1
|
Agnello L, Gambino CM, Ciaccio AM, Giglio RV, Scazzone C, Tamburello M, Candore G, Accardi G, Aiello A, Del Ben F, Ciaccio M. Establishing sex- and age-related reference intervals of serum glial fibrillary acid protein measured by the fully automated lumipulse system. Clin Chem Lab Med 2025; 63:1402-1408. [PMID: 40059067 DOI: 10.1515/cclm-2025-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES To establish the reference intervals (RIs) of serum glial fibrillary acid protein (GFAP) measured by the fully automated Lumipulse system. METHODS The study population consisted of 340 healthy individuals, including 251 blood donors and 89 outpatients, with a median age of 56 years. Serum GFAP levels were measured by the Lumipulse G GFAP assay on the fully automated platform Lumipulse G1200 (FUJIREBIO Inc., Tokyo, Japan). GFAP RIs (2.5th and 97.5th percentiles) were calculated for the overall population and stratified by age and sex groups. For the overall population, males, and females partitions, we employed the nonparametric methods, while for the age-and-sex groups we employed the "robust" method, as recommended by CLSI. RESULTS The RI in the whole population was 10.4-92.0 ng/L. When considering sex differences, females showed higher levels of serum GFAP than males across all age groups. A positive correlation was observed between age and GFAP (Spearman's rho=0.55, p<0.001). Specifically, the biomarker was stable until 60 years, while individuals aged>60 years demonstrated significantly and considerably higher levels than younger age groups. Additionally, in the 50-60 age group, we observed gender-related differences, with females having increased levels than males. CONCLUSIONS GFAP levels are influenced by both age and sex. Accordingly, we established RIs of serum GFAP, taking into consideration age and sex-related differences.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, Palermo, Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties "G. D'Alessandro", Department of Health Promotion, Maternal and Infant Care, University of Palermo, Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, Palermo, Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
| | - Martina Tamburello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico (CRO)-IRCCS, Aviano, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Institute of Clinical Biochemistry, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital Paolo Giaccone, Palermo, Italy
| |
Collapse
|
2
|
Guo T, Lai Y, Wu S, Lin C, Zhou X, Lin P, Zheng M, Chen J, Lin F. IFI204 in microglia mediates traumatic brain injury-induced mitochondrial dysfunction and pyroptosis via SENP7 interaction. Cell Biol Toxicol 2025; 41:89. [PMID: 40407969 PMCID: PMC12102124 DOI: 10.1007/s10565-025-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/24/2025] [Indexed: 05/26/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) is a primary contributor to chronic functional impairment in human populations, initiating complex neuroinflammatory cascades and neurodegeneration. Despite extensive research efforts, the precise pathophysiological pathways remain incompletely characterized. This investigation aims to establish a novel therapeutic strategy that targets critical molecular pathways post-injury, potentially addressing the current limitations in the clinical management of TBI patients. METHODS The single-cell data of cortical tissue from mice with TBI were obtained from public databases (GSE160763), which was utilized to identify alterations in in the composition of disease-associated cells and related molecules as the disease progresses. Functional and pathway enrichment analyses were conducted to elucidate the functional characteristics of microglia and astrocyte subpopulations. Trajectory analysis was employed to investigate cell differentiation characteristics. Subsequently, we examined the expression and function of microglia-specific molecules, such as IFI204, along with their underlying molecular mechanisms using Western blotting, immunofluorescence, co-immunoprecipitation (CO-IP), histopathology, behavioral tests, and molecular docking to assess binding status, as well as molecular dynamics simulations. Finally, we used molecular docking technology to find small molecule compounds that IFI204 can stably bind to. RESULTS We identified nine major cell populations, most of which undergo dynamic changes following TBI. Astrocytes and microglia were the predominant populations in each group, and further cluster analysis revealed that the proportions of interferon (IFN) and axonogenesis-related microglial subtypes increased after TBI. Trajectory inference analysis indicated that the expression of Ifi204 is upregulated in microglia during disease progression. Conditional microglial knockdown of IFI204 significantly improved neurological deficits in mice, and alleviated mitochondrial dysfunction and microglial pyroptosis. Mechanistically, SENP7, identified as a novel molecule, interacts with IFI204 in microglia, catalyzes the deSUMOylation of IFI204, and promotes STING signal activation, ultimately driving microglial pyroptosis and mitochondrial dysfunction. CONCLUSIONS The interaction between IFI204 and SENP7 promotes microglial pyroptosis and related mitochondrial dysfunction. Furthermore, in the case of TBI, we hypothesize that targeting IFI204 might yield therapeutic benefits.
Collapse
Affiliation(s)
- Ting Guo
- Department of Geriatric Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Shuguang Wu
- Department of Anesthesiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Peiqiang Lin
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mouwei Zheng
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Jianhao Chen
- Department of Rehabilitation Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, Fuzhou, China.
| |
Collapse
|
3
|
Agnello L, Gambino CM, Ciaccio AM, Salemi G, Brighina F, Ragonese P, Piccoli T, Blandino V, Di Stefano V, Cacciabaudo F, Masucci A, Vassallo R, Scazzone C, Del Ben F, Ciaccio M. The value of serum glial fibrillary acidic protein as a biomarker of astrogliosis in different neurological diseases. Clin Chim Acta 2025; 572:120248. [PMID: 40113024 DOI: 10.1016/j.cca.2025.120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Glial Fibrillary Acidic Protein (GFAP) is a well-established biomarker of astrocytes and astrogliosis, a pathological response observed in various neurological diseases. This study aimed to evaluate the diagnostic performance of serum GFAP in Alzheimer's disease (AD), multiple sclerosis (MS), and transthyretin amyloidosis (ATTR) polyneuropathy. METHODS We performed a retrospective observational study, including 498 participants (337 healthy controls and 161 patients with AD, MS, or ATTR amyloidosis). Serum GFAP levels were measured using the Lumipulse G1200 platform, and statistical analyses were performed to compare levels across disease groups and assess their diagnostic accuracy. RESULTS GFAP levels were significantly elevated in all neurological disease groups compared to age-matched controls, with the highest levels found in AD (79.4 pg/mL vs. 39.5 pg/mL, p = 2.55 × 10-12). ROC curve analysis revealed that GFAP had strong diagnostic performance for AD (AUC = 0.86), moderate performance for ATTR amyloidosis (AUC = 0.67), and poor performance for MS (AUC = 0.61). CONCLUSIONS These findings suggest that GFAP is a promising biomarker for AD, reflecting astrocytic activation and neuroinflammatory processes. Its diagnostic utility in ATTR amyloidosis is moderate, while its role in MS remains limited.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital Paolo Giaccone, Palermo, Italy
| | - Anna Maria Ciaccio
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Tommaso Piccoli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Valeria Blandino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Unit of Neurology, University of Palermo, Palermo, Italy
| | - Francesco Cacciabaudo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Roberta Vassallo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico (CRO)-IRCCS, Aviano, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital Paolo Giaccone, Palermo, Italy.
| |
Collapse
|
4
|
Schultz B, Bobermin L, Menezes L, Gayger-Dias V, Da Silva VF, Taday J, Alves J, Tramontina F, Zanotto C, Dalmaz C, Leite MC, Leal RB, Quincozes-Santos A, Gonçalves CA. Sex-Dependent Changes in the Gene Expression of UPR-Associated Calcium-Binding Proteins in the STZ-Induced Model of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-05046-6. [PMID: 40372671 DOI: 10.1007/s12035-025-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Although the causes of Alzheimer's disease (AD) are still unknown, the unfolded protein response (UPR) is considered the basis for the pathogenesis of many degenerative diseases, including AD. The incidence of AD is slightly higher in the female population; however, biases continue to raise questions as to whether gender is a risk factor for the disease, as insulin resistance is. In this study, we used a sporadic model of Alzheimer's disease, induced by intracerebroventricularly-administered streptozotocin (STZ) in Wistar rats, to evaluate potential modulations in proteins involved in the UPR and the dependence of alterations on the sex of the animals. The rats were evaluated at two time points; 4 and 16 weeks post-STZ. At 16 weeks, cognitive deficit was observed in all rats treated with STZ, as well as an increase in glial fibrillary acid protein (GFAP), and a reduction in synaptophysin in the hippocampus. However, at 4 weeks, cognitive deficit was found only in males, in association with a reduction in synaptophysin. With regard to neurochemical changes in the AD model of STZ, we found sex-dependent differences in the gene expression of OASIS (an ATF-6-like UPR sensor in astrocytes), calpastatin (inhibitor protein of calpain 1/2), calpain-10, calcineurin, sorcin and CHOP. Taken together, results obtained herein contribute to the understanding of the pathogenesis of AD and indicate that the STZ-triggered UPR observed may be sex-dependent.
Collapse
Affiliation(s)
- Bruna Schultz
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Bobermin
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Menezes
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Vitor Gayger-Dias
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Vanessa-Fernanda Da Silva
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Jéssica Taday
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Joelma Alves
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | | | - Caroline Zanotto
- Biochemistry Laboratory, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
| | - Rodrigo Bainy Leal
- Graduate Program Biochemistry, Departament of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - André Quincozes-Santos
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Graduate Program in Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos Street 2600 Biochemistry Building Laboratory 33, Porto Alegre, RS, 90035-003, Brazil.
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Schmitt FA, Abner EL, Fardo DW, Gold BT, Jicha GA, Kryscio RJ, Lee DC, Nelson PT, Van Eldik LJ. Celebrating 40 years of the University of Kentucky Alzheimer's Disease Research Center. Alzheimers Dement 2025; 21:e70181. [PMID: 40365904 PMCID: PMC12076195 DOI: 10.1002/alz.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025]
Abstract
Four decades of the National Institute on Aging's sponsored research into Alzheimer's disease (AD) have resulted in symptomatic and mechanistic therapies, lifestyle interventions, increased understanding of genetic factors and protein misfolding, and descriptions of non-AD neuropathological entities that mimic AD clinical symptoms. This is an overview of contributions from one of the original ten Alzheimer Disease Research Centers (ADRCs), the University of Kentucky ADRC. We celebrate 40 years of helping the field to define early pathogenetic mechanisms underlying transitions from normal cognitive aging to impairment in our elderly community-based cohort, increased appreciation of the heterogeneity and multiple pathologies that characterize late-life dementia, strategies for therapeutic intervention, and novel statistical approaches. We also highlight our educational efforts to train the workforce of the future and our long-standing community outreach and partnerships. HIGHLIGHTS: The University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) is an experienced and collaborative center celebrating its 40th year of National Institute on Aging funding in 2025. Our long-standing community-based cohort of motivated older adult volunteers and strong neuropathology program support the rationale for our overarching theme: "Transitions from Normal to Late-Life Multi-Etiology Dementia." The UK-ADRC's focus on normal aging and early cognitive transitions has been central to elucidating pathogenic mechanisms underlying transitions from normal cognitive aging to impairment and defining the heterogeneity and multiple pathologies that characterize late-life dementia. UK-ADRC infrastructure and resources support and create new opportunities for innovative and inclusive research, clinical programs across the cognitive continuum, educational and training opportunities, and community and national partnerships.
Collapse
Affiliation(s)
- Frederick A. Schmitt
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Erin L. Abner
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Epidemiology & Environmental HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - David W. Fardo
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Brian T. Gold
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Richard J. Kryscio
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Department of StatisticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Daniel C. Lee
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pathology & Laboratory MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Linda J. Van Eldik
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
Potokar M, Jorgačevski J. Targeting autophagy in astrocytes: a potential for neurodegenerative disease intervention. Front Cell Neurosci 2025; 19:1584767. [PMID: 40357169 PMCID: PMC12066609 DOI: 10.3389/fncel.2025.1584767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Autophagy contributes to cellular homeostasis by regulating the degradation and recycling of damaged organelles and misfolded proteins. In the central nervous system (CNS), impaired autophagy contributes to inflammation, disrupts cellular metabolism, and leads to the accumulation of toxic protein aggregates that accelerate the progression of neurodegenerative diseases. In addition to its role in protein and organelle turnover, autophagy facilitates the elimination of pathogenic bacteria and viruses, whose infections can also lead to neurological diseases and neuroinflammatory processes. Astrocytes, the most abundant glial cells in the CNS, play a crucial role in maintaining neuronal homeostasis by regulating neurotransmitter balance, ion exchange, and metabolic support. During neurodegeneration, they become reactive, actively participating in neuroinflammatory responses by releasing proinflammatory cytokines, activating microglia, and removing toxic aggregates. Cytokine-mediated responses and metabolic changes in astrocytes influence neuronal viability and neurotransmission. Autophagy in astrocytes plays an important role in tuning the astrocyte-dependent activity of neurons under physiological conditions and in pathological activation of astrocytes by disease, injury or pathogenic stimuli. In this review, we highlight the contribution of astrocytes to neurodegeneration from the perspective of changes in their cytoskeleton, the autophagy process in which the cytoskeleton plays a crucial role, and the metabolic support of neurons. The modulation of autophagy at different stages has the potential to serve as an additional therapeutic target in CNS diseases.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
7
|
Bartak M, Krahel WD, Gregorczyk-Zboroch K, Chodkowski M, Potârniche AV, Długosz E, Krzyżowska M, Cymerys J. Cytokine Profile Analysis During Sialodacryoadenitis Virus and Mouse Hepatitis Virus JHM Strain Infection in Primary Mixed Microglia and Astrocyte Culture-Preliminary Research. Cells 2025; 14:637. [PMID: 40358160 PMCID: PMC12071255 DOI: 10.3390/cells14090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The Coronaviridae family has again demonstrated the potential for significant neurological complications in humans during the recent pandemic. In patients, these symptoms persist throughout the infection, often lasting for months. The consequences of most of these post-infection symptoms might be linked with abnormal cytokine production and reactive oxygen species (ROS) expression, resulting in neuron damage. We investigated the effect of infection with the Mouse Hepatitis Virus (MHV) JHM strain and Sialodacryoadenitis Virus (SDAV) on a primary microglia and astrocyte culture by analysing ROS production, cytokine and chemokine expression, and cell death during one month post infection. For this purpose, confocal microscopy, flow cytometry, and a high-throughput Luminex ProcartaPlex immunopanel for 48 cytokines and chemokines were utilised. The replication of MHV-JHM and SDAV in microglia and astrocytes has increased the production of pro-inflammatory cytokines and inhibited the production of anti-inflammatory cytokines. The cytokine expression induced by the two viruses differed, as did their detection after infection. SDAV infection resulted in a much broader cytokine response compared to that of MHV-JHM. Both viruses significantly increased ROS levels and induced apoptosis in a small percentage of the cells, but without necrosis.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Weronika D. Krahel
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Karolina Gregorczyk-Zboroch
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Marcin Chodkowski
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-063 Warsaw, Poland
| | - Adrian Valentin Potârniche
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Ewa Długosz
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| | - Małgorzata Krzyżowska
- Division of Medical and Environmental Microbiology, Military Institute of Hygiene and Epidemiology, 01-063 Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.D.K.)
| |
Collapse
|
8
|
Bettcher BM, de Oliveira FF, Willette AA, Michalowska MM, Machado LS, Rajbanshi B, Borelli WV, Tansey MG, Rocha A, Suryadevara V, Hu WT. Analysis and interpretation of inflammatory fluid markers in Alzheimer's disease: a roadmap for standardization. J Neuroinflammation 2025; 22:105. [PMID: 40234920 PMCID: PMC11998147 DOI: 10.1186/s12974-025-03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Growing interest in the role of the immune response in Alzheimer's Disease and related dementias (ADRD) has led to widespread use of fluid inflammatory markers in research studies. To standardize the use and interpretation of inflammatory markers in AD research, we build upon prior guidelines to develop consensus statements and recommendations to advance application and interpretation of these markers. In this roadmap paper, we propose a glossary of terms related to the immune response in the context of biomarker discovery/validation, discuss current conceptualizations of inflammatory markers in research, and recommend best practices to address key knowledge gaps. We also provide consensus principles to summarize primary conceptual, methodological, and interpretative issues facing the field: (1) a single inflammatory marker is likely insufficient to describe an entire biological cascade, and multiple markers with similar or distinct functions should be simultaneously measured in a panel; (2) association studies in humans are insufficient to infer causal relationships or mechanisms; (3) neuroinflammation displays time-dependent and disease context-dependent patterns; (4) neuroinflammatory mechanisms should not be inferred based solely on blood inflammatory marker changes; and (5) standardized reporting of CSF inflammatory marker assay validation and performance will improve incorporation of inflammatory markers into the biological AD criteria.
Collapse
Affiliation(s)
- Brianne M Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12469 East 17th Place, Room 217- Campus Box F429, Aurora, CO, 80045, USA.
| | | | - Auriel A Willette
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| | - Malgorzata M Michalowska
- Department of Clinical Neuroscience, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luiza Santos Machado
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Binita Rajbanshi
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California - San Francisco, San Francisco, USA
| | - Wyllians V Borelli
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Malú Gámez Tansey
- Department of Neurology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Andréia Rocha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging Research, Rutgers Institute for Health, Health Care Policy, and Aging Research, Rutgers Health, New Brunswick, USA
| |
Collapse
|
9
|
Huang D, Guo Y, Cui M, Fu H. Development and Preliminary Evaluation of a 125I-Labeled Radioligand ([ 125I]iodotrazoline) for In Vitro Detection of Imidazoline-2 Binding Site in the Brain. Mol Pharm 2025; 22:2224-2232. [PMID: 40077846 DOI: 10.1021/acs.molpharmaceut.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Astrocytes exert multiple functions within the brain, including regulating neuroinflammation and maintaining homeostasis, and the reactive astrocytes are implicated in many neurodegenerative disorders. Imidazoline-2 binding site (I2BS) has been established as a reliable biomarker for precisely quantifying reactive astrocytes. Here, we reported the development of [125I]iodotrazoline ([125I]8), a novel I2BS radioligand with high affinity (Ki = 6.8 nM) and exceptional selectivity over α2-adrenoceptors (>1400 folds). In vitro autoradiography (ARG) using rat brain sections revealed a heterogeneous distribution of [125I]8, with high signals in the medulla, midbrain, pons, and hypothalamus. Pretreatment with unlabeled I2BS-selective ligands, BU224 and FTIMD, reduced the binding by >30%, indicating high in vitro specificity for I2BS. Ex vivo ARG results confirmed this distribution pattern in the rat brain. Biodistribution results in mice demonstrated a rapid brain uptake of [125I]8 (3.35% ID/g at 2 min postinjection) with slow washout. Metabolite analysis exhibited the desirable biostability of [125I]8 in the rat brain. Altogether, this work provides a new 125I-labeled radioligand featuring a novel 2-trans-styryl-imidazoline scaffold, which shows significant specificity binding for I2BS in vitro, serving as a valuable tool for I2BS detection and astrocyte-related pathology research.
Collapse
Affiliation(s)
- Donglan Huang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yiming Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health and State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P. R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
10
|
Garcia N, Reitz S, Handy G. Extending Mathematical Frameworks to Investigate Neuronal Dynamics in the Presence of Microglial Ensheathment. Bull Math Biol 2025; 87:63. [PMID: 40183855 PMCID: PMC11971063 DOI: 10.1007/s11538-025-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Recent experimental evidence has shown that glial cells, including microglia and astrocytes, can ensheathe specific synapses, positioning them to disrupt neurotransmitter flow between pre- and post-synaptic terminals. This study, as part of the special issue "Problems, Progress and Perspectives in Mathematical and Computational Biology," expands micro- and network-scale theoretical frameworks to incorporate these new experimental observations that introduce substantial heterogeneities into the system. Specifically, we aim to explore how varying degrees of synaptic ensheathment affect synaptic communication and network dynamics. Consistent with previous studies, our microscale model shows that ensheathment accelerates synaptic transmission while reducing its strength and reliability, with the potential to effectively switch off synaptic connections. Building on these findings, we integrate an "effective" glial cell model into a large-scale neuronal network. Specifically, we analyze a network with highly heterogeneous synaptic strengths and time constants, where glial proximity parametrizes synaptic properties. This parametrization results in a multimodal distribution of synaptic parameters across the network, introducing significantly greater variability compared to previous modeling efforts that assumed a normal distribution. This framework is applied to large networks of exponential integrate-and-fire neurons, extending linear response theory to analyze not only firing rate distributions but also noise correlations across the network. Despite the significant heterogeneity in the system, a mean-field approximation accurately captures network statistics. We demonstrate the utility of our model by reproducing experimental findings, showing that microglial ensheathment leads to post-anesthesia hyperactivity in excitatory neurons of mice. Furthermore, we explore how glial ensheathment may be used in the visual cortex to target specific neuronal subclasses, tuning higher-order network statistics.
Collapse
Affiliation(s)
- Nellie Garcia
- School of Mathematics, University of Minnesota, 127 Vincent Hall 206 Church St. SE, Minneapolis, MN, 55455, USA
| | - Silvie Reitz
- School of Mathematics, University of Minnesota, 127 Vincent Hall 206 Church St. SE, Minneapolis, MN, 55455, USA
| | - Gregory Handy
- School of Mathematics, University of Minnesota, 127 Vincent Hall 206 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Huang T, Fakurazi S, Cheah PS, Ling KH. The restoration of REST inhibits reactivity of Down syndrome iPSC-derived astrocytes. Front Mol Neurosci 2025; 18:1552819. [PMID: 40206188 PMCID: PMC11979110 DOI: 10.3389/fnmol.2025.1552819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Accumulating evidence indicates that the increased presence of astrocytes is fundamentally linked to the neurological dysfunctions observed in individuals with Down syndrome (DS). REST (RE1-silencing transcription factor), as a chromatin modifier, regulates 15,450 genes in humans. REST is a key regulatory element that governs astrocyte differentiation, development, and the maintenance of their physiological functions. The downregulation of REST may disrupt the homeostatic balance of astrocytes in DS. Methods This study aims to elucidate the role of REST in DS-astrocytes through comprehensive transcriptomic analysis and experimental validation. Results Transcriptomic analysis identified that REST-targeted differentially expressed genes (DEGs) in DS astrocytes are enriched in pathways associated with inflammatory response. Notably, our findings in astrocytes derived from DS human induced pluripotent stem cells (hiPSCs) show that the loss of nucleus REST leads to an upregulation of inflammatory mediators and markers indicative of the presence of reactive astrocytes. Lithium treatment, which restored nucleus REST in trisomic astrocytes, significantly suppressed the expression of these inflammatory mediators and reactive astrocyte markers. Discussion These findings suggest that REST is pivotal in modulating astrocyte functionality and reactivity in DS. The loss of REST in DS-astrocytes prompts the formation of reactive astrocytes, thereby compromising central nervous system homeostasis. Lithium treatment possesses the potential to rescue astrocyte reactivity in DS by restoring nucleus REST expression.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Liu FW, Zhang XR, Cong YF, Liu YM, Zhang HT, Hou XQ. From postsynaptic neurons to astrocytes: the link between glutamate metabolism, Alzheimer's disease and Parkinson's disease. Rev Neurosci 2025:revneuro-2024-0143. [PMID: 40101161 DOI: 10.1515/revneuro-2024-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Glutamate is not only the main excitatory neurotransmitter of the human central nervous system, but also a potent neurotoxin. Therefore, maintaining low-dose, non-toxic extracellular glutamate concentrations between synapses to ensure the reliability of synaptic transmission is essential for maintaining normal physiological functions of neurons. More and more studies have confirmed that the specific pathogenesis of central nervous system diseases (such as Alzheimer's disease) caused by neuronal damage or death due to abnormal inter-synaptic glutamate concentration may be related to the abnormal function of excitatory amino acid transporter proteins and glutamine synthetase on astrocytes, and that the abnormal expression and function of the above two proteins may be related to the transcription, translation, and even modification of both by the process of transcription, translation, and even modification of astrocytes. oxidative stress, and inflammatory responses occurring in astrocytes during their transcription, translation and even modification. Therefore, in this review, we mainly discuss the relationship between glutamate metabolism (from postsynaptic neurons to astrocytes), Alzheimer's disease and Parkinson's disease in recent years.
Collapse
Affiliation(s)
- Fu-Wang Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Xue-Rui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Yi-Fan Cong
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P.R. China
| | - Yan-Man Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Han-Ting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266073, P.R. China
| | - Xue-Qin Hou
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| |
Collapse
|
13
|
Gollihue JL, Aung KZ, Rogers CB, Sompol P, Katsumata Y, Weekman EM, Wilcock DM, Morganti JM, Norris CM. Inhibition of astrocyte signaling leads to sex-specific changes in microglia phenotypes in a diet-based model of small cerebral vessel disease. RESEARCH SQUARE 2025:rs.3.rs-6198453. [PMID: 40166012 PMCID: PMC11957200 DOI: 10.21203/rs.3.rs-6198453/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hyperhomocysteinemia (HHcy)-inducing diets recapitulate small cerebral vessel disease phenotypes in mice including cerebrovascular pathology/dysfunction, neuroinflammation, synaptic deficits, and cognitive decline. We recently showed that astrocyte signaling through calcineurin(CN)/nuclear factor of activated T cells (NFATs) plays a causative role in these phenotypes. Here, we assessed the impact of astrocytic signaling on microglia, which set inflammatory tone in brain. Seven-to-eight-week-old male and female C57BL/6J mice received intrahippocampal injections of AAV2/5-Gfa2-EGFP (control) or adeno-associated virus (AAV) expressing the NFAT inhibitor VIVIT (i.e., AAV2/5-Gfa2-VIVIT-EGFP). Mice were then fed with control chow (CT) or B-vitamin-deficient chow for 12 weeks to induce HHcy. Immunohistochemistry was used to assess the expression of the pan-microglial marker Iba1 and the homeostatic microglial marker P2ry12. Iba1 showed little sensitivity to diet, AAV treatment, or sex. Conversely, P2ry12 expression was reduced with HHcy diet in males, but not females. Treatment of males with AAV-Gfa2-VIVIT prevented the loss of P2ry12. We next conducted single-cell RNA sequencing (scRNAseq) to determine if microglial genes and/or microglial clustering patterns were sensitive to astrocyte signaling in a sex-dependent manner. In males, disease-associated microglial genes and subclusters were overrepresented in HHcy-treated mice, while VIVIT promoted the appearance of homeostatic microglial genes and clusters. In contrast, microglial genes in females were less sensitive to diet and AAV treatments, though disease-like patterns in gene expression were also observed in the HHcy condition. However, very few of the HHcy-sensitive microglial genes in females were affected by VIVIT. The results suggest a sexually dimorphic influence of astrocyte signaling on microglial phenotypes in the context of HHcy and small cerebral vessel disease.
Collapse
|
14
|
Chen W, Mao T, Ma R, Xiong Y, Han R, Wang L. The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 2025; 55:49. [PMID: 39930815 PMCID: PMC11781528 DOI: 10.3892/ijmm.2025.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.
Collapse
Affiliation(s)
- Weixin Chen
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Tangyou Mao
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Rui Ma
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Yuxuan Xiong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Ran Han
- Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Le Wang
- Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
15
|
Weiss BE, Gant JC, Lin RL, Gollihue JL, Kraner SD, Rucker EB, Katsumata Y, Jiang Y, Nelson PT, Wilcock DM, Sompol P, Thibault O, Norris CM. Disrupted Calcium Dynamics in Reactive Astrocytes Occur with Endfeet-Arteriole Decoupling in an Amyloid Mouse Model of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634584. [PMID: 39896447 PMCID: PMC11785167 DOI: 10.1101/2025.01.24.634584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While cerebrovascular dysfunction and reactive astrocytosis are extensively characterized hallmarks of Alzheimer's disease (AD) and related dementias, the dynamic relationship between reactive astrocytes and cerebral vessels remains poorly understood. Here, we used jGCaMP8f and two photon microscopy to investigate Ca2+ signaling in multiple astrocyte subcompartments, concurrent with changes in cerebral arteriole activity, in fully awake eight-month-old male and female 5xFAD mice, a model for AD-like pathology, and wild-type (WT) littermates. In the absence of movement, spontaneous Ca2+ transients in barrel cortex occurred more frequently in astrocyte somata, processes, and perivascular regions of 5xFAD mice. However, evoked arteriole dilations (in response to air puff stimulation of contralateral whiskers) and concurrent Ca2+ transients across astrocyte compartments were reduced in 5xFAD mice relative to WTs. Synchronous activity within multi-cell astrocyte networks was also impaired in the 5xFAD group. Using a custom application to assess functional coupling between astrocyte endfeet and immediately adjacent arteriole segments, we detected deficits in Ca2+ response probability in 5xFAD mice. Moreover, endfeet Ca2+ transients following arteriole dilations exhibited a slower onset, reduced amplitude, and lacked relative proportionality to vasomotive activity compared to WTs. The results reveal nuanced alterations in 5xFAD reactive astrocytes highlighted by impaired signaling fidelity between astrocyte endfeet and cerebral arterioles. The results have important implications for the mechanistic underpinnings of brain hypometabolism and the disruption of neurophysiological communication found in AD and other neurodegenerative conditions.
Collapse
|
16
|
Choi JJ, Cohen Kalafut N, Gruenloh T, Engelman CD, Lu T, Wang D. COSIME: Cooperative multi-view integration and Scalable and Interpretable Model Explainer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632570. [PMID: 39868220 PMCID: PMC11761389 DOI: 10.1101/2025.01.11.632570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Single-omics approaches often provide a limited view of complex biological systems, whereas multiomics integration offers a more comprehensive understanding by combining diverse data views. However, integrating heterogeneous data types and interpreting the intricate relationships between biological features-both within and across different data views-remains a bottleneck. To address these challenges, we introduce COSIME (Cooperative Multi-view Integration and Scalable Interpretable Model Explainer). COSIME uses backpropagation of Learnable Optimal Transport (LOT) to deep neural networks, enabling the learning of latent features from multiple views to predict disease phenotypes. In addition, COSIME incorporates Monte Carlo sampling to efficiently estimate Shapley values and Shapley-Taylor indices, enabling the assessment of both feature importance and their pairwise interactions-synergistically or antagonistically-in predicting disease phenotypes. We applied COSIME to both simulated data and real-world datasets, including single-cell transcriptomics, single-cell spatial transcriptomics, epigenomics, and metabolomics, specifically for Alzheimer's disease-related phenotypes. Our results demonstrate that COSIME significantly improves prediction performance while offering enhanced interpretability of feature relationships. For example, we identified that synergistic interactions between microglia and astrocyte genes associated with AD are more likely to be active at the edges of the middle temporal gyrus as indicated by spatial locations. Finally, COSIME is open-source and available for general use.
Collapse
|
17
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
18
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
19
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
20
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
21
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
22
|
Lv JM, Gao YL, Wang LY, Li BD, Shan YL, Wu ZQ, Lu QM, Peng HY, Zhou TT, Li XM, Zhang LM. Inhibition of the P38 MAPK/NLRP3 pathway mitigates cognitive dysfunction and mood alterations in aged mice after abdominal surgery plus sevoflurane. Brain Res Bull 2024; 217:111059. [PMID: 39216556 DOI: 10.1016/j.brainresbull.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cognitive dysfunction, encompassing perioperative psychological distress and cognitive impairment, is a prevalent postoperative complication within the elderly population, and in severe cases, it may lead to dementia. Building upon our prior research that unveiled a connection between postoperative mood fluctuations and cognitive dysfunction with the phosphorylation of P38, this present investigation aims to delve deeper into the involvement of the P38 MAPK/NLRP3 pathway in perioperative neurocognitive disorders (PND) in an abdominal exploratory laparotomy (AEL) aged mice model. METHODS C57BL/6 mice (male, 18-month-old) underwent AEL with 3 % anesthesia. Then, inhibitors targeting P38 MAPK (SB202190, 1 mg/kg) and GSK3β (TWS119, 10 mg/kg) were administered multiple times daily for 7 days post-surgery. The NLRP3-cKO AEL and WT AEL groups only underwent the AEL procedure. Behavioral assessments, including the open field test (OFT), novel object recognition (NOR), force swimming test (FST), and fear conditioning (FC), were initiated on postoperative day 14. Additionally, mice designated for neuroelectrophysiological monitoring had electrodes implanted on day 14 before surgery and underwent novel object recognition while their local field potential (LFP) was concurrently recorded on postoperative day 14. Lastly, after they were euthanasized, pathological analysis and western blot were performed. RESULTS SB202190, TWS119, and astrocyte-conditional knockout NLRP3 all ameliorated the cognitive impairment behaviors induced by AEL in mice and increased mean theta power during novel location exploration. However, it is worth noting that SB202190 may exacerbate postoperative depressive and anxiety-like behaviors in mice, while TWS119 may induce impulsive behaviors. CONCLUSIONS Our study suggests that anesthesia and surgical procedures induce alterations in mood and cognition, which may be intricately linked to the P38 MAPK/NLRP3 pathway.
Collapse
Affiliation(s)
- Jin-Meng Lv
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| | - Yi-Long Gao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lu-Ying Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Bao-Dong Li
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yong-Lin Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zi-Qiang Wu
- Hebei Province Dongguang Traditional Chinese Medicine Hospital, Cangzhou, China.
| | - Qing-Meng Lu
- Hebei Province Cangxian Hospital, Cangzhou, China.
| | - Heng-Yue Peng
- Affiliated Stomatology Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Li-Min Zhang
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China; Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
23
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
24
|
Lin H, Wang Z, Liao Y, Yu Z, Xu H, Qin T, Tang J, Yang X, Chen S, Chen X, Zhang X, Shen Y. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. EBioMedicine 2024; 108:105355. [PMID: 39293213 PMCID: PMC11424966 DOI: 10.1016/j.ebiom.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the β-amyloid (Aβ) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aβ accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Collapse
Affiliation(s)
- Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Zidan Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yingtao Liao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China; Department of Radiation Oncology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Zhifan Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Huiqin Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Ting Qin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
25
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 PMCID: PMC11839148 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Faris T. Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA 30912
| |
Collapse
|
26
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
27
|
Hu XH, Yu KY, Li XX, Zhang JN, Jiao JJ, Wang ZJ, Cai HY, Wang L, He YX, Wu MN. Selective Orexin 2 Receptor Blockade Alleviates Cognitive Impairments and the Pathological Progression of Alzheimer's Disease in 3xTg-AD Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae115. [PMID: 38682858 DOI: 10.1093/gerona/glae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 05/01/2024] Open
Abstract
The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid β (Aβ) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aβ deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aβ pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.
Collapse
Affiliation(s)
- Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Xin Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jin-Nan Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan-Juan Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lei Wang
- Department of Geriatrics, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Ye-Xin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
28
|
Beckers E, Van Egroo M, Ashton NJ, Blennow K, Vandewalle G, Zetterberg H, Poser BA, Jacobs HIL. Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study. Cereb Cortex 2024; 34:bhae261. [PMID: 38904081 PMCID: PMC11190376 DOI: 10.1093/cercor/bhae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- GIGA-CRC Human Imaging, University of Liège, 4000 Liège, Belgium
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, China
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Xu J, Sun Y, Zhu X, Pan S, Tong Z, Jiang K. Tactile discrimination as a diagnostic indicator of cognitive decline in patients with mild cognitive impairment: A narrative review. Heliyon 2024; 10:e31256. [PMID: 38803967 PMCID: PMC11129005 DOI: 10.1016/j.heliyon.2024.e31256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tactile discrimination, a cognitive task reliant on fingertip touch for stimulus discrimination, encompasses the somatosensory system and working memory, with its acuity diminishing with advancing age. Presently, the evaluation of cognitive capacity to differentiate between individuals with early Alzheimer's disease (AD) and typical older adults predominantly relies on visual or auditory tasks, yet the efficacy of discrimination remains constrained. Aims To review the existing tactile cognitive tasks and explore the interaction between tactile perception and the pathological process of Alzheimer's disease. The tactile discrimination task may be used as a reference index of cognitive decline in patients with mild cognitive impairment and provide a new method for clinical evaluation. Methods We searched four databases (Embase, PubMed, Web of Science and Google scholar). The reference coverage was from 1936 to 2023. The search terms included "Alzheimer disease" "mild cognitive impairment" "tactile" "tactile discrimination" "tactile test" and so on. Reviews and experimental reports in the field were examined and the effectiveness of different types of tactile tasks was compared. Main results Individuals in the initial phases of Alzheimer's spectrum disease, specifically those in the stage of mild cognitive impairment (MCI), exhibit notable impairments in tasks involving tactile discrimination. These tasks possess certain merits, such as their quick and straightforward comparability, independence from educational background, and ability to circumvent the limitations associated with conventional cognitive assessment scales. Furthermore, tactile discrimination tasks offer enhanced accuracy compared to cognitive tasks that employ visual or auditory stimuli. Conclusions Tactile discrimination has the potential to serve as an innovative reference indicator for the swift diagnosis of clinical MCI patients, thereby assisting in the screening process on a clinical scale.
Collapse
Affiliation(s)
- Jinan Xu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuqi Sun
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghe Zhu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sipei Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiqian Tong
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ke Jiang
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Center for Brain, Mind and Education, Shaoxing University, China
| |
Collapse
|
30
|
Vargas-Barona A, Bernáldez-Sarabia J, Castro-Ceseña AB. Lipid-polymer hybrid nanoparticles loaded with N-acetylcysteine for the modulation of neuroinflammatory biomarkers in human iPSC-derived PSEN2 (N141I) astrocytes as a model of Alzheimer's disease. J Mater Chem B 2024; 12:5085-5097. [PMID: 38713059 DOI: 10.1039/d4tb00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aβ). Aβ activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1β (IL-1β), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1β and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1β and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.
Collapse
Affiliation(s)
- Alondra Vargas-Barona
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
31
|
Jin Y, Liu J, Wang M, Jiang Y. Thioketal-Based Electrochemical Sensor Reveals Biphasic Effects of l-DOPA on Neuroinflammation. ACS Sens 2024; 9:2364-2371. [PMID: 38642367 DOI: 10.1021/acssensors.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.
Collapse
Affiliation(s)
- Ying Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
32
|
Zhang S, Shu H, Zhou J, Rubin-Sigler J, Yang X, Liu Y, Cooper-Knock J, Monte E, Zhu C, Tu S, Li H, Tong M, Ecker JR, Ichida JK, Shen Y, Zeng J, Tsao PS, Snyder MP. Deconvolution of polygenic risk score in single cells unravels cellular and molecular heterogeneity of complex human diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594252. [PMID: 38798507 PMCID: PMC11118500 DOI: 10.1101/2024.05.14.594252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Jingtian Zhou
- Arc Institute, Palo Alto, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Jasper Rubin-Sigler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yuxi Liu
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emma Monte
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chenchen Zhu
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon Tu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Mingming Tong
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jianyang Zeng
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Barsoum S, Latimer CS, Nolan AL, Barrett A, Chang K, Troncoso J, Keene CD, Benjamini D. Resiliency to Alzheimer's disease neuropathology can be distinguished from dementia using cortical astrogliosis imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592719. [PMID: 38766087 PMCID: PMC11100587 DOI: 10.1101/2024.05.06.592719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid β (Aβ) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aβ, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized β=0.658, pFDR<0.0001), but not with Aβ (standardized β=0.009, p FDR =0.913) or pTau (standardized β=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.
Collapse
|
34
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
36
|
Niu C, Dong M, Niu Y. Natural polyphenol: Their pathogenesis-targeting therapeutic potential in Alzheimer's disease. Eur J Med Chem 2024; 269:116359. [PMID: 38537514 DOI: 10.1016/j.ejmech.2024.116359] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid β-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aβ/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
37
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
38
|
Wei H, Withrow J, Rakshit J, Ul Amin F, Nahm J, Mowry FE, Mao Z, Bhattacharjee MB, Zhu JJ, Yang Y, Wu JQ. The identification of a Distinct Astrocyte Subtype that Diminishes in Alzheimer's Disease. Aging Dis 2024; 15:2752-2769. [PMID: 38502590 PMCID: PMC11567244 DOI: 10.14336/ad.2024.0205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two hallmark pathologies: the accumulation of Amyloid beta (Aβ) and tau proteins in the brain. There is a growing body of evidence suggesting that astrocytes, a type of glial cell in the brain, play crucial roles in clearing Aβ and binding to tau proteins. However, due to the heterogeneity of astrocytes, the specific roles of different astrocyte subpopulations in response to Aβ and tau remain unclear. To enhance the understanding of astrocyte subpopulations in AD, we investigated astrocyte lineage cells based on single-nuclei transcriptomic data obtained from both human and mouse samples. We characterized the diversity of astrocytes and identified global and subpopulation-specific transcriptomic changes between control and AD samples. Our findings revealed the existence of a specific astrocyte subpopulation marked by low levels of GFAP and the presence of AQP4 and CD63 expression, which showed functional enrichment in Aβ clearance and tau protein binding, and diminished in AD. We verified this type of astrocytes in mouse models and in AD patient brain samples. Furthermore, our research also unveiled significant alterations of the ligand-receptor interactions between astrocytes and other cell types. These changes underscore the complex interplay between astrocytes and neighboring cells in the context of AD. Overall, our work gives insights into astrocyte heterogeneity in the context of AD and reveals a distinct astrocyte subpopulation that holds potential for therapeutic interventions in AD. Targeting specific astrocyte subpopulations may offer new avenues for the development of novel treatments for AD.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Faiz Ul Amin
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Joshua Nahm
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Francesca E. Mowry
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Zhengmei Mao
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jay-Jiguang Zhu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
39
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
40
|
Nadiga APR, Suman, Krishna KL. A novel Zebrafish model of Alzheimer's disease by Aluminium chloride; involving nitro-oxidative stress, neuroinflammation and cholinergic pathway. Eur J Pharmacol 2024; 965:176332. [PMID: 38228217 DOI: 10.1016/j.ejphar.2024.176332] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is a progressive neurodegenerative disorder of the brain. Most AD experimental animal models are pharmacological or transgenic in origin. The existing pharmacological approaches for developing AD are poorly developed and most of them fail to replicate the complete characteristics of disease pathology. Developing a cost-effective and reliable experimental animal model will meet this research gap. Zebrafish (ZF) are progressively emerging as a powerful drug discovery disease model to evaluate central nervous system (CNS) disorders due to their homologous similarities to humans as well as cost-effectiveness. The present research is conceptualized to develop and evaluate a reliable ZF AD model using aluminum chloride (AlCl3). Chronic exposure of 0.04 mM of AlCl3 for 28 days increased the expression of amyloid-β, phosphorylated tau protein and senile plaque development in the ZF brain. The observed changes were associated with learning and memory impairment. Furthermore, decreased brain-derived neurotrophic factor (BDNF) level and elevated oxidative stress indices, pro-inflammatory cytokines levels and acetylcholine esterase (AChE) activity was observed upon exposure to AlCl3 in the ZF brain. Chronic exposure to 0.04 mM of AlCl3 would be a cost-effective ZF AD model for pharmacological screening and may also be used to unravel the molecular mechanism underlying the neuropathology of the disease.
Collapse
Affiliation(s)
- Abhishek P R Nadiga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, Karnataka, India
| | - Suman
- Government Ayurveda Medical College and Hospital, Mysore, 570 015, Karnataka, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, Karnataka, India.
| |
Collapse
|
41
|
Yu W, Li Y, Zhong F, Deng Z, Wu J, Yu W, Lü Y. Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing. Cell Mol Neurobiol 2024; 44:20. [PMID: 38345650 PMCID: PMC10861702 DOI: 10.1007/s10571-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Zhangjing Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
42
|
Khan AA, Mahendran RK, Perumal K, Faheem M. Dual-3DM 3AD: Mixed Transformer Based Semantic Segmentation and Triplet Pre-Processing for Early Multi-Class Alzheimer's Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:696-707. [PMID: 38261494 DOI: 10.1109/tnsre.2024.3357723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Alzheimer's Disease (AD) is a widespread, chronic, irreversible, and degenerative condition, and its early detection during the prodromal stage is of utmost importance. Typically, AD studies rely on single data modalities, such as MRI or PET, for making predictions. Nevertheless, combining metabolic and structural data can offer a comprehensive perspective on AD staging analysis. To address this goal, this paper introduces an innovative multi-modal fusion-based approach named as Dual-3DM3-AD. This model is proposed for an accurate and early Alzheimer's diagnosis by considering both MRI and PET image scans. Initially, we pre-process both images in terms of noise reduction, skull stripping and 3D image conversion using Quaternion Non-local Means Denoising Algorithm (QNLM), Morphology function and Block Divider Model (BDM), respectively, which enhances the image quality. Furthermore, we have adapted Mixed-transformer with Furthered U-Net for performing semantic segmentation and minimizing complexity. Dual-3DM3-AD model is consisted of multi-scale feature extraction module for extracting appropriate features from both segmented images. The extracted features are then aggregated using Densely Connected Feature Aggregator Module (DCFAM) to utilize both features. Finally, a multi-head attention mechanism is adapted for feature dimensionality reduction, and then the softmax layer is applied for multi-class Alzheimer's diagnosis. The proposed Dual-3DM3-AD model is compared with several baseline approaches with the help of several performance metrics. The final results unveil that the proposed work achieves 98% of accuracy, 97.8% of sensitivity, 97.5% of specificity, 98.2% of f-measure, and better ROC curves, which outperforms other existing models in multi-class Alzheimer's diagnosis.
Collapse
|
43
|
Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells 2024; 13:286. [PMID: 38334678 PMCID: PMC10855155 DOI: 10.3390/cells13030286] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
The key to the effective treatment of neurodegenerative disorders is a thorough understanding of their pathomechanism. Neurodegeneration and neuroinflammation are mutually propelling brain processes. An impairment of glymphatic system function in neurodegeneration contributes to the progression of pathological processes. The question arises as to how neuroinflammation and the glymphatic system are related. This review highlights the direct and indirect influence of these two seemingly independent processes. Protein aggregates, a characteristic feature of neurodegeneration, are correlated with glymphatic clearance and neuroinflammation. Glial cells cannot be overlooked when considering the neuroinflammatory processes. Astrocytes are essential for the effective functioning of the glymphatic system and play a crucial role in the inflammatory responses in the central nervous system. It is imperative to acknowledge the significance of AQP4, a protein that exhibits a high degree of polarization in astrocytes and is crucial for the functioning of the glymphatic system. AQP4 influences inflammatory processes that have not yet been clearly delineated. Another interesting issue is the gut-brain axis and microbiome, which potentially impact the discussed processes. A discussion of the correlation between the functioning of the glymphatic system and neuroinflammation may contribute to exploring the pathomechanism of neurodegeneration.
Collapse
Affiliation(s)
- Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warszawa, Poland; (K.K.)
| | | | | | | |
Collapse
|
44
|
Katsumata Y, Wu X, Aung KZ, Gauthreaux K, Mock C, Forrest SL, Kovacs GG, Nelson PT. Pathologic correlates of aging-related tau astrogliopathy: ARTAG is associated with LATE-NC and cerebrovascular pathologies, but not with ADNC. Neurobiol Dis 2024; 191:106412. [PMID: 38244935 PMCID: PMC10892903 DOI: 10.1016/j.nbd.2024.106412] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Xian Wu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Khine Zin Aung
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Charles Mock
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
45
|
Kraner SD, Sompol P, Prateeptrang S, Promkan M, Hongthong S, Thongsopha N, Nelson PT, Norris CM. Development of a monoclonal antibody specific for a calpain-generated ∆48 kDa calcineurin fragment, a marker of distressed astrocytes. J Neurosci Methods 2024; 402:110012. [PMID: 37984591 PMCID: PMC10841921 DOI: 10.1016/j.jneumeth.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.
Collapse
Affiliation(s)
| | - Pradoldej Sompol
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Siriyagon Prateeptrang
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Moltira Promkan
- Sanders Brown Center on Aging, USA; Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthida Hongthong
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napasorn Thongsopha
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Peter T Nelson
- Sanders Brown Center on Aging, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
46
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
47
|
Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer's disease and related dementia. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:185-219. [PMID: 38777413 DOI: 10.1016/bs.afnr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vitamin D has been proposed as a potential strategy to mitigate age-related cognitive decline and dementia, including Alzheimer's dementia, the predominant type of dementia. Rodent studies have provided insight into the potential mechanisms underlying the role of vitamin D in Alzheimer's disease and dementia. However, inconsistencies with respect to age, sex, and genetic background of the rodent models used poses some limitations regarding scientific rigor and translation. Several human observational studies have evaluated the association of vitamin D status with cognitive decline and dementia, and the results are conflicting. Randomized clinical trials of vitamin D supplementation have included cognitive outcomes. However, most of the available trials have not been designed specifically to test the effect of vitamin D on age-related cognitive decline and dementia, so it remains questionable how much additional vitamin D will improve cognitive performance. Here we evaluate the strengths and limitations of the available evidence regarding the role of vitamin D in AD, cognitive decline, dementia.
Collapse
Affiliation(s)
- M Kyla Shea
- Tufts University USDA Human Nutrition Research Center on Aging.
| | - Andrew Y Xuan
- Tufts University USDA Human Nutrition Research Center on Aging
| | - Sarah L Booth
- Tufts University USDA Human Nutrition Research Center on Aging
| |
Collapse
|
48
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024; 16:236. [PMID: 38201663 PMCID: PMC10778052 DOI: 10.3390/cancers16010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery for brain tumors, with most chemotherapeutics having limited permeability into non-malignant brain tissue and only restricted access to primary and metastatic brain cancers. Consequently, due to the drug's inability to effectively penetrate the BBB, outcomes following brain chemotherapy continue to be suboptimal. Several methods to open the BBB and obtain higher drug concentrations in tumors have been proposed, with the selection of the optimal method depending on the size of the targeted tumor volume, the chosen therapeutic agent, and individual patient characteristics. Herein, we aim to comprehensively describe osmotic disruption with intra-arterial drug administration, intrathecal/intraventricular administration, laser interstitial thermal therapy, convection-enhanced delivery, and ultrasound methods, including high-intensity focused and low-intensity ultrasound as well as tumor-treating fields. We explain the scientific concept behind each method, preclinical/clinical research, advantages and disadvantages, indications, and potential avenues for improvement. Given that each method has its limitations, it is unlikely that the future of BBB disruption will rely on a single method but rather on a synergistic effect of a combined approach. Disruption of the BBB with osmotic infusion or high-intensity focused ultrasound, followed by the intra-arterial delivery of drugs, is a promising approach. Real-time monitoring of drug delivery will be necessary for optimal results.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, 08-110 Siedlce, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
49
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
50
|
Niedowicz DM, Katsumata Y, Nelson PT. In severe ADNC, hippocampi with comorbid LATE-NC and hippocampal sclerosis have substantially more astrocytosis than those with LATE-NC or hippocampal sclerosis alone. J Neuropathol Exp Neurol 2023; 82:987-994. [PMID: 37935530 PMCID: PMC10658353 DOI: 10.1093/jnen/nlad085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and hippocampal sclerosis of aging (HS-A) pathologies are found together at autopsy in ∼20% of elderly demented persons. Although astrocytosis is known to occur in neurodegenerative diseases, it is currently unknown how the severity of astrocytosis is correlated with the common combinations of pathologies in aging brains. To address this knowledge gap, we analyzed a convenience sample of autopsied subjects from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. The subjects were stratified into 5 groups (n = 51 total): pure ADNC, ADNC + LATE-NC, ADNC + HS-A, ADNC + LATE-NC + HS-A, and low-pathology controls. Following GFAP immunostaining and digital slide scanning with a ScanScope, we measured GFAP-immunoreactive astrocytosis. The severities of GFAP-immunoreactive astrocytosis in hippocampal subfield CA1 and subiculum were compared between groups. The group with ADNC + LATE-NC + HS-A had the most astrocytosis as operationalized by either any GFAP+ or strong GFAP+ immunoreactivity in both CA1 and subiculum. In comparison to that pathologic combination, ADNC + HS or ADNC + LATE-NC alone showed lower astrocytosis. Pure ADNC had only marginally increased astrocytosis in CA1 and subiculum, in comparison to low-pathology controls. We conclude that there appeared to be pathogenetic synergy such that ADNC + LATE-NC + HS-A cases had relatively high levels of astrocytosis in the hippocampal formation.
Collapse
|