized. RESULTS The majority of studies linking the gut microbiota and cancer are animal models and focus on the relationship between dysbiosis and colorectal cancer. Emerging evidence supports that the "gut-brain" connection is a plausible mechanism for "psychoneurological" cancer symptoms such as depression, pain, and fatigue. CONCLUSIONS There is compelling evidence that the gut microbiota affects cancer via several mechanisms, including microbial diversity and number, metabolism, and/or immune initiation. However, more research is necessary to elucidate these mechanisms, particularly among a variety of cancers and cancer-related symptoms. IMPLICATIONS FOR PRACTICE A better understanding of the role of the gut microbiota in cancer symptoms may lead to the development of targeted individualized interventions affecting the gut microbiota that prevent or ameliorate dysbiosis, thereby reducing symptoms. These interventions may emphasize self-care management strategies essential for wellness, such as diet, nutrition, and stress reduction.
Collapse
|
33
|
Knorre DA, Severin FF. Uncouplers of Oxidation and Phosphorylation as Antiaging Compounds. BIOCHEMISTRY (MOSCOW) 2017; 81:1438-1444. [PMID: 28259121 DOI: 10.1134/s0006297916120051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food restriction causes a set of physiological changes that reduce the rate of aging. At the level of an organism, these changes are initiated by a hormonal response, which in turn activates certain intracellular signaling cascades. As a result, cells increase their antioxidant capacities and decrease the risk of cancerous transformation. A number of small molecule compounds activating these signaling cascades have been described. One could expect that direct pharmacological activation of the signaling can produce a stronger antiaging effect than that achieved by the indirect hormonal stimulation. Data from the literature point to the opposite. Possibly, a problem with pharmacological activators is that they cause generation of mitochondrial reactive oxygen species. Indeed, hyperpolarized mitochondria are known to induce oxidative stress. Such hyperpolarization could happen because of artificial activation of cellular response to caloric restriction in the absence of energy deficit. At the same time, energy deficit seems likely to be a natural consequence of the shortage of nutrients. Thus, there is a possibility that combining the pharmacological activators with compounds that decrease mitochondrial transmembrane potential, uncouplers, could be a powerful antiaging strategy.
Collapse
Affiliation(s)
- D A Knorre
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
34
|
Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017; 9:nu9030208. [PMID: 28264439 PMCID: PMC5372871 DOI: 10.3390/nu9030208] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
Elevated protein catabolism and protein malnutrition are common in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The underlying etiology includes, but is not limited to, metabolic acidosis intestinal dysbiosis; systemic inflammation with activation of complements, endothelin-1 and renin-angiotensin-aldosterone (RAAS) axis; anabolic hormone resistance; energy expenditure elevation; and uremic toxin accumulation. All of these derangements can further worsen kidney function, leading to poor patient outcomes. Many of these CKD-related derangements can be prevented and substantially reversed, representing an area of great potential to improve CKD and ESRD care. This review integrates known information and recent advances in the area of protein nutrition and malnutrition in CKD and ESRD. Management recommendations are summarized. Thorough understanding the pathogenesis and etiology of protein malnutrition in CKD and ESRD patients will undoubtedly facilitate the design and development of more effective strategies to optimize protein nutrition and improve outcomes.
Collapse
Affiliation(s)
- Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guizhou 550002, China.
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Spindler SR, Mote PL, Flegal JM. Combined statin and angiotensin-converting enzyme (ACE) inhibitor treatment increases the lifespan of long-lived F1 male mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:379-391. [PMID: 27590905 PMCID: PMC5266223 DOI: 10.1007/s11357-016-9948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 05/09/2023]
Abstract
Statins, such as simvastatin, and ACE inhibitors (ACEis), such as ramipril, are standard therapies for the prevention and treatment of cardiovascular diseases. These types of drugs are commonly administered together. More recently, angiotensin II type 1 receptor (AT1R) antagonists, such as candesartan cilexetil (candesartan), have been used in the place of, or in combination with, ACEis. Here, we investigated the effects of simvastatin and ramipril single and combination therapy, and candesartan treatment on the lifespan of isocalorically fed, long-lived, B6C3F1 mice. Males were used for their relative endocrine simplicity and to minimize animal usage. The drugs were administered daily in food. The simvastatin and ramipril combination therapy significantly increased the mean and median lifespan by 9 %. In contrast, simvastatin, ramipril, or candesartan monotherapy was ineffective. All groups consumed the same number of calories. Simvastatin, alone or administered with ramipril, decreased body weight without changing caloric consumption, suggesting it may alter energy utilization in mice. Combination therapy elevated serum triglyceride and glucose levels, consistent with altered energy homeostasis. Few significant or consistent differences were found in mortality-associated pathologies among the groups. Simvastatin treatment did not reduce normal serum cholesterol or lipid levels in these mice, suggesting that the longevity effects may stem from the pleiotropic, non-cholesterol-related, effects of statins. Together, the results suggest that statins and ACEis together may enhance mouse longevity. Statins and ACE inhibitors are generally well-tolerated, and in combination, they have been shown to increase the lifespan of normotensive, normocholesterolemic humans.
Collapse
Affiliation(s)
- Stephen R. Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - Patricia L. Mote
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521 USA
| | - James M. Flegal
- Department of Statistics, University of California at Riverside, Riverside, CA 92521 USA
| |
Collapse
|
36
|
Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD + and sirtuin-activating compounds. Nat Rev Mol Cell Biol 2016; 17:679-690. [PMID: 27552971 DOI: 10.1038/nrm.2016.93] [Citation(s) in RCA: 583] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sirtuins (SIRT1-7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans.
Collapse
Affiliation(s)
- Michael S Bonkowski
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
37
|
Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C, Benítez-Páez A, Gauffin-Cano P, Medina RB. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice. Nutrients 2016; 8:E415. [PMID: 27399766 PMCID: PMC4963891 DOI: 10.3390/nu8070415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 10⁸ cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions.
Collapse
Affiliation(s)
- Matias Russo
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán T4000ILC, Argentina.
| | - Emanuel Fabersani
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán T4000ILC, Argentina.
| | - María C Abeijón-Mukdsi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán T4000ILC, Argentina.
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, San Miguel de Tucumán T4000IHC, Argentina.
| | - Romina Ross
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, San Miguel de Tucumán T4000IHC, Argentina.
- Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Ayacucho 471, San Miguel de Tucumán T4000INI, Argentina.
| | - Cecilia Fontana
- Instituto Nacional de Tecnología Agropecuaria INTA-EEA, Ruta Provincial 301 Km 32, Famaillá 4132, Argentina.
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Laboratory, Agrochemistry and Food Technology Institute (IATA-CSIC), Paterna-Valencia 46980, Spain.
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán T4000ILC, Argentina.
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, San Miguel de Tucumán T4000IHC, Argentina.
| | - Roxana B Medina
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán T4000ILC, Argentina.
- Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia, Ayacucho 471, San Miguel de Tucumán T4000INI, Argentina.
| |
Collapse
|
38
|
Li X, Handee W, Kuo MH. The slim, the fat, and the obese: guess who lives the longest? Curr Genet 2016; 63:43-49. [DOI: 10.1007/s00294-016-0617-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
|
39
|
Klu YAK, Phillips RD, Chen J. Development of a Drinkable, Peanut-Based Dietary Supplement and Comparison of Its Nutritional and Microbiological Qualities with Commercial Products. J Food Sci 2016; 81:H1309-12. [DOI: 10.1111/1750-3841.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yaa Asantewaa Kafui Klu
- Dept. of Food Science and Technology; The Univ. of Georgia; 1109 Experiment St. Griffin Ga 30223-1797 U.S.A
| | - Robert D. Phillips
- Dept. of Food Science and Technology; The Univ. of Georgia; 1109 Experiment St. Griffin Ga 30223-1797 U.S.A
| | - Jinru Chen
- Dept. of Food Science and Technology; The Univ. of Georgia; 1109 Experiment St. Griffin Ga 30223-1797 U.S.A
| |
Collapse
|
40
|
Kaeberlein M. The Biology of Aging: Citizen Scientists and Their Pets as a Bridge Between Research on Model Organisms and Human Subjects. Vet Pathol 2016; 53:291-8. [PMID: 26077786 PMCID: PMC4794982 DOI: 10.1177/0300985815591082] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A fundamental goal of research into the basic mechanisms of aging is to develop translational strategies that improve human health by delaying the onset and progression of age-related pathology. Several interventions have been discovered that increase life span in invertebrate organisms, some of which have similar effects in mice. These include dietary restriction and inhibition of the mechanistic target of rapamycin by treatment with rapamycin. Key challenges moving forward will be to assess the extent to which these and other interventions improve healthy longevity and increase life span in mice and to develop practical strategies for extending this work to the clinic. Companion animals may provide an optimal intermediate between laboratory models and humans. By improving healthy longevity in companion animals, important insights will be gained regarding human aging while improving the quality of life for people and their pets.
Collapse
Affiliation(s)
- M Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Recent advances in the pathophysiology and management of protein-energy wasting in chronic kidney disease. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Emanuele Bianchi V, Falcioni G. Reactive oxygen species, health and longevity. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
43
|
Coen PM, Goodpaster BH. A role for exercise after bariatric surgery? Diabetes Obes Metab 2016; 18:16-23. [PMID: 26228356 PMCID: PMC5642115 DOI: 10.1111/dom.12545] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Obesity predisposes an individual to develop numerous comorbidities, including type 2 diabetes, and represents a major healthcare issue in many countries worldwide. Bariatric surgery can be an effective treatment option, resulting in profound weight loss and improvements in metabolic health; however, not all patients achieve similar weight loss or metabolic improvements. Exercise is an excellent way to improve health, with well-characterized physiological and psychological benefits. In the present paper we review the evidence to determine whether there may be a role for exercise as a complementary adjunct therapy to bariatric surgery. Objectively measured physical activity data indicate that most patients who undergo bariatric surgery do not exercise enough to reap the health benefits of exercise. While there is a dearth of data on the effects of exercise on weight loss and weight loss maintenance after surgery, evidence from studies of caloric restriction and exercise suggest that similar adjunctive benefits may be extended to patients who perform exercise after bariatric surgery. Recent evidence from exercise interventions after bariatric surgery suggests that exercise may provide further improvements in metabolic health compared with surgery-induced weight loss alone. Additional randomized controlled exercise trials are now needed as the next step to more clearly define the potential for exercise to provide additional health benefits after bariatric surgery. This valuable evidence will inform clinical practice regarding much-needed guidelines for exercise after bariatric surgery.
Collapse
Affiliation(s)
- Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA
| |
Collapse
|
44
|
Lee BC, Kaya A, Gladyshev VN. Methionine restriction and life-span control. Ann N Y Acad Sci 2015; 1363:116-24. [PMID: 26663138 DOI: 10.1111/nyas.12973] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/10/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023]
Abstract
Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending life span. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with or without adequate nutrition (e.g., particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend life span in various model organisms. We discuss the beneficial effects of a methionine-restricted diet, the molecular pathways involved, and the use of this regimen in longevity interventions.
Collapse
Affiliation(s)
- Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Alaattin Kaya
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear Magnetic Resonance-Based Blood Metabolic Profiles of Rats Exposed to Short-Term Caloric Restriction. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Mattson MP. Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis 2015. [PMID: 28642821 PMCID: PMC5478237 DOI: 10.1038/npjamd.2015.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
47
|
Anisimov VN, Popovich IG, Zabezhinski MA, Egormin PA, Yurova MN, Semenchenko AV, Tyndyk ML, Panchenko AV, Trashkov AP, Vasiliev AG, Khaitsev NV. Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin. Cell Cycle 2015; 14:46-55. [PMID: 25483062 DOI: 10.4161/15384101.2014.973308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The perinatal (prenatal and early neonatal) period is a critical stage for hypothalamic programming of sexual differentiation as well as for the development of energy and metabolic homeostasis. We hypothesized that neonatal treatment with antidiabetic drug biguanide metformin would positively modify regulation of growth hormone--IGF-1--insulin signaling pathway slowing down aging and improving cancer preventive patterns in rodents. To test this hypothesis male and female 129/Sv mice were s.c. injected with metformin (100 mg/kg) at the 3rd, 5th and 7th days after birth. Metformin-treated males consumed less food and water and their body weight was decreased as compared with control mice practically over their entire lifespan. There were no significant differences in age-related dynamics of food and water consumption in females and they were heavier than controls. The fraction of mice with regular estrous cycles decreased with age and demonstrated a tendency to decrease in the females neonatally treated with metformin. Neonatal exposure to metformin practically failed to change the extent of hormonal and metabolic parameters in blood serum of male and female mice. In males, neonatal metformin treatment significantly increased the mean life span (+20%, P < 0.05) and slightly increased the maximum life span (+3.5%). In females, the mean life span and median in metformin-treated groups were slightly decreased (-9.1% and -13.8% respectively, P > 0.05) in comparison to controls, whereas mean life span of last 10% survivors and maximum life span were the same as in controls. Almost half (45%) of control male mice and 71.8% male mice neonatally exposed to metformin survived up to 800 d of age, the same age was achieved by 54.3% of mice in control female group and 30% of metformin-treated females (P < 0.03). Thus, neonatal metformin exposure slows down aging and prolongs lifespan in male but not in female mice.
Collapse
|
48
|
Keil G, Cummings E, de Magalhães JP. Being cool: how body temperature influences ageing and longevity. Biogerontology 2015; 16:383-97. [PMID: 25832892 PMCID: PMC4486781 DOI: 10.1007/s10522-015-9571-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity.
Collapse
Affiliation(s)
- Gerald Keil
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Elizabeth Cummings
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
49
|
Longo VD, Antebi A, Bartke A, Barzilai N, Brown‐Borg HM, Caruso C, Curiel TJ, Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 2015; 14:497-510. [PMID: 25902704 PMCID: PMC4531065 DOI: 10.1111/acel.12338] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.
Collapse
|
50
|
Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Alway SE. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) 2015; 6:820-34. [PMID: 25361036 PMCID: PMC4247385 DOI: 10.18632/aging.100696] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in skeletal muscles and the resulting decline in muscle performance are hallmarks of sarcopenia. However, the precise mechanism by which ROS results in a decline in muscle performance is unclear. We demonstrate that isometric-exercise concomitantly increases the activities of Silent information regulator 1 (SIRT-1) and Poly [ADP-ribose] polymerase (PARP-1), and that activated SIRT-1 physically binds with and inhibits PARP-1 activity by a deacetylation dependent mechanism in skeletal muscle from young mice. In contrast, skeletal muscle from aged mice displays higher PARP-1 activity and lower SIRT-1 activity due to decreased intracellular NAD+ content, and as a result reduced muscle performance in response to exercise. Interestingly, injection of PJ34, a PARP-1 inhibitor, in aged mice increased SIRT-1 activity by preserving intracellular NAD+ content, which resulted in higher skeletal muscle mitochondrial biogenesis and performance. We found that the higher activity of PARP-1 in H2O2-treated myotubes or in exercised-skeletal muscles from aged mice is due to an elevated level of PARP-1 acetylation by the histone acetyltransferase General control of amino acid synthesis protein 5-like 2 (GCN-5). These results suggest that activation of SIRT-1 and/or inhibition of PARP-1 may ameliorate skeletal muscle performance in pathophysiological conditions such as sarcopenia and disuse-induced atrophy in aging.
Collapse
Affiliation(s)
- Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Matthew J Myers
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Kayla J Sisson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227, USA. West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9227 USA
| |
Collapse
|