1
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2025; 28:156-170. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
2
|
Ihuoma J, Negri S, Morato Do Canto A, Hartz AMS, Deshpande A, Tarantini S. Editorial: Novel approaches to targeting the vasculature and metabolome to prevent brain aging and related diseases. Front Cell Neurosci 2024; 18:1505939. [PMID: 39526044 PMCID: PMC11544536 DOI: 10.3389/fncel.2024.1505939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Jennifer Ihuoma
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sharon Negri
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | | | - Stefano Tarantini
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Huston CA, Milan M, Vance ML, Bickel MA, Miller LR, Negri S, Hibbs C, Vaden H, Hayes L, Csiszar A, Ungvari Z, Yabluchanskiy A, Tarantini S, Conley SM. The effects of time restricted feeding on age-related changes in the mouse retina. Exp Gerontol 2024; 194:112510. [PMID: 38964431 PMCID: PMC11425985 DOI: 10.1016/j.exger.2024.112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Dietary modifications such as caloric restriction (CR) and intermittent fasting (IF) have gained popularity due to their proven health benefits in aged populations. In time restricted feeding (TRF), a form of intermittent fasting, the amount of time for food intake is regulated without restricting the caloric intake. TRF is beneficial for the central nervous system to support brain health in the context of aging. Therefore, we here ask whether TRF also exerts beneficial effects in the aged retina. We compared aged mice (24 months) on a TRF paradigm (access to food for six hours per day) for either 6 or 12 months against young control mice (8 months) and aged control mice on an ad libitum diet. We examined changes in the retina at the functional (electroretinography), structural (histology and fluorescein angiograms) and molecular (gene expression) level. TRF treatment showed amelioration of age-related reductions in both scotopic and photopic b-wave amplitudes suggesting benefits for retinal interneuron signaling. TRF did not affect age-related signs of retinal inflammation or microglial activation at either the molecular or histological level. Our data indicate that TRF helps preserve some aspects of retinal function that are decreased with aging, adding to our understanding of the health benefits that altered feeding patterns may confer.
Collapse
Affiliation(s)
- Cade A Huston
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lauren R Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lindsay Hayes
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Neuroscience and Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Liu R, Collier JM, Abdul-Rahman NH, Capuk O, Zhang Z, Begum G. Dysregulation of Ion Channels and Transporters and Blood-Brain Barrier Dysfunction in Alzheimer's Disease and Vascular Dementia. Aging Dis 2024; 15:1748-1770. [PMID: 38300642 PMCID: PMC11272208 DOI: 10.14336/ad.2023.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jenelle M Collier
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Okan Capuk
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Milan M, Brown J, O'Reilly CL, Bubak MP, Negri S, Balasubramanian P, Dhanekula AS, Pharaoh G, Reyff Z, Ballard C, Shi H, Yabluchanskiy A, Rudolph MC, Ungvari Z, Marcinek DJ, Miller BF, Van Remmen H, Tarantini S. Time-restricted feeding improves aortic endothelial relaxation by enhancing mitochondrial function and attenuating oxidative stress in aged mice. Redox Biol 2024; 73:103189. [PMID: 38788541 PMCID: PMC11140804 DOI: 10.1016/j.redox.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.
Collapse
Affiliation(s)
- Madison Milan
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Jacob Brown
- Oklahoma City VA, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Arjune S Dhanekula
- Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Gavin Pharaoh
- Departments of Radiology and Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cade Ballard
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David J Marcinek
- Departments of Radiology and Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Benjamin F Miller
- Oklahoma City VA, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Oklahoma City VA, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Zhai W, Zhao M, Wei C, Zhang G, Qi Y, Zhao A, Sun L. Biomarker profiling to determine clinical impact of microRNAs in cognitive disorders. Sci Rep 2024; 14:8270. [PMID: 38594359 PMCID: PMC11004146 DOI: 10.1038/s41598-024-58882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease (AD) and post-stroke cognitive impairment (PSCI) are the leading causes of progressive dementia related to neurodegenerative and cerebrovascular injuries in elderly populations. Despite decades of research, patients with these conditions still lack minimally invasive, low-cost, and effective diagnostic and treatment methods. MicroRNAs (miRNAs) play a vital role in AD and PSCI pathology. As they are easily obtained from patients, miRNAs are promising candidates for the diagnosis and treatment of these two disorders. In this study, we performed complete sequencing analysis of miRNAs from 24 participants, split evenly into the PSCI, post-stroke non-cognitive impairment (PSNCI), AD, and normal control (NC) groups. To screen for differentially expressed miRNAs (DE-miRNAs) in patients, we predicted their target genes using bioinformatics analysis. Our analyses identified miRNAs that can distinguish between the investigated disorders; several of them were novel and never previously reported. Their target genes play key roles in multiple signaling pathways that have potential to be modified as a clinical treatment. In conclusion, our study demonstrates the potential of miRNAs and their key target genes in disease management. Further in-depth investigations with larger sample sizes will contribute to the development of precise treatments for AD and PSCI.
Collapse
Affiliation(s)
- Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yiming Qi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Anguo Zhao
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Morgan AE, Mc Auley MT. Vascular dementia: From pathobiology to emerging perspectives. Ageing Res Rev 2024; 96:102278. [PMID: 38513772 DOI: 10.1016/j.arr.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Vascular dementia (VaD) is the second most common type of dementia. VaD is synonymous with ageing, and its symptoms place a significant burden on the health and wellbeing of older people. Despite the identification of a substantial number of risk factors for VaD, the pathological mechanisms underpinning this disease remain to be fully elucidated. Consequently, a biogerontological imperative exists to highlight the modifiable lifestyle factors which can mitigate against the risk of developing VaD. This review will critically examine some of the factors which have been revealed to modulate VaD risk. The survey commences by providing an overview of the putative mechanisms which are associated with the pathobiology of VaD. Next, the factors which influence the risk of developing VaD are examined. Finally, emerging treatment avenues including epigenetics, the gut microbiome, and pro-longevity pharmaceuticals are discussed. By drawing this key evidence together, it is our hope that it can be used to inform future experimental investigations in this field.
Collapse
Affiliation(s)
- Amy Elizabeth Morgan
- School of Health and Sports Sciences, Hope Park, Liverpool Hope University, Liverpool L16 9JD, United Kingdom.
| | - Mark Tomás Mc Auley
- School of Science, Engineering and Environment, University of Salford Manchester, Salford M5 4NT, United Kingdom
| |
Collapse
|
8
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Georgakou AV, Chatzis G, Triantafyllou A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life (Basel) 2024; 14:267. [PMID: 38398776 PMCID: PMC10890697 DOI: 10.3390/life14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Early vascular aging is related to various cardiovascular diseases including hypertension, coronary heart disease, and stroke. Healthful lifestyle practices and interventions, including dietary regimens and consistent aerobic exercise, exert favorable modulation on these processes, thereby diminishing the risk of cardiovascular disease with advancing age. The principal objective of this review was to conduct a comprehensive evaluation and synthesis of the available literature regarding the effectiveness of different diets on vascular health, such as arterial stiffness and endothelial function. To conduct this review, a thorough search of electronic databases including PubMed, Scopus, and Web of Science Core Collection was carried out. Based on the existing evidence, the Mediterranean, Dietary Approaches to Stop Hypertension, and low-calorie diets may have a beneficial effect on vascular health. However, more randomized controlled trials with sufficient sample sizes, longer follow-ups, rigorous methodologies, and, possibly, head-to-head comparisons between the different diets are needed to shed light on this topic.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| |
Collapse
|
9
|
Gulej R, Nyúl-Tóth Á, Csik B, Petersen B, Faakye J, Negri S, Chandragiri SS, Mukli P, Yabluchanskiy A, Conley S, Huffman DM, Csiszar A, Tarantini S, Ungvari Z. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: insights into neurovascular coupling and the impact of young blood factors. GeroScience 2024; 46:327-347. [PMID: 38123890 PMCID: PMC10828280 DOI: 10.1007/s11357-023-01039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Kalaria RN, Akinyemi RO, Paddick SM, Ihara M. Current perspectives on prevention of vascular cognitive impairment and promotion of vascular brain health. Expert Rev Neurother 2024; 24:25-44. [PMID: 37916306 PMCID: PMC10872925 DOI: 10.1080/14737175.2023.2273393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The true global burden of vascular cognitive impairment (VCI) is unknown. Reducing risk factors for stroke and cardiovascular disease would inevitably curtail VCI. AREAS COVERED The authors review current diagnosis, epidemiology, and risk factors for VCI. VCI increases in older age and by inheritance of known genetic traits. They emphasize modifiable risk factors identified by the 2020 Lancet Dementia Commission. The most profound risks for VCI also include lower education, cardiometabolic factors, and compromised cognitive reserve. Finally, they discuss pharmacological and non-pharmacological interventions. EXPERT OPINION By virtue of the high frequencies of stroke and cardiovascular disease the global prevalence of VCI is expectedly higher than prevalent neurodegenerative disorders causing dementia. Since ~ 90% of the global burden of stroke can be attributed to modifiable risk factors, a formidable opportunity arises to reduce the burden of not only stroke but VCI outcomes including progression from mild to the major in form of vascular dementia. Strict control of vascular risk factors and secondary prevention of cerebrovascular disease via pharmacological interventions will impact on burden of VCI. Non-pharmacological measures by adopting healthy diets and encouraging physical and cognitive activities and urging multidomain approaches are important for prevention of VCI and preservation of vascular brain health.
Collapse
Affiliation(s)
- Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| |
Collapse
|
11
|
Castillo Silva P, Caballero-Alvarado J, Reyes-Vega A, Zavaleta-Corvera C. [Association between previous appendectomy and cognitive impairment in adults: a case-control study]. Khirurgiia (Mosk) 2024:73-77. [PMID: 39008699 DOI: 10.17116/hirurgia202407173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To determine the relationship between appendectomy and cognitive impairment in adults aged 50-70 years. MATERIAL AND METHODS A case-control study was carried out with 270 patients between May and July 2023. Ninety cases (with cognitive impairment) and 180 controls (without impairment), diagnosed by the Montreal Cognitive Assessment (MoCA), were assessed. RESULTS 31.11% of the total cases with cognitive impairment were submitted to an appendectomy, with an average of 25 years since surgery. Regarding other surgeries: 40% with impairment underwent cholecystectomy and 23.33% reported other operations. The analysis revealed significant differences in age, body mass index, hypertension, diabetes and smoking between the groups. However, there was no significant difference by gender. Logistic regression analysis highlighted that age and past appendectomy were strongly associated with cognitive impairment, with an Odds Ratio (OR) of 1.20 and 12.91, respectively. Associations were also found with cholecystectomy (OR 7.33), other surgeries (OR 13.39) and smoking (OR 6.91). CONCLUSION Appendectomy might be a significant risk factor for cognitive impairment in adults aged 50-70 years.
Collapse
Affiliation(s)
| | - J Caballero-Alvarado
- Antenor Orrego Private University, Trujillo, Peru
- Regional Hospital of Trujillo, Trujillo, Peru
| | - A Reyes-Vega
- University of Louisville, Kentucky, United States
| | | |
Collapse
|
12
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Jin Y, Chen J, Chai Q, Zhu J, Jin X. Exploration of acupuncture therapy in the treatment of MCI patients with the ApoE ε4 gene based on the brain-gut axis theory. BMC Complement Med Ther 2023; 23:227. [PMID: 37422636 DOI: 10.1186/s12906-023-04060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is the predementia phase of Alzheimer's disease (AD). The intestinal microbiome is altered in MCI and AD, and apolipoprotein E (ApoE) ε4 gene polymorphism is a risk factor for the progression of MCI to AD. This study aims to investigate the improvement in cognitive function of MCI patients with and without ApoE ε4 due to acupuncture and the changes in gut microbiota community composition and abundance in MCI. METHODS This randomized assessor-blind controlled study will enrol MCI patients with and without the ApoE ε4 gene (n = 60/60). Sixty subjects with the ApoE ε4 gene and 60 subjects without the ApoE ε4 gene will be randomly allocated into treatment and control groups in a 1:1 ratio. Intestinal microbiome profiles will be evaluated by 16 S rRNA sequencing of faecal samples and compared between the groups. RESULTS/CONCLUSIONS Acupuncture is an effective method to improve cognitive function in MCI. This study will provide data on the relationship between the gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. This study will also provide data on the relationship between the gut microbiota and an AD susceptibility gene by integrating microbiologic and molecular approaches. TRIAL REGISTRATION www.chictr.org.cn , ID: ChiCTR2100043017, recorded on 4 February 2021.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| | - Jin Chen
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Qichen Chai
- Department of General Medicine, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China
| | - Xiaoqing Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, No. 1229 Gudun Road, Xihu District, Hangzhou, China.
| |
Collapse
|
14
|
Ahire C, Nyul‐Toth A, DelFavero J, Gulej R, Faakye J, Tarantini S, Kiss T, Kuan‐Celarier A, Balasubramanian P, Ungvari A, Tarantini A, Nagaraja R, Yan F, Tang Q, Mukli P, Csipo T, Yabluchanskiy A, Campisi J, Ungvari Z, Csiszar A. Accelerated cerebromicrovascular senescence contributes to cognitive decline in a mouse model of paclitaxel (Taxol)-induced chemobrain. Aging Cell 2023; 22:e13832. [PMID: 37243381 PMCID: PMC10352561 DOI: 10.1111/acel.13832] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/28/2023] Open
Abstract
Chemotherapy-induced cognitive impairment ("chemobrain") is a frequent side-effect in cancer survivors treated with paclitaxel (PTX). The mechanisms responsible for PTX-induced cognitive impairment remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that PTX induces endothelial senescence, which impairs microvascular function and contributes to the genesis of cognitive decline. We treated transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells, with PTX (5 mg/kg/day, 2 cycles; 5 days/cycle). PTX-treated and control mice were tested for spatial memory performance, neurovascular coupling (NVC) responses (whisker-stimulation-induced increases in cerebral blood flow), microvascular density, blood-brain barrier (BBB) permeability and the presence of senescent endothelial cells (by flow cytometry and single-cell transcriptomics) at 6 months post-treatment. PTX induced senescence in endothelial cells, which associated with microvascular rarefaction, NVC dysfunction, BBB disruption, neuroinflammation, and impaired performance on cognitive tasks. To establish a causal relationship between PTX-induced senescence and impaired microvascular functions, senescent cells were depleted from PTX-treated animals (at 3 months post-treatment) by genetic (ganciclovir) or pharmacological (treatment with the senolytic drug ABT263/Navitoclax) means. In PTX treated mice, both treatments effectively eliminated senescent endothelial cells, rescued endothelium-mediated NVC responses and BBB integrity, increased capillarization and improved cognitive performance. Our findings suggest that senolytic treatments can be a promising strategy for preventing chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- Chetan Ahire
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Adam Nyul‐Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research CentreELKHSzegedHungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Janet A. Faakye
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
- Department of Health Promotion Sciences, College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Tamas Kiss
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, First Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Anna Kuan‐Celarier
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Anna Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
| | - Amber Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Raghavendra Nagaraja
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Feng Yan
- Stephenson School of Biomedical Engineering, Gallogly College of EngineeringThe University of OklahomaNormanOklahomaUSA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, Gallogly College of EngineeringThe University of OklahomaNormanOklahomaUSA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
| | - Tamas Csipo
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Health Promotion Sciences, College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | | | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
- Department of Health Promotion Sciences, College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of NeurosurgeryUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational MedicineSemmelweis UniversityBudapestHungary
- The Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
15
|
Van Skike CE, DeRosa N, Galvan V, Hussong SA. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer's disease. GeroScience 2023; 45:1987-1996. [PMID: 37052770 PMCID: PMC10400743 DOI: 10.1007/s11357-023-00786-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Peripheral artery disease (PAD), defined as reduced blood flow to the lower limbs, is a serious disorder that can lead to loss of function in the lower extremities and even loss of limbs. One of the main risk factors for PAD is age, with up to 25% of adults over the age of 55 and up to 40% over the age of 80 presenting with some form of the disease. While age is the largest risk factor for PAD, other risk factors include atherosclerosis, smoking, hypertension, and diabetes. Furthermore, previous studies have suggested that the incidence of PAD is significantly increased in patients with Alzheimer's disease (AD). Attenuation of mTOR with rapamycin significantly improves cerebral blood flow and heart function in aged rodents as well as in mouse models of atherosclerosis, atherosclerosis-driven cognitive impairment, and AD. In this study, we show that rapamycin treatment improves peripheral blood flow in aged mice and in mouse models of atherosclerosis and AD. Inhibition of mTOR with rapamycin ameliorates deficits in baseline hind paw perfusion in aged mice and restores levels of blood flow to levels indistinguishable from those of young controls. Furthermore, rapamycin treatment ameliorates peripheral blood flow deficits in mouse models of atherosclerosis and AD. These data indicate that mTOR is causally involved in the reduction of blood flow to lower limbs associated with aging, atherosclerosis, and AD-like progression in model mice. Rapamycin or other mTOR inhibitors may have potential as interventions to treat peripheral artery disease and other peripheral circulation-related conditions.
Collapse
Affiliation(s)
- Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA
| |
Collapse
|
16
|
Jiang X, Cui L, Huang L, Guo Y, Huang G, Guo Q. The Relationship between Beverages Consumption and Cognitive Impairment in Middle-Aged and Elderly Chinese Population. Nutrients 2023; 15:nu15102309. [PMID: 37242194 DOI: 10.3390/nu15102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Some evidence shows that beverage consumption has an impact on cognitive performance. This is a follow-up study of dietary habits and cognitive function in the Chinese middle-aged and elderly population. The objective of this study was to explore the relationship between beverage consumption and cognitive impairment. The source and grouping of the participants can be seen in the previous article, "Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability". Among 892 participants, one-third (296) completed both Amyloid beta(Aβ)-PET and plasma biomarkers. The results showed that the consumption of beverages (green tea, coffee, pure milk) was a protective factor for cognitive impairment, daily water consumption <1500 mL (especially <500 mL) was a risk factor for cognitive impairment, and the above correlated with baseline cognitive status. The relationship of green tea, coffee, and pure milk consumption with cognitive impairment was related to gender. We also found that among the participants with Aβ deposition, the consumption of pure milk and green tea was associated with low levels of p-Tau-181. In conclusion, the relationship between beverage consumption and cognitive impairment in Chinese middle-aged and elderly adults may be related to baseline cognitive status, gender, and Aβ deposition.
Collapse
Affiliation(s)
- Xinting Jiang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of VIP Clinical, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yihan Guo
- Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Gaozhong Huang
- Department of VIP Clinical, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
17
|
Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int 2023; 164:105490. [PMID: 36702401 DOI: 10.1016/j.neuint.2023.105490] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Oxidative stress (OS) is primarily caused by the formation of free radicals and reactive oxygen species; it is considered as one of the prominent factors in slowing down and degrading cellular machinery of an individual, and it eventually leads to aging and age-related diseases by its continuous higher state. The relation between molecular damage and OS should be particularized to understand the beginning of destruction at the cellular levels, extending outwards to affect tissues, organs, and ultimately to the organism. Several OS biomarkers, which are established at the biomolecular level, are useful in investigating the disease susceptibility during aging. Slowing down the aging process is a matter of reducing the rate of oxidative damage to the cellular machinery over time. The breakdown of homeostasis, the mild overcompensation, the reestablishment of homeostasis, and the adaptive nature of the process are the essential features of hormesis, which incorporates several factors, including calorie restriction, nutrition and lifestyle modifications that play an important role in reducing the OS. In the current review, along with the concept and theories of aging (with emphasis on free radical theory), various manifestations of OS with special attention on mitochondrial dysfunction and age-related diseases have been discussed. To alleviate the OS, hormetic approaches including caloric restriction, exercise, and nutrition have also been discussed.
Collapse
Affiliation(s)
- Vinita Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India
| | - Mohammad Murtaza Mehdi
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144401, India.
| |
Collapse
|
18
|
Wang Z, Li T, Du M, Zhang L, Xu L, Song H, Zhang J. β-hydroxybutyrate improves cognitive impairment caused by chronic cerebral hypoperfusion via amelioration of neuroinflammation and blood-brain barrier damage. Brain Res Bull 2023; 193:117-130. [PMID: 36577190 DOI: 10.1016/j.brainresbull.2022.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second most common type of dementia after Alzheimer's disease (AD) in elderly people. Chronic cerebral hypoperfusion (CCH) is the early pathophysiological basis of VCI. β-Hydroxybutyrate (BHB) is one of the important components of ketone bodies, an intermediate product of endogenous energy metabolism, which can mitigate neuroinflammation in stroke and neurodegenerative diseases. The present study aimed to investigate whether BHB can improve cognitive impairment caused by CCH and the underlying mechanism. METHODS The CCH model was established by permanent bilateral common carotid artery occlusion (2VO). CCH rats were intraperitoneally injected with BHB (1.5 mmol/kg/d) every day for 8 consecutive weeks from 2 weeks before surgery. The hippocampal blood flow of rats was measured by using a laser Doppler velocimetry. Used the Morris water maze test (MWM) to assess spatial learning and memory of rats, and harvested brain tissues for molecular, biochemical, and pathological tests. RESULTS We found that BHB intervention for 8 weeks could effectively restore hippocampal blood flow and improve spatial learning and memory in CCH rats. BHB can protect the blood-brain barrier (BBB), as manifested by reducing the ultrastructural damage and leakage of the BBB, restoring the expression of tight junction-related proteins and reducing the expression of Matrix Metalloproteinases-9 (MMP-9). Additionally, after BHB intervention, microglia activation was reduced, oligodendrocyte motility was active, and the expression levels of pro-inflammatory factors such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), nuclear factor-κB (NF-κB) and advanced glycation end-products (RAGE) were lower, which also indicated that BHB had a beneficial effect in mitigating neuroinflammation. CONCLUSION BHB can improve the cognitive impairment caused by CCH. The potential mechanisms of BHB may be through reducing neuroinflammation and protecting BBB.
Collapse
Affiliation(s)
- Zhitian Wang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Miaoyu Du
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
19
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Negri S, Sanford M, Shi H, Tarantini S. The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Front Aging Neurosci 2023; 15:1149820. [PMID: 37020858 PMCID: PMC10067599 DOI: 10.3389/fnagi.2023.1149820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Madison Sanford
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini,
| |
Collapse
|
21
|
Ezzati A, Pak VM. The effects of time-restricted eating on sleep, cognitive decline, and Alzheimer's disease. Exp Gerontol 2023; 171:112033. [PMID: 36403899 DOI: 10.1016/j.exger.2022.112033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
According to the United Nations, by 2050, one in six individuals will be over age 65 globally, and one in four people would be aged 65 and older in western countries. The unprecedented growth of the aging population is associated with increased age-related disorders like Alzheimer's disease (AD) and Mild cognitive impairment (MCI). To date, no cure is known for AD, thus lifestyle interventions including calorie restriction (CR) and time-restricted eating (TRE) are proposed as potential approach to delay the onset and progression of the disease. Sleep disturbances are common in people with MCI and AD. Moreover, accumulating data indicates that pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-10 increase in individuals with AD and MCI versus healthy subjects. Thus, the purpose of the present review is to describe the potential effects of TRE on sleep, cognition decline, and neuroinflammatory markers in humans. Preliminary evidence suggests that TRE may produce neuroprotective effects on cognition and reduce neuroinflammatory markers related to AD in humans. To date, no studies investigated the effects of TRE on sleep disturbances and patients with AD. Thereby, the impact of TRE on cognition in individuals with cognitive decline and AD needs to be investigated further in randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Armin Ezzati
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA; Physical Activity and Nutrition Clinical Research Consortium, College of Health and Human Sciences, Manhattan, KS, USA.
| | - Victoria M Pak
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA; Rollins School of Public Health, Department of Epidemiology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
23
|
A long-term obesogenic high-fat diet in mice partially dampens the anti-frailty benefits of late-life intermittent fasting. GeroScience 2022; 45:1247-1262. [PMID: 36287320 PMCID: PMC9886776 DOI: 10.1007/s11357-022-00678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/20/2022] [Indexed: 02/03/2023] Open
Abstract
The global obesity pandemic coupled with ever-growing life expectancies equates to hundreds of millions of individuals with potentially longer but not healthier lives. Aging is one of the risk factors for numerous maladies such as metabolic disorder and frailty, which are exacerbated under obesity. Thus, therapeutic approaches that address obesity to ultimately improve affected individuals' quality of life and extend their lifespan are needed. We previously reported that the every other day (EOD) fasting initiated late-life improved metabolic, musculoskeletal, and cognitive endpoints in standard rodent diet-fed mice. In the present study, using the same dietary intervention methodology, we tested if 2.5 months of EOD fasting could improve metabolic, physiological, and cognitive endpoints in mice after an 18 month obesogenic high-fat diet (HFD). The positive effects of EOD fasting were generally consistent across the endpoints; EOD fasting decreased total body mass, maintained more %lean mass, improved glucose tolerance and utilization, and improved neuromuscular function. In contrast to our previous study, grip strength, hippocampal-dependent memory, and renal hydrogen sulfide (H2S) production were not improved by the HFD EOD fasting. Thus, efficacy for late-life initiated intermittent fasting to improve specific frailty markers may be partially dependent on nutritional compositions of the diet.
Collapse
|
24
|
Zhao S, Han T, Pei X, Song Y, Zhang Y, Liu L, Wang X, Hou W, Sun C. The association of diet carbohydrates consumption with cognitive function among US older adults modification by daily fasting duration. Front Aging Neurosci 2022; 14:991007. [PMID: 36225887 PMCID: PMC9550221 DOI: 10.3389/fnagi.2022.991007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary carbohydrate consumption was related to cognitive function. Whereas, there was no study investigate the association of dietary carbohydrate consumption with cognitive function modification by daily fasting duration. This study aims to examine the association between dietary carbohydrate consumption and cognitive function among participants with different daily fasting duration. In this cross-sectional study, 2485 adults aged over 60 years from the nationally representative data of the National Health and Nutrition Examination Survey (NHANES, 2011–2014) were enrolled. Percentage energy from carbohydrates was present in both quartiles and continuous forms. Daily fasting duration = 24 – (timing for dinner – breakfast). Cognitive function was assessed by the Consortium to Establish a Registry for Alzheimer’s Disease Word List Learning (CERAD-WL), CERAD Word List Delayed Recall (CERAD-DR), Animal Fluency (AF), and Digit Symbol Substitution (DSST) Test. Multiple logistic regression and linear regression models were developed to examine the association of dietary carbohydrates with cognitive function among participants with different daily fasting duration. Restricted cubic spline models were also applied. Compared with the lowest quartile of percentage energy from carbohydrates, the highest quartile had higher ORs of poor cognitive performance among total participants [(ORCERAD-WL 1.84 95% CI 1.25–2.71); (ORCERAD-DR 1.45 95% CI 1.10–1.91)] and participants with daily fasting duration fewer than 16 h [(ORCERAD-WL 2.14 95% CI 1.29–3.55); (ORCERAD-DR 1.51 95% CI 1.05–2.17)] but not in participants with daily fasting duration of more than 16 h. Further, the negative associations between percentage energy from carbohydrates and CERAD-WL score were still significant in addition to participants whose daily fasting duration was more than 16 h. Additionally, dose-response associations were detected between dietary carbohydrates and cognitive decline, while “U” curves were observed among participants whose daily fasting duration was more than 16 h. This study indicated that dietary carbohydrates consumption was associated with poor cognitive performance, but not in participants whose daily fasting duration was more than 16 h among US older adults. The current analysis provides evidence that a longer daily fasting duration may improve the harmful effect of dietary carbohydrates on cognitive function.
Collapse
|
25
|
Jin Y, Hu F, Zhu J. Exploration of acupuncture therapy in the treatment of mild cognitive impairment based on the brain-gut axis theory. Front Hum Neurosci 2022; 16:891411. [PMID: 36204718 PMCID: PMC9531719 DOI: 10.3389/fnhum.2022.891411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is an intermediary state between normal aging and dementia. Early intervention for MCI may be a key opportunity in managing dementia. Recent studies have demonstrated the alterations in the gut microbial communities associated with MCI. This study aims to evaluate if acupuncture can improve cognitive function in subjects with MCI and explore the possible mechanism of acupuncture by better defining the interactions of gut microbiota. Methods A randomized assessor-blind controlled study is proposed. A total of 62 subjects will be recruited and randomly allocated into two groups in a 1:1 ratio: the treatment and control groups. Participants in the treatment group will receive active acupuncture and exercise/cognitive training (conventional treatment). The control group will receive sham acupuncture and exercise/cognitive training. Each participant will receive active or sham acupuncture for 12 weeks. The primary outcome will be the Montreal Cognitive Assessment (MoCA) score and intestinal flora. Secondary outcomes will include mini-mental state examination (MMSE) and activity of daily living (ADL) scores. Various scales will be collected at baseline, during the treatment (weeks 4 and 8), week 12, and months 4 and 6 after the intervention. Feces will be collected before and after the treatment based on 16S rRNA gene sequencing technology for each participant to characterize the intestinal flora. Adverse events will be recorded by monthly follow-up. Results The trial is expected to show that cognitive function can be improved by acupuncture and produce reliable clinical outcomes in MCI patients. It will also provide preliminary data on the possible mechanism based on the changes in the intestinal flora. Collected data will be used to support future large-scale fundamental studies. Conclusion Acupuncture is an effective method to improve cognitive function for MCI. This study will provide data on the relationship between gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. Clinical trial registration [www.ClinicalTrials.gov], identifier [MR-33-22-002376].
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| | - Fen Hu
- Department of Acupuncture and Moxibustion, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
26
|
Sanford M, Negri S, Tarantini S. Editorial: New developments in understanding brain and cerebromicrovascular aging: Toward prevention of vascular cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1020271. [PMID: 36185480 PMCID: PMC9523741 DOI: 10.3389/fnagi.2022.1020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Madison Sanford
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sharon Negri
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Stefano Tarantini
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini
| |
Collapse
|
27
|
Cilhoroz BT, DeBlois JP, Lefferts WK, Keller AP, Pagan Lassalle P, Meyer ML, Stoner L, Heffernan KS. Exploration of cerebral hemodynamic pathways through which large artery function affects neurovascular coupling in young women. Front Cardiovasc Med 2022; 9:914439. [PMID: 36035945 PMCID: PMC9411931 DOI: 10.3389/fcvm.2022.914439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe interactions between large artery function and neurovascular coupling (NVC) are emerging as important contributors to cognitive health. Women are disproportionally affected by Alzheimer's disease and related dementia later in life. Understanding large artery correlates of NVC in young women may help with preservation of cognitive health with advancing age.PurposeTo explore the association between large artery function, NVC and cognitive performance in young women.MethodsVascular measurements were made in 61 women (21 ± 4 yrs) at rest and during a cognitive challenge (Stroop task). Transcranial Doppler was used to measure left middle cerebral artery (MCA) maximum velocity (Vmax), mean velocity (Vmean), and pulsatility index (PI). NVC was determined as MCA blood velocity reactivity to the Stroop task. Large artery function was determined using carotid-femoral pulse wave velocity (cfPWV) as a proxy measure of aortic stiffness and carotid ultrasound-derived measures of compliance and reactivity (diameter change to the Stroop task). Cognitive function was assessed separately using a computerized neurocognitive battery that included appraisal of response speed, executive function, information processing efficiency, memory, attention/concentration, and impulsivity.ResultsMCA Vmax reactivity was positively associated with executive function (β = 0.26, 95% CI 0.01–0.10); MCA Vmean reactivity was negatively associated with response speed (β = −0.33, 95% CI −0.19 to −0.02) and positively with memory score (β = 0.28, 95% CI 0.01–0.19). MCA PI reactivity was negatively associated with attention performance (β = −0.29, 95% CI −14.9 to −1.0). Path analyses identified significant paths (p < 0.05) between carotid compliance and carotid diameter reactivity to select domains of cognitive function through MCA reactivity.ConclusionsNVC was associated with cognitive function in young women. Carotid artery function assessed as carotid compliance and carotid reactivity may contribute to optimal NVC in young women through increased blood flow delivery and reduced blood flow pulsatility.
Collapse
Affiliation(s)
- Burak T. Cilhoroz
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Jacob P. DeBlois
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Wesley K. Lefferts
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Allison P. Keller
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Patricia Pagan Lassalle
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, United States
| | - Michelle L. Meyer
- Department of Epidemiology, Gilling's School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Emergency Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, Gilling's School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin S. Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
- *Correspondence: Kevin S. Heffernan
| |
Collapse
|
28
|
Isaac-Lam MF, DeMichael KM. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med (Berl) 2022; 100:1095-1109. [PMID: 35760911 DOI: 10.1007/s00109-022-02226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA.
| | - Kelly M DeMichael
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA
| |
Collapse
|
29
|
Fernández-Rodríguez R, Martínez-Vizcaíno V, Mesas AE, Notario-Pacheco B, Medrano M, Heilbronn LK. Does intermittent fasting impact mental disorders? A systematic review with meta-analysis. Crit Rev Food Sci Nutr 2022; 63:11169-11184. [PMID: 35713641 DOI: 10.1080/10408398.2022.2088687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence supports the benefits of intermittent fasting (IF) as a dietary strategy for cardiometabolic health and weight control. However, little is known about the potential implications of IF on mental disorders. The aim of this review was to synthesize evidence regarding the effects of IF on mental disorders (depression, anxiety, and mood state) in the general population. We conducted a systematic search in five databases from inception to January 2022. Randomized and nonrandomized clinical trials (RCTs/nonRCTs) were included. A random effects method was used to pool standardized mean differences (SMDs) and 95% CIs. A total of 14 studies involving 562 individuals were included, of which 8 were RCTs and 6 were nonRCTs. IF showed a moderate and positive effect on depression scores when compared to control groups (SMD: 0.41; 95%CI: 0.05 to 0.76; I2=45%; n = 4). Conversely, within-group analyses did not show any significant effect of IF on anxiety (SMD: 0.10; 95%CI: -0.09 to 0.30; I2=0%; n = 5) or mood state (SMD: 0.14; 95%CI: -0.09 to 0.37; I2=59%; n = 7). IF modalities did not negatively impact mental disorders in the general population. In fact, IF showed a positive influence on diminishing depression scores, and did not modify anxiety or mood.
Collapse
Affiliation(s)
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla La-Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Arthur E Mesas
- Health and Social Research Center, Universidad de Castilla La-Mancha, Cuenca, Spain
- Health Science Centre, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - María Medrano
- Health and Social Research Center, Universidad de Castilla La-Mancha, Cuenca, Spain
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Leonie K Heilbronn
- Adelaide Medical School, Faculty of Health and Medical Sciences, Adelaide, Australia
| |
Collapse
|
30
|
Fang X, Zhang J, Roman RJ, Fan F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? GeroScience 2022; 44:1879-1883. [PMID: 35585301 PMCID: PMC9213583 DOI: 10.1007/s11357-022-00591-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
From the first described AD case in 1901 to the current year 2022, understanding the pathogenesis of Alzheimer's disease (AD) and dementia has undergone a long and tortuous journey. Many mechanisms of AD etiology have been proposed and studied. However, current medications and FDA-approved treatments cannot cure AD and AD-related dementias (AD/ADRD). Recently, brain hypoperfusion associated with neurovascular dysfunction was recognized as one of the causal factors in the development of AD dementia. Arteriosclerotic changes were observed in the first AD case. A recent study reported that the functional hyperemic response to whisker stimulation was reduced in 9-12 months old atherosclerotic mice. Interestingly, they found that evoked hemodynamic responses were not altered in age-matched AD mice or AD mice with superimposed atherosclerosis using 2D-optical imaging spectroscopy in chronic studies. However, functional hyperemia was impaired in AD mice using the same approach in an acute study. It is essential to scrutinize the available data critically since different genetic backgrounds, ages, sexes of studied animal models, and different approaches used for the same function even structural examination may provide opposite information. We certainly are closer to truly understanding the pathogenesis of dementia. We expect positive results from using aducanumab (Aduhelm®) as the first FDA-approved anti-amyloid monoclonal antibody as a treatment for AD/ADRD. We hope to identify and develop new drugs targeting other potential contributing mechanisms such as the cerebral vascular pathways.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
31
|
Owens CD, Mukli P, Csipo T, Lipecz A, Silva-Palacios F, Dasari TW, Tarantini S, Gardner AW, Montgomery PS, Waldstein SR, Kellawan JM, Nyul-Toth A, Balasubramanian P, Sotonyi P, Csiszar A, Ungvari Z, Yabluchanskiy A. Microvascular dysfunction and neurovascular uncoupling are exacerbated in peripheral artery disease, increasing the risk of cognitive decline in older adults. Am J Physiol Heart Circ Physiol 2022; 322:H924-H935. [PMID: 35333116 PMCID: PMC9037702 DOI: 10.1152/ajpheart.00616.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.
Collapse
Affiliation(s)
- Cameron D Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Federico Silva-Palacios
- Vascular Medicine Program, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew W Gardner
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Polly S Montgomery
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, Maryland
- Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
32
|
Xu J, Liu J, Mi Y, Zhao T, Mu D, Meng Q, Wang F, Li N, Hou Y. Triad3A-Dependent TLR4 Ubiquitination and Degradation Contributes to the Anti-Inflammatory Effects of Pterostilbene on Vascular Dementia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5896-5910. [PMID: 35532888 DOI: 10.1021/acs.jafc.2c01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pterostilbene, a methylated stilbene derived from many plant foods, has significant anti-inflammatory activity. Meanwhile, vascular dementia (VaD) is the second most common subtype of dementia, in which inflammation is one of the major pathogenic contributors. However, the protective effect of pterostilbene on VaD is not well understood. In this work, we investigated the effect of pterostilbene on VaD and explored its underlying mechanisms using in vivo and in vitro models. Y-maze and Morris water maze tests showed pterostilbene-attenuated cognitive impairment in mice with bilateral common carotid artery occlusion (BCCAO). The hippocampal neuronal death and microglial activation in BCCAO mice were also reduced by pterostilbene treatment. Further, pterostilbene inhibited the expression of TLR4 and downstream inflammatory cytokines in these mice, with similar results observed in an oxygen-glucose deprivation and reperfusion (OGD/R) BV-2 cell model. In addition, its anti-inflammatory effect on OGD/R BV-2 cells was partially blocked by TLR4 overexpression. Moreover, Triad3A-TLR4 interactions were increased by pterostilbene following enhanced ubiquitination and degradation of TLR4, and the inhibitory effect of pterostilbene on inflammation was blocked by Triad3A knockdown in OGD/R-stimulated BV-2 cells. Together, these results reveal that pterostilbene could reduce vascular cognitive impairment and that Triad3A-mediated TLR4 degradation might be the key target.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Ting Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Danyang Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Feng Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110004, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| |
Collapse
|
33
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Zhai W, Zhao M, Zhang G, Wang Z, Wei C, Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol 2022; 13:895316. [PMID: 35592472 PMCID: PMC9110834 DOI: 10.3389/fneur.2022.895316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is recognized as the second leading cause of dementia after Alzheimer's disease (AD). The underlying pathological mechanism of VCID include crebromicrovascular dysfunction, blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are currently available for preventing or delaying its progression. Recently, pathophysiological microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and therapeutic targets. Studies have revealed that miRNAs can regulate the function of the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system, and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes recent findings on VCID and miRNAs, focusing on their correlation and contribution to the development of VCID pathology.
Collapse
|
35
|
Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Popiołek Ł, Herbet M, Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep 2022; 12:6708. [PMID: 35468904 PMCID: PMC9035983 DOI: 10.1038/s41598-022-10187-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a chronic disease leading to memory difficulties and deterioration of learning abilities. The previous studies showed that modulation of inflammatory pathways in the diabetic brain may reduce dysfunction or cell death in brain areas which are important for control of cognitive function. In the present study, we investigated the neuroprotective actions of newly synthesized adamantane derivatives on diabetes-induced cognitive impairment in mice. Our study relied on the fact that both vildagliptin and saxagliptin belong to DPP4 inhibitors and, contain adamantanyl group. Efficacy of tested compounds at reversing diabetes-induced different types of memory impairment was evaluated with the use of selected behavioural tests. The following neuroinflammatory indicators were also analyzed: neuroinflammatory indicators and the expression of genes involved in the inflammatory response of brain (Cav1, Bdnf). Our study demonstrated that new adamantane derivatives, similarly to DPP4 inhibitors, can restrict diabetes-induced cognitive deficits. We demonstrated that the overexpression of GLP-1-glucagon-like peptide as well as Bdnf, Cav1 genes translate into central blockade of pro-inflammatory synthesis of cytokines and significantly improvement on memory performance in diabetes mice. Newly synthesized adamantane derivatives might have important roles in prevention and treatment of cognitive impairment by inflammatory events in patients with diabetes or related diseases.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland.
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| |
Collapse
|
36
|
Zuo W, Wu J. The interaction and pathogenesis between cognitive impairment and common cardiovascular diseases in the elderly. Ther Adv Chronic Dis 2022; 13:20406223211063020. [PMID: 35126964 PMCID: PMC8814974 DOI: 10.1177/20406223211063020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Both cognitive impairment and cardiovascular diseases have a high incidence in the elderly population, increasing the burden of care and reducing the quality of life. Studies have suggested that cognitive impairment interacts with cardiovascular diseases such as coronary heart disease, abnormal blood pressure, heart failure, and arrhythmia. On one hand, cognitive impairment in the elderly influences the progression and self-management of cardiovascular diseases and increases the risk of cardiovascular-related adverse events. On the other hand, coronary heart disease, heart failure, higher blood pressure variability, orthostatic hypotension, and atrial fibrillation may aggravate cognitive impairment. The role of blood pressure levels on cognition remains controversial. Several shared biological pathways have been proposed as the underlying mechanism for the association. Cardiovascular diseases may lead to cognitive decline even dementia through cerebral perfusion damage, brain structural changes, inflammation, β-amyloid deposition, and neuroendocrine disorders. It is of great significance to study the interaction and put forward effective interventions in an overall perspective to reduce care burden and improve the quality of life of the elderly patients.
Collapse
Affiliation(s)
- Wenhang Zuo
- National Clinical Research Center for Geriatrics, Department of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jinhui Wu
- National Clinical Research Center for Geriatrics, Department of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People’s Republic of China
| |
Collapse
|
37
|
Niu KM, Bao T, Gao L, Ru M, Li Y, Jiang L, Ye C, Wang S, Wu X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front Nutr 2021; 8:756243. [PMID: 34912838 PMCID: PMC8667784 DOI: 10.3389/fnut.2021.756243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is a natural process with concomitant changes in the gut microbiota and associate metabolomes. Beta-nicotinamide mononucleotide, an important NAD+ intermediate, has drawn increasing attention to retard the aging process. We probed the changes in the fecal microbiota and metabolomes of pre-aging male mice (C57BL/6, age: 16 months) following the oral short-term administration of nicotinamide mononucleotide (NMN). Considering the telomere length as a molecular gauge for aging, we measured this in the peripheral blood mononuclear cells (PBMC) of pre-aging mice and human volunteers (age: 45-60 years old). Notably, the NMN administration did not influence the body weight and feed intake significantly during the 40 days in pre-aging mice. Metabolomics suggested 266 upregulated and 58 downregulated serum metabolites. We identified 34 potential biomarkers linked with the nicotinamide, purine, and proline metabolism pathways. Nicotinamide mononucleotide significantly reduced the fecal bacterial diversity (p < 0.05) with the increased abundance of Helicobacter, Mucispirillum, and Faecalibacterium, and lowered Akkermansia abundance associated with nicotinamide metabolism. We propose that this reshaped microbiota considerably lowered the predicated functions of aging with improved immune and cofactors/vitamin metabolism. Most notably, the telomere length of PBMC was significantly elongated in the NMN-administered mice and humans. Taken together, these findings suggest that oral NMN supplementation in the pre-aging stage might be an effective strategy to retard aging. We recommend further studies to unravel the underlying molecular mechanisms and comprehensive clinical trials to validate the effects of NMN on aging.
Collapse
Affiliation(s)
- Kai-Min Niu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Lumin Gao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Meng Ru
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Liang Jiang
- ERA Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Changming Ye
- ERA Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Shujin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- Institute of Life Sciences, Chongqing Medical University (CAS), Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
38
|
Majewski M, Juśkiewicz J, Krajewska-Włodarczyk M, Gromadziński L, Socha K, Cholewińska E, Ognik K. The Role of 20-HETE, COX, Thromboxane Receptors, and Blood Plasma Antioxidant Status in Vascular Relaxation of Copper-Nanoparticle-Fed WKY Rats. Nutrients 2021; 13:nu13113793. [PMID: 34836047 PMCID: PMC8623823 DOI: 10.3390/nu13113793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the addition of copper nanoparticles (NPs) in a daily diet (6.5 mg/kg) was studied in different animal models as a possible alternative to ionic forms. Male Wistar-Kyoto rats (24-week-old, n = 11) were fed with copper, either in the form of carbonate salt (Cu6.5) or metal-based copper NPs (NP6.5), for 8 weeks. The third group was fed with a half dose of each (NP3.25 + Cu3.25). The thoracic aorta and blood plasma was studied. Supplementation with NP6.5 decreased the Cu (×0.7), Cu/Zn-ratio (×0.6) and catalase (CAT, ×0.7), and increased Zn (×1.2) and superoxide dismutase (SOD, ×1.4). Meanwhile, NP3.25 + Cu3.25 decreased the Cu/Zn-ratio (×0.7), and CAT (×0.7), and increased the daily feed intake (×1.06). Preincubation with either the selective cyclooxygenase (COX)-2 inhibitor, or the non-selective COX-1/2 inhibitor attenuated vasodilation of rat thoracic aorta in the NP6.5 group exclusively. However, an increased vasodilator response was observed in the NP6.5 and NP3.25 + Cu3.25 group of rats after preincubation with an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and the thromboxane receptor (TP) antagonist. Significant differences were observed between the NP6.5 and NP3.25 + Cu3.25 groups of rats in: dietary intake, acetylcholine-induced vasodilation, and response to COX-inhibitors. Copper NPs in a standard daily dose had more significant effects on the mechanism(s) responsible for the utilization of reactive oxygen species in the blood plasma with the participation of prostanoids derived from COX-2 in the vascular relaxation. Dietary copper NPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, UWM, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-56-68
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| |
Collapse
|
39
|
Vidmar AP, Naguib M, Raymond JK, Salvy SJ, Hegedus E, Wee CP, Goran MI. Time-Limited Eating and Continuous Glucose Monitoring in Adolescents with Obesity: A Pilot Study. Nutrients 2021; 13:nu13113697. [PMID: 34835953 PMCID: PMC8624400 DOI: 10.3390/nu13113697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023] Open
Abstract
Due to its simplicity, time-limited eating (TLE) may represent a more feasible approach for treating adolescents with obesity compared to other caloric restriction regimens. This pilot study examines the feasibility and safety of TLE combined with continuous glucose monitoring (CGM) in adolescents. Fifty adolescents with BMI ≥95th percentile were recruited to complete a 12-week study. All received standard nutritional counseling, wore a CGM daily, and were randomized to: (1) Prolonged eating window: 12 h eating/12 h fasting + blinded CGM; (2) TLE (8 h eating/16 h fasting, 5 days per week) + blinded CGM; (3) TLE + real-time CGM feedback. Recruitment, retention, and adherence were recorded as indicators of feasibility. Weight loss, dietary intake, physical activity, eating behaviors, and quality of life over the course of the intervention were explored as secondary outcomes. Forty-five participants completed the study (16.4 ± 1.3 years, 64% female, 49% Hispanic, 75% public insurance). There was high adherence to prescribed eating windows (TLE 5.2 d/wk [SD 1.1]; control 6.1 d/wk [SD 1.4]) and daily CGM wear (5.85 d/wk [SD 4.8]). Most of the adolescents (90%) assigned to TLE reported that limiting their eating window and wearing a CGM was feasible without negative impact on daily functioning or adverse events. There were no between-group difference in terms of weight loss, energy intake, quality of life, physical activity, or eating behaviors. TLE combined with CGM appears feasible and safe among adolescents with obesity. Further investigation in larger samples, with a longer intervention duration and follow-up assessments are needed.
Collapse
Affiliation(s)
- Alaina P. Vidmar
- Center for Endocrinology, Diabetes and Metabolism, Diabetes & Obesity Program, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.N.); (J.K.R.); (E.H.); (M.I.G.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-361-3385
| | - Monica Naguib
- Center for Endocrinology, Diabetes and Metabolism, Diabetes & Obesity Program, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.N.); (J.K.R.); (E.H.); (M.I.G.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Jennifer K. Raymond
- Center for Endocrinology, Diabetes and Metabolism, Diabetes & Obesity Program, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.N.); (J.K.R.); (E.H.); (M.I.G.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Sarah Jeanne Salvy
- Research Center for Health Equity, Cedars-Sinai Medical Center, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| | - Elizabeth Hegedus
- Center for Endocrinology, Diabetes and Metabolism, Diabetes & Obesity Program, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.N.); (J.K.R.); (E.H.); (M.I.G.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Choo Phei Wee
- Department of Population and Public Health Sciences, Keck School of Medicine, Southern California Clinical and Translational Science Institute (SC-CTSI), Los Angeles, CA 90007, USA;
| | - Michael I. Goran
- Center for Endocrinology, Diabetes and Metabolism, Diabetes & Obesity Program, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.N.); (J.K.R.); (E.H.); (M.I.G.)
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
40
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
41
|
Tarantini S, Balasubramanian P, Delfavero J, Csipo T, Yabluchanskiy A, Kiss T, Nyúl-Tóth Á, Mukli P, Toth P, Ahire C, Ungvari A, Benyo Z, Csiszar A, Ungvari Z. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. GeroScience 2021; 43:2427-2440. [PMID: 34427858 PMCID: PMC8599595 DOI: 10.1007/s11357-021-00440-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Moment-to-moment adjustment of regional cerebral blood flow to neuronal activity via neurovascular coupling (NVC or "functional hyperemia") has a critical role in maintenance of healthy cognitive function. Aging-induced impairment of NVC responses importantly contributes to age-related cognitive decline. Advanced aging is associated with increased prevalence of senescent cells in the cerebral microcirculation, but their role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that a validated senolytic treatment can improve NVC responses and cognitive performance in aged mice. To achieve this goal, aged (24-month-old) C57BL/6 mice were treated with ABT263/Navitoclax, a potent senolytic agent known to eliminate senescent cells in the aged mouse brain. Mice were behaviorally evaluated (radial arms water maze) and NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. ABT263/Navitoclax treatment improved NVC response, which was associated with significantly improved hippocampal-encoded functions of learning and memory. ABT263/Navitoclax treatment did not significantly affect endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, increased presence of senescent cells in the aged brain likely contributes to age-related neurovascular uncoupling, exacerbating cognitive decline. The neurovascular protective effects of ABT263/Navitoclax treatment highlight the preventive and therapeutic potential of senolytic treatments (as monotherapy or as part of combination treatment regimens) as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Department of Pediatrics, University of Szeged, Szeged, Hungary
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
| | - Zoltan Benyo
- International Training Program in Geroscience/Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience/Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
42
|
Balasubramanian P, Delfavero J, Nyul-Toth A, Tarantini A, Gulej R, Tarantini S. Integrative Role of Hyperbaric Oxygen Therapy on Healthspan, Age-Related Vascular Cognitive Impairment, and Dementia. FRONTIERS IN AGING 2021; 2:678543. [PMID: 35821996 PMCID: PMC9261405 DOI: 10.3389/fragi.2021.678543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Growing life expectancy will contribute to the on-going shift towards a world population increasingly comprised of elderly individuals. This demographic shift is associated with a rising prevalence of age-related diseases, among all age-related pathologies it has become crucial to understand the age-associated cognitive changes that remain a major risk factor for the development of vascular cognitive impairment and dementia (VCID). Furthermore, age-related Alzheimer's disease and other neurogenerative diseases with vascular etiology are the most prominent contributing factors for the loss of cognitive function observed in aging. Hyperbaric Oxygen Therapy (HBOT) achieves physiologic effects by increasing oxygen tension (PO2), raising oxygen tissue levels, decreasing intracranial pressure and relieving cerebral edema. Many of the beneficial effects of HBOT exert their protective effects at the level of the microcirculation. Furthermore, the microcirculation's exquisite pervasive presence across every tissue in the body, renders it uniquely able to influence the local environment of most tissues and organs, including the brain. As such, treatments aimed at restoring aging-induced functional and structural alterations of the cerebral microcirculation may potentially contribute to the amelioration of a range of age-related pathologies including vascular cognitive impairment, Alzheimer's disease, and vascular dementias. Despite the presented evidence, the efficacy and safety of HBOT for the treatment of age-related vascular cognitive impairment and dementia remains understudied. The present review aims to examine the existing evidence indicative of a potential therapeutic role for HBOT-induced hyperoxia against age-related cerebromicrovascular pathologies contributing to cognitive impairment, dementia and decreased healthspan in the elderly.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
43
|
Gudden J, Arias Vasquez A, Bloemendaal M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021; 13:nu13093166. [PMID: 34579042 PMCID: PMC8470960 DOI: 10.3390/nu13093166] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
The importance of diet and the gut-brain axis for brain health and cognitive function is increasingly acknowledged. Dietary interventions are tested for their potential to prevent and/or treat brain disorders. Intermittent fasting (IF), the abstinence or strong limitation of calories for 12 to 48 h, alternated with periods of regular food intake, has shown promising results on neurobiological health in animal models. In this review article, we discuss the potential benefits of IF on cognitive function and the possible effects on the prevention and progress of brain-related disorders in animals and humans. We do so by summarizing the effects of IF which through metabolic, cellular, and circadian mechanisms lead to anatomical and functional changes in the brain. Our review shows that there is no clear evidence of a positive short-term effect of IF on cognition in healthy subjects. Clinical studies show benefits of IF for epilepsy, Alzheimer’s disease, and multiple sclerosis on disease symptoms and progress. Findings from animal studies show mechanisms by which Parkinson’s disease, ischemic stroke, autism spectrum disorder, and mood and anxiety disorders could benefit from IF. Future research should disentangle whether positive effects of IF hold true regardless of age or the presence of obesity. Moreover, variations in fasting patterns, total caloric intake, and intake of specific nutrients may be relevant components of IF success. Longitudinal studies and randomized clinical trials (RCTs) will provide a window into the long-term effects of IF on the development and progress of brain-related diseases.
Collapse
Affiliation(s)
- Jip Gudden
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.G.); (A.A.V.)
- Correspondence:
| |
Collapse
|
44
|
Nyul-Toth A, DelFavero J, Mukli P, Tarantini A, Ungvari A, Yabluchanskiy A, Csiszar A, Ungvari Z, Tarantini S. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer's disease. GeroScience 2021; 43:1947-1957. [PMID: 34160781 PMCID: PMC8492885 DOI: 10.1007/s11357-021-00401-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
There is strong clinical evidence that multifaceted gait abnormalities may be manifested at early stages of Alzheimer's disease (AD), are related to cognitive decline, and can be used as an early biomarker to identify patients at risk of progressing to full-blown dementia. Despite their importance, gait abnormalities have not been investigated in mouse models of AD, which replicate important aspects of the human disease. The Tg2576 is frequently used in AD research to test therapeutic interventions targeting cellular mechanisms contributing to the genesis of AD. This transgenic mouse strain overexpresses a mutant form of the 695 amino acid isoform of human amyloid precursor protein with K670N and M671L mutations (APPK670/671L) linked to early-onset familial AD. Tg2576 mice exhibit impaired cognitive functions and increased cortical and hippocampal soluble β-amyloid levels starting from 5 months of age and increased insoluble β-amyloid levels and amyloid plaques that resemble senile plaques associated with human AD by 13 months of age. To demonstrate early manifestations of gait dysfunction in this relevant preclinical model, we characterized gait and motor performance in 10-month-old Tg2576 mice and age-matched littermate controls using the semi-automated, highly sensitive, Catwalk XT system. We found that Tg2576 mice at the pre-plaque stage exhibited significantly altered duty cycle and step patterns and decreased stride length and stride time. Base-of-support, stride time variability, stride length variability, cadence, phase dispersions and gait symmetry indices were unaltered. The presence of measurable early gait abnormalities during the pre-plaque stages of AD in this relevant preclinical mouse model has direct translational relevance and supports the view that longitudinal monitoring of gait performance could be used in addition to behavioral testing to evaluate progression of the disease and to assess treatment efficacy.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
45
|
Saibaba G, Ruzal M, Shinder D, Yosefi S, Druyan S, Arazi H, Froy O, Sagi D, Friedman-Einat M. Time-Restricted Feeding in Commercial Layer Chickens Improves Egg Quality in Old Age and Points to Lack of Adipostat Activity in Chickens. Front Physiol 2021; 12:651738. [PMID: 34234685 PMCID: PMC8256267 DOI: 10.3389/fphys.2021.651738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
In mammals, time-restricted feeding (TRF) with no caloric restriction provides health benefits and extends longevity, usually with a minor (∼3%) or no reduction in total food consumption. In the current study, a TRF regimen of 6 h free access to food (08:00-14:00 h) was applied to Leghorn chickens from 25 to 86 weeks of age; control birds ate freely during the light hours (06:00-20:00 h). Unexpectedly, the TRF-treated birds consumed, on average, 11.7% less food than the controls. This was manifested by an average reduction of 9.6% in body weight, 2.6-fold in visceral fat accumulation, and 6.5% in egg weight. Hen-housed egg production was reduced by 3.6% in the TRF group compared with the control, along the first 40 weeks of the follow-up (P < 0.05), and changed into a tendency of 0.7% higher egg production thereafter. Several parameters of egg quality showed significant improvement (P < 0.05) in the TRF group compared with the controls. A comparison of diurnal patterns of feed consumption revealed a higher rate of hourly consumption in the TRF group and increased consumption before dark in the control group. In conclusion, the reduced feed intake in response to the TRF treatment and loss in visceral fat accumulation supports the lack of a strong adipostat activity in chickens and different appetite regulation mechanisms compared with mammals. Therefore, future TRF studies in chickens should be adjusted by extending the ad libitum time window. The lower feed intake by the TRF-treated chickens compared with the ad libitum-fed controls seems to reduce the efficiency of egg production. Nevertheless, the improved egg quality and persistence of egg lay at the older age suggest that similarly to mammals, the TRF treatment delayed at least some of the negative impacts associated with advanced age.
Collapse
Affiliation(s)
- Ganesan Saibaba
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Mark Ruzal
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Dima Shinder
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Sara Yosefi
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Hagit Arazi
- Extension Service, Poultry Division, Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| | - Oren Froy
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Sagi
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Miriam Friedman-Einat
- Institute of Animal Science, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
46
|
Bendikov-Bar I, Malitsky S, Itkin M, Rusal M, Sagi D. Metabolomic Changes Are Predictive of Aging in Laying Hens. J Gerontol A Biol Sci Med Sci 2021; 76:1757-1768. [PMID: 33978733 DOI: 10.1093/gerona/glab135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/14/2022] Open
Abstract
Aging in vertebrates is an extremely complex process that is still poorly understood. One confining factor to studying vertebrate aging is the lack of appropriate models. The laying hen is a good model to study vertebrate aging, as it can be maintained under standard housing conditions, its breeds are genetically well defined and it exhibits significant aging phenotypes at around 18 months of age. Furthermore, laying hens are maintained in a challenging realistic environment and possess a fully functional immune system. Here we used, for the first time, metabolomic profiling of laying hens' blood for identifying biomarkers of aging. Random forest classifier was used to quantify the quality of the markers and found that the markers can predict the correct age group of individuals with 90% accuracy. Animals under time-restricted feeding, a condition known to increase health span, appeared younger under the markers, indicating that the aging biomarkers can also predict the effectiveness of environmental treatments. Additionally, we found that noise, defined as the ratio between the standard deviation and the mean, is an exceptionally robust and universal biomarker of aging, as metabolomic noise increases significantly with age in laying hens, humans, and mice. Our study suggests the laying hen as a useful model to study aging in vertebrates and establishes metabolomic noise as a novel, universal biomarker of aging.
Collapse
Affiliation(s)
- Inna Bendikov-Bar
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot,Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot,Israel
| | - Mark Rusal
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Dror Sagi
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| |
Collapse
|
47
|
Pratscher S, Mickle AM, Marks JG, Rocha H, Bartsch F, Schmidt J, Tejera L, Garcia S, Custodero C, Jean F, Garvan C, Johnson AJ, Pop R, Greene A, Woods AJ, Staud R, Fillingim RB, Keil A, Sibille KT. Optimizing Chronic Pain Treatment with Enhanced Neuroplastic Responsiveness: A Pilot Randomized Controlled Trial. Nutrients 2021; 13:1556. [PMID: 34063083 PMCID: PMC8147927 DOI: 10.3390/nu13051556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects mental and physical health and alters brain structure and function. Interventions that reduce chronic pain are also associated with changes in the brain. A number of non-invasive strategies can promote improved learning and memory and increase neuroplasticity in older adults. Intermittent fasting and glucose administration represent two such strategies with the potential to optimize the neurobiological environment to increase responsiveness to recognized pain treatments. The purpose of the pilot study was to test the feasibility and acceptability of intermittent fasting and glucose administration paired with a recognized pain treatment activity, relaxation and guided imagery. A total of 32 adults (44% W, 56% M), 50 to 85 years of age, with chronic knee pain for three months or greater participated in the study. Four sessions were completed over an approximate two-week period. Findings indicate the ability to recruit, randomize, and retain participants in the protocol. The procedures and measures were reasonable and completed without incident. Participant adherence was high and exit interview feedback positive. In summary, the pilot study was feasible and acceptable, providing the evidence necessary to move forward with a larger clinical trial.
Collapse
Affiliation(s)
- Steven Pratscher
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Angela M. Mickle
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - John G. Marks
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
| | - Harold Rocha
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Felix Bartsch
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Jeffrey Schmidt
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Lazaro Tejera
- Department of Interdisciplinary Medicine, University of Bari, 70125 Bari, Italy; (L.T.); (C.C.)
| | - Steven Garcia
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Carlo Custodero
- Department of Interdisciplinary Medicine, University of Bari, 70125 Bari, Italy; (L.T.); (C.C.)
| | - Federlin Jean
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL 32611, USA;
| | - Cynthia Garvan
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA;
| | - Alisa J. Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Ralisa Pop
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
| | - Anthony Greene
- Counseling and Wellness Center, University of Florida, Gainesville, FL 32611, USA;
| | - Adam J. Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory Clinical Translational Research, University of Florida, Gainesville, FL 32611, USA;
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Kimberly T. Sibille
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL 32611, USA;
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
48
|
Late-life intermittent fasting decreases aging-related frailty and increases renal hydrogen sulfide production in a sexually dimorphic manner. GeroScience 2021; 43:1527-1554. [PMID: 33675469 PMCID: PMC8492807 DOI: 10.1007/s11357-021-00330-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.
Collapse
|