1
|
Zhang B, Dai C, Jiang J, Wang J, Yang Y, Feng J. Serum metabolic profiling in diabetic kidney disease patients using ultra-high performance liquid chromatography-tandem mass spectrometry. Diabetol Metab Syndr 2025; 17:197. [PMID: 40481496 PMCID: PMC12144808 DOI: 10.1186/s13098-025-01780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/31/2025] [Indexed: 06/11/2025] Open
Abstract
Background Diabetic kidney disease (DKD) remains one of the leading causes of end-stage renal failure. The currently available diagnostic and classification markers, such as the urinary albumin-to-creatinine ratio and estimated glomerular filtration rate, demonstrate inadequate precision in forecasting the onset and progression of DKD. This study aims to investigate the serum metabolic profile of patients with DKD, with the objective of identifying reliable biomarkers that can enhance the prediction of the transition from diabetes mellitus (DM) to DKD and distinguishing DKD from nondiabetic kidney disease (NDKD). Methods Untargeted metabolomic analysis was performed on serum samples obtained from 53 DKD patients, 54 NDKD patients, 59 individuals diagnosed with simple diabetes mellitus (SDM), and 56 healthy controls utilizing ultra-high performance liquid chromatography-tandem mass spectrometry. Differential metabolites among the groups were identified, metabolic pathways were investigated, and the diagnostic efficacy of selected metabolites was evaluated. Results The metabolic enrichment pathways shared between DKD and NDKD encompassed glycerophospholipid metabolism, glycerolipid metabolism, and tryptophan metabolism. In contrast, pyrimidine metabolism and arginine biosynthesis were uniquely enriched in DKD. Compared to the NDKD group, significantly elevated levels of phosphatidylglycerol (PG, 14:0) and D-Maltose were observed in DKD patients. Additionally, in comparison to the SDM group, the DKD group exhibited significant increases in lysophosphatidic acid (LPA, 16:3), LPA (18:5), LPA (22:5), phosphatidic acid (PA, 18:3), PG (26:4), L-Glutamine, Uridine, Cytidine, Formyl-N-acetyl-5-methoxykynurenamine, 2-Oxoadipate, Thymidine, L-Citrulline, and 5-Hydroxy-L-tryptophan, while PG (28:4) levels were markedly reduced. Among these, Uridine, Cytidine, Thymidine, and L-Citrulline were associated with pyrimidine metabolism, whereas L-Glutamine and L-Citrulline participated in the arginine biosynthesis pathway. Furthermore, the differential metabolites exhibited varying degrees of correlation with renal function indicators in DKD patients. Conclusions PG (14:0) and D-Maltose may help distinguish DKD from NDKD, while L-Glutamine, Uridine, Cytidine, Thymidine, and L-Citrulline are linked to the progression from DM to DKD. Larger studies are needed to validate these findings and assess their diagnostic and causal significance.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Medical Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Chunmei Dai
- Department of Medical Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jiuyi Jiang
- Department of Medical Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jun Wang
- Department of Laboratory Medicine, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuwei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jiafu Feng
- Department of Medical Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China.
| |
Collapse
|
2
|
Wang H, Chao L, Shen S, You P, Li L, Chen X, Hong Z, Chai Y. Exploring the pharmacological mechanism of Bu-Wang San on Alzheimer's disease through multiple GEO datasets of the human hippocampus, network pharmacology, and metabolomics based on GC-MS and UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:119994. [PMID: 40389089 DOI: 10.1016/j.jep.2025.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Wang San (BWS) is a prominent traditional Chinese medicine known for calming the mind and promoting intelligence. It has been reported to improve learning and memory, enhance memory ability, and promote synaptic plasticity. However, the complexity of the material basis and the diversity of therapeutic targets of BWS on Alzheimer's disease (AD) have not been elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic material basis and the mechanism of BWS in AD treatment by comprehensively analyzing multiple GEO datasets of the human hippocampus, network pharmacology, and multi-platform metabolomics validation. MATERIALS AND METHODS Three GEO datasets of the human hippocampus were utilized to identify AD-associated targets using weighted gene co-expression network analysis (WGCNA) and differential analysis. Network pharmacology analyses were performed to investigate BWS's therapeutic material basis and predict the therapeutic targets of BWS on AD. A rat model was induced through the concurrent administration of AlCl3 and D-galactose to validate BWS's therapeutic potential and underlying mechanisms in AD. To validate the results of GEO data mining and network pharmacology, a comprehensive metabolomics approach integrating gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was conducted on rat serum samples to uncover potential metabolic alterations and their associated pathways. RESULTS A total of 6367 genes were selected as AD drug targets through WGCNA analysis and enrichment analysis of disease-associated gene expression profiles in the GEO database. Network pharmacology was performed in this study for the identification of potential interactions between the components of BWS and its targets, TP53, STAT3, EGFR, MAOA, NOS3, PPARG, PRKCA, MAPK8, AChE, ARG1, among others, which were among the top 25 highest probable targets of BWS acting on AD. The multi-platform metabolomics indicated that amino sugar and nucleotide sugar metabolism, glycine, serine and threonine metabolism pathways, and other pathways may be associated with the AD model based on AlCl3 and D-galactose. The comparison of differential metabolites between the AD model group and the BWS intervention group revealed that 66 of the 97 differential metabolites exhibited a pullback trend, indicating a potential therapeutic effect of BWS on these metabolites. CONCLUSION This study builds a systematic strategy combining GEO datasets, network pharmacology, and multi-platform metabolomics and provides valuable insights into the pharmacological mechanism of BWS on AD. The results suggest that BWS may exert its therapeutic effects on AD by modulating the amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, glycine, serine and threonine metabolism pathway and acting on the drug targets of ARG1, MAOA, AChE, XDH, GAD2 et al. This strategy provides a deep understanding of the molecular mechanisms of herbal medicine in treating AD at a systematic level.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Piaoxue You
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Ling Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Chen L, Li J, Zhang W, Wang J. Antiepileptic Effects of Acorus tatarinowii Schott in a Rat Model of Epilepsy: Regulation of Metabolic Axes and Gut Microbiota. BIOLOGY 2025; 14:488. [PMID: 40427677 PMCID: PMC12108817 DOI: 10.3390/biology14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
As a phytotherapeutic agent with historical applications in epilepsy management, Acorus tatarinowii Schott (ATS) remains pharmacologically enigmatic, particularly regarding its pathophysiological mechanisms. This knowledge gap significantly hinders the clinical application of ATS-based treatments. To explore the potential of ATS in combating epileptogenesis, we utilized a pentylenetetrazole (PTZ)-induced chronic epilepsy rat model. Brain metabolomic analysis was performed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC/MS). Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were performed for screening differential metabolites. Gut microbiota composition was analyzed through 16S rRNA gene sequencing and examined using Spearman correlation analysis. The results show that oral ATS (50 mg/kg) significantly improved the seizure latency and pathology of rats with epilepsy. Ascorbate and aldarate metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, and intestinal flora were crucial for ATS's ability to counteract epilepsy. The therapeutic effects of ATS against epilepsy were investigated with brain metabolomics and gut microbiota analysis, providing the basis for further comprehensive research.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (W.Z.)
| | - Jiaxin Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (W.Z.)
| | - Wenhui Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (W.Z.)
| | - Jiepeng Wang
- School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
4
|
Yan B, Liao P, Zhang W, Han Z, Wang C, Chen F, Lei P. Identification of Key Fatty Acid Metabolism-Related Genes in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04857-x. [PMID: 40108056 DOI: 10.1007/s12035-025-04857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the role of fatty acid metabolism in its pathogenesis remains incompletely understood. Using AD transcriptome sequencing data from the GEO database, we initially screened for differentially expressed genes and applied Weighted Gene Correlation Network Analysis (WGCNA) to identify crucial gene modules. By intersecting these genes with fatty acid metabolism-related genes (FAMRGs), we obtained AD-related fatty acid metabolism genes (AD-FAMRGs). Subsequently, we conducted KEGG, GO, and Single-sample Gene Set Enrichment Analysis (ssGSEA). Furthermore, we employed three machine learning algorithms to determine the key AD-FAMRGs. Risk genes were thus identified, leading to the construction of a risk model which was subsequently validated through receiver operating characteristic (ROC) curve analysis. Additionally, protein docking studies were performed to assess interactions between key AD-FAMRGs and Tau as well as amyloid beta (Aβ) proteins. To explore potential therapeutic avenues, we searched the DrugBank database for agents targeting these AD-FAMRGs, followed by molecular docking and dynamics simulations. Our investigations highlighted three key AD-FAMRGs: DLD, ELOVL5, and HMGCS1. Functional enrichment analysis indicated their association with metabolism, oxidative stress, and AD pathogenesis. ZDOCK analysis further suggested their interactions with Tau and Aβ proteins, pointing to their possible involvement in AD's pathological processes. ROC analysis demonstrated the predictive accuracy of these AD-FAMRGs, with AUC values ranging from 0.764 to 0.876. Molecular docking and dynamic simulations confirmed the favorable binding of predicted therapeutic agents to these key AD-FAMRGs. Our findings suggest that fatty acid metabolism may be involved in AD pathogenesis, and DLD, ELOVL5, and HMGCS1 may serve as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300192, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China
| | - Conglin Wang
- First Department of General Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Fanglian Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, China.
- School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
5
|
Vignoli A, Bellomo G, Paoletti FP, Luchinat C, Tenori L, Parnetti L. Studying Alzheimer's disease through an integrative serum metabolomic and lipoproteomic approach. J Transl Med 2025; 23:119. [PMID: 39871333 PMCID: PMC11773822 DOI: 10.1186/s12967-025-06148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent neurodegenerative disorder worldwide. The great variability in disease evolution and the incomplete understanding of the molecular mechanisms underlying AD make it difficult to predict when a patient will convert from prodromal stage to dementia. We hypothesize that metabolic alterations present at the level of the brain could be reflected at a systemic level in blood serum of patients, and that these alterations could be used as prognostic biomarkers. METHODS This pilot study proposes a serum investigation via nuclear magnetic resonance (NMR) spectroscopy in a consecutive series of AD patients including 57 patients affected by Alzheimer's disease at dementia stage (AD-dem) and 45 patients with mild cognitive impairment (MCI) due to AD (MCI-AD). As control group, we considered 31 subjects with mild cognitive impairment in whom AD and other neurodegenerative disorders were excluded (MCI). A panel of 26 metabolites and 112 lipoprotein-related parameters was quantified and the logistic LASSO regression algorithm was employed to identify the optimal combination of metabolites-lipoproteins and their ratios to discriminate the groups of interest. RESULTS In the training set, our model classified AD-dem and MCI with an accuracy of 81.7%. These results were reproduced in the validation set (accuracy 75.0%). Evolution of MCI-AD patients was evaluated over time. Patients who displayed a decrease in MMSE < 1.5 point per year were considered at lower progression rate: we obtained a division in 18 MCI-AD at lower progression rate (MCI-AD LR) and 27 at higher progression rate (MCI-AD HR). The model calculated using 4 metabolic features identified MCI-AD LR and MCI-AD HR with an accuracy of 73.3%. CONCLUSIONS The identification of potential novel peripheral biomarkers of Alzheimer's disease, as proposed in this study, opens a new prospect for an innovative and minimally invasive method to identify AD in its very early stages. We proposed a novel approach able to sub-stratify MCI-AD patients identifying those associated with a faster rate of clinical progression.
Collapse
Affiliation(s)
- Alessia Vignoli
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy.
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy.
| | - Giovanni Bellomo
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy.
| | - Federico Paolini Paoletti
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy
| | | | - Leonardo Tenori
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center (CERM/CIRMMP), University of Florence, Sesto Fiorentino, 50019, Italy
| | - Lucilla Parnetti
- Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy
| |
Collapse
|
6
|
Zeng X, Yu T, Xia L, Ruan Z. Untargeted metabolomics analysis of glycerophospholipid metabolism in very low birth weight infants administered multiple oil lipid emulsions. BMC Pediatr 2024; 24:849. [PMID: 39736612 DOI: 10.1186/s12887-024-05343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND To compare the impact of two different lipid emulsions, specifically a soybean oil-based emulsion and a multiple oil emulsion (soybean oil, medium-chain triglycerides, olive oil, and fish oil, SMOF), on serum metabolites of very low birth weight (VLBW) infants using untargeted metabolomics analysis. METHODS A comparative study was conducted on 25 VLBW infants hospitalized in neonatal intensive care units (NICU) of Hangzhou Women's Hospital in 2023. The infants were divided into the SMOF group (13 cases) and the soybean oil group (12 cases) based on the type of lipid emulsion used during parenteral nutrition. Serum samples were collected at birth and 14 days later from both groups. An untargeted metabolomics analysis was conducted on serum samples using Ultra-high Performance Liquid Chromatography - Tandem Mass Spectrometry (UHPLC-MS/MS). Differential metabolites were identified using Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) modeling, with criteria of variable importance in the projection (VIP) > 1 and false discovery rate (FDR) < 0.05. Functional annotation of the top 30 differential metabolites, ranked by VIP value, was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Subsequently, enrichment and topological analyses were conducted with MetaboAnalyst software to identify key metabolic pathways. Finally, receiver operating characteristic (ROC) analysis was performed on metabolites associated with the identified key metabolic pathways. RESULTS The metabolomic analysis revealed that, in the OPLS-DA model, no significant metabolite differences were found in umbilical cord blood between the two groups. However, 84 differential metabolites were identified in the 14-day samples from the SMOF group compared to the soybean oil group. According to MetaboAnalyst analysis, glycerophospholipid metabolism emerged as the most significantly altered metabolic pathway following the administration of SMOF lipid emulsion. Additionally, ROC curve analysis confirmed a significant increase in LysoPC(20:5), PE(16:0/20:5), and PE-NMe(22:5/16:0) metabolites in the SMOF group. CONCLUSION The administration of SMOF lipid emulsion in VLBW infants resulted in significant modifications of serum metabolites compared to traditional soybean oil-based lipid emulsions. Notably, glycerophospholipid metabolism was identified as the most prominently altered metabolic pathway. Metabolites, including LysoPC(20:5), PE(16:0/20:5), and PE-NMe(22:5/16:0), emerged as potential biomarkers. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Neonatology, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Tao Yu
- Department of Neonatology, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Luping Xia
- Department of Neonatology, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Zhiqiang Ruan
- Department of Intensive Care Unit, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
7
|
Hu X, Xu Q, Ma X, Li L, Wu Y, Sun F. An interpretable machine learning model for precise prediction of biomarkers for intermittent fasting pattern. Nutr Metab (Lond) 2024; 21:106. [PMID: 39695671 DOI: 10.1186/s12986-024-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Intermittent fasting is currently a highly sought-after dietary pattern. To explore the potential biomarkers of intermittent fasting, untargeted metabolomics analysis of fecal metabolites in two groups of mice, intermittent fasting and normal feeding, was conducted using UPLC-HRMS. The data was further analyzed through interpretable machine learning (ML) to data mine the biomarkers for two dietary patterns. We developed five machine learning models and results showed that under three-fold cross-validation, Random Forest model was the most suitable for distinguishing the two dietary patterns. Finally, Shapely Additive exPlanations (SHAP) were explored to perform a weighted explanatory analysis on the Random Forest model, and the contribution of each metabolite to the model was calculated. Results indicated that Ganoderenic Acid C is the potential biomarkers to distinguish the two dietary patterns. Our work provides new insights for metabolic biomarker analysis and lays a theoretical foundation for the selection of a healthieir dietary lifestyle.
Collapse
Affiliation(s)
- Xiaoli Hu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xuan Ma
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China
| | - Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China.
| |
Collapse
|
8
|
Zhang T, Yang S, Li R, Dong R, Zou H. Dried blood spots-based metabolomic analysis in preterm infants with necrotizing enterocolitis. J Matern Fetal Neonatal Med 2024; 37:2416610. [PMID: 39428341 DOI: 10.1080/14767058.2024.2416610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the leading cause of death among premature infants, and there is a lack of specific early diagnostic markers. Blood sampling is expected to better reflect pathophysiological and metabolic changes in systematic illness, but there is a risk of iatrogenic anemia, especially in premature infants. Dried blood spots technique seems to have important advantages compared to whole blood sampling as it requires only 12-15 μL as sample volume. This study aimed to investigate the special metabolomics of preterm neonates at high risk of NEC using dried blood spots. METHODS Cases and controls were strictly matched 1:1. Dried blood spots (n = 32, 16 cases-16 controls) from newborn screening were subjected to LC-MS/MS. Metabolomic data were analyzed by orthogonal partial least squares-discriminant analysis (OPLS-DA) and univariate/multivariate statistical analysis. RESULTS Compared to the control group, the NEC group had a significant reduction in seven amino acids (glycine, alanine, threonine, proline, ornithine, lysine, and asparagine). CONCLUSIONS The metabolic profile of neonates with NEC differs significantly from that of controls, making possible their separation with the use of targeted (LC-MS/MS) dried blood spots-based metabolomic analysis. Seven specific markers were identified for early detection and intervention.
Collapse
Affiliation(s)
- Tiantian Zhang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Shimin Yang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruotong Li
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruiqian Dong
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| |
Collapse
|
9
|
Kaminsky CJ, Mill J, Patel V, Pierce D, Haj A, Hess AS, Li L, Raife T. The longevity factor spermidine is part of a highly heritable complex erythrocyte phenotype associated with longevity. Aging Cell 2024; 23:e14311. [PMID: 39243176 PMCID: PMC11634715 DOI: 10.1111/acel.14311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 09/09/2024] Open
Abstract
Extreme longevity in humans is known to be a heritable trait. In a well-established twin erythrocyte metabolomics and proteomics database, we identified the longevity factor spermidine and a cluster of correlated molecules with high heritability estimates. Erythrocyte spermidine is 82% heritable and significantly correlated with 59 metabolites and 22 proteins. Thirty-eight metabolites and 19 proteins were >20% heritable, with a mean heritability of 61% for metabolites and 49% for proteins. Correlated metabolites are concentrated in energy metabolism, redox homeostasis, and autophagy pathways. Erythrocyte mean cell volume (MCV), an established heritable trait, was consistently negatively correlated with the top 25 biomolecules most strongly correlated with spermidine, indicating that smaller MCVs are associated with higher concentrations of spermidine and correlated molecules. Previous studies have linked larger MCVs with poorer memory, cognition, and all-cause mortality. Analysis of 432,682 unique patient records showed a linear increase in MCV with age but a significant deviation toward smaller than expected MCVs above age 86, suggesting that smaller MCVs are associated with extreme longevity. Consistent with previous reports, a subset of 78,158 unique patient records showed a significant skewing toward larger MCV values in a deceased cohort compared to an age-matched living cohort. Our study supports the existence of a complex, heritable phenotype in erythrocytes associated with health and longevity.
Collapse
Affiliation(s)
| | - Jericha Mill
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Viharkumar Patel
- Department of Pathology & Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Department of Pathology & Laboratory MedicineUniversity of California‐DavisSacramentoCaliforniaUSA
| | - Dylan Pierce
- Department of Pathology & Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amelia Haj
- Department of Pathology & Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Harvard‐Mass General HospitalBostonMassachusettsUSA
| | - Aaron S. Hess
- Department of Pathology & Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of AnesthesiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lingjun Li
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Thomas Raife
- Department of Pathology & Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Prabha S, Sajad M, Anjum F, Hassan MI, Shamsi A, Thakur SC. Investigating gene expression datasets of hippocampus tissue to discover Alzheimer's disease-associated molecular markers. J Alzheimers Dis 2024; 102:994-1016. [PMID: 39604273 DOI: 10.1177/13872877241297335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an advancing neurodegenerative disorder distinguished by the formation of amyloid plaques and neurofibrillary tangles in the human brain. Nevertheless, the lack of peripheral biomarkers that can detect the development of AD remains a significant limitation. OBJECTIVE The main aim of this work was to discover the molecular markers associated with AD. METHODS We conducted a comprehensive microarray analysis of gene expression data from hippocampus tissue in AD patients and control samples using three microarray datasets (GSE1297, GSE28146, and GSE29378) collected from Gene Expression Omnibus (GEO). The datasets were pre-processed and normalized, revealing 346 significant genes, 103 of which were upregulated and 243 downregulated. The PPI network of significant genes was constructed to detect the top 50 hub genes, which were then further analyzed using Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and GSEA, revealing 47 key genes involved in AD-related pathways. These key genes were then subjected to feed forward loop (FFL) motif analysis for the prediction of transcriptional factors (TFs) and microRNAs (miRNAs) mediated gene regulatory networks. RESULTS The interaction of AD-associated TFs HNF4A, SPI1, EGR1, STAT3, and MYC and miRNAs hsa-miR-155-5p and hsa-miR-16-5p in the transcriptional and post-transcriptional events of 3 upregulated and 10 downregulated genes: H2AFZ, MCM3, MYO1C, AXIN1, CCND1, ETS2, MYH9, RELA, RHEB, SOCS3, TBL1X, TBP, TXNIP, and YWHAZ, respectively, has been identified. The miRNA/TF-mediated three types of the FFL motifs, i.e., miRNA-FFL, TF-FFL, and composite-FFL, were constructed, and seven common genes among these FFL were identified: CCND1, MYH9, SOCS3, RHEB, MYO1C, TXNIP, AXIN1, and TXNIP. CONCLUSIONS These findings may provide insights into the development of potential molecular markers for therapeutic management of AD.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Climacosa FMM, Anlacan VMM, Gordovez FJA, Reyes JCB, Tabios IKB, Manalo RVM, Cruz JMC, Asis JLB, Razal RB, Abaca MJM, Dacasin AB, Espiritu APN, Gapaz NCLL, Lee Yu MHL. Monitoring drug Efficacy through Multi- Omics Research initiative in Alzheimer's Disease (MEMORI-AD): A protocol for a multisite exploratory prospective cohort study on the drug response-related clinical, genetic, microbial and metabolomic signatures in Filipino patients with Alzheimer's disease. BMJ Open 2024; 14:e078660. [PMID: 39608999 PMCID: PMC11603684 DOI: 10.1136/bmjopen-2023-078660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Dementia is one of the leading causes of disability among older people aged 60 years and above, with majority eventually being diagnosed with Alzheimer's disease (AD). Pharmacological agents approved for dementia include acetylcholinesterase enzyme (AChE) inhibitors like rivastigmine, donepezil and galantamine and the N-methyl-D-aspartate (NMDA) receptor antagonist memantine, prescribed as monotherapy or in combination with each other, depending on the severity of disease. There is currently no available study demonstrating the clinical response to these drugs for AD in the Filipino population. Hence, this protocol aims to characterise the clinical, genetic, microbial and metabolic factors associated with drug responses to donepezil, rivastigmine and/or memantine for AD in a cohort of Filipinos with late-onset AD. METHODS AND ANALYSIS This protocol involves a multisite descriptive study that will use two study designs: (1) a descriptive, cross-sectional study to characterise the clinical profile of Filipino dementia patients with AD and (2) an exploratory prospective cohort study to investigate drug response-related genetic, gut microbiome and metabolome signatures of a subset of the recruited AD patients. At least 153 patients with mild or moderate AD aged 65 years old and above will be recruited regardless of their treatment status. A subset of these patients (n=60) who meet inclusion and exclusion criteria will be included further in the exploratory cohort study. These patients will be grouped according to their baseline medications and will be observed for treatment response in 6 months. The cognitive, functional and behavioural domains of patients and levels of functioning will be measured using different assessment tools. Drug responses of Filipino patients will then be investigated employing multi-omics technology to characterise genetic variations via whole exome sequencing, gut microbiome profile via shotgun metagenomic sequencing and metabolome profile via liquid chromatography with mass spectrometry. ETHICS AND DISSEMINATION The study has received ethical clearance from the Department of Health Single Joint Research Ethics Board (SJREB-2022-15). Results of psychometric scales will be made available to enrolled patients. The study results will be presented at national/international conferences and published in international peer-reviewed scientific journals, and summaries of the results will be provided to the study funders and institutional review boards of the three tertiary referral hospitals. TRIAL REGISTRATION NUMBER Philippine Health Research Registry ID PHRR230220-0054116; ClinicalTrials.gov ID NCT05801380.
Collapse
Affiliation(s)
- Fresthel Monica M Climacosa
- Multi-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- Department of Medical Microbiology, University of the Philippines Manila College of Public Health, Manila, Metro Manila, Philippines
| | - Veeda Michelle M Anlacan
- Multi-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- Center for Memory and Cognition, Division of Adult Neurology, University of the Philippines-Philippine General Hospital Department of Neurosciences, Manila, Metro Manila, Philippines
| | - Francis James A Gordovez
- Multi-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- University of the Philippines-Philippine General Hospital Department of Psychiatry and Behavioral Medicine, Manila, Metro Manila, Philippines
| | - John Carlo B. Reyes
- Multi-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- Department of Laboratories, Philippine General Hospital, Manila, Metro Manila, Philippines
| | - Ian Kim B Tabios
- Multi-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- Institute of Biology, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Rafael Vincent M Manalo
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Joana Marie Ceripulo Cruz
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Joannes Luke B Asis
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Rozel B Razal
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Mark Joseph M Abaca
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
- Department of Adult Cardiology, Philippine Heart Center, Quezon City, Metro Manila, Philippines
| | - Aira B Dacasin
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Ayra Patrice N Espiritu
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Nicole Clarence Louise L Gapaz
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| | - Melody Hope L Lee Yu
- Mutli-Omics Research Program for Health, University of the Philippines Manila College of Medicine, Manila, Metro Manila, Philippines
| |
Collapse
|
12
|
Sekiya M, Sakakibara Y, Hirota Y, Ito N, Chikamatsu S, Takei K, Nishijima R, Iijima KM. Decreased plasma nicotinamide and altered NAD + metabolism in glial cells surrounding Aβ plaques in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 202:106694. [PMID: 39374707 DOI: 10.1016/j.nbd.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Amyloid-β (Aβ) accumulation triggers chronic neuroinflammation, initiating AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy underscore that blood-based biomarkers have significant advantages and applicability over conventional diagnostics and are an unmet clinical need. To further advance ongoing clinical trials and identify novel therapeutic targets for AD, developing additional plasma biomarkers closely associated with pathogenic mechanisms downstream of Aβ accumulation is critically important. To identify plasma metabolites reflective of neuroinflammation caused by Aβ pathology, we performed untargeted metabolomic analyses of the plasma by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) and analyzed the potential roles of the identified metabolic changes in the brain neuroinflammatory response using the female App knock-in (AppNLGF) mouse model of Aβ amyloidosis. The CE-TOFMS analysis of plasma samples from female wild-type (WT) and AppNLGF mice revealed that plasma levels of nicotinamide, a nicotinamide adenine dinucleotide (NAD+) precursor, were decreased in AppNLGF mice, and altered metabolite profiles were enriched for nicotinate/nicotinamide metabolism. In AppNLGF mouse brains, NAD+ levels were unaltered, but mRNA levels of NAD+-synthesizing nicotinate phosphoribosyltransferase (Naprt) and NAD+-degrading Cd38 genes were increased. These enzymes were induced in reactive astrocytes and microglia surrounding Aβ plaques in the cortex and hippocampus of female AppNLGF mouse brains, suggesting neuroinflammation increases NAD+ metabolism. This study suggests plasma nicotinamide could be indicative of the neuroinflammatory response and that nicotinate and nicotinamide metabolism are potential therapeutic targets for AD, by targeting both neuroinflammation and neuroprotection.
Collapse
Affiliation(s)
- Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naoki Ito
- Brain-Skeletal Muscle Connection in Aging Project Team, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
13
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Hou J, Wang X, Zhang J, Shen Z, Li X, Yang Y. Chuanxiong Renshen Decoction Inhibits Alzheimer's Disease Neuroinflammation by Regulating PPARγ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:3209-3232. [PMID: 39071817 PMCID: PMC11283787 DOI: 10.2147/dddt.s462266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aim Previous studies of our research group have shown that Chuanxiong Renshen Decoction (CRD) has the effect of treating AD, but the exact mechanism of its effect is still not clarified. The aim of this study was to investigate the effect and mechanism of CRD on AD neuroinflammation. Materials and Methods Morris Water Maze (MWM) tests were employed to assess the memory and learning capacity of AD mice. HE and Nissl staining were used to observe the neural cells of mice. The expression of Iba-1 and CD86 were detected by immunohistochemical staining. Utilize UHPLC-MS/MS metabolomics techniques and the KEGG to analyze the metabolic pathways of CRD against AD. Lipopolysaccharide (LPS) induced BV2 microglia cells to construct a neuroinflammatory model. The expression of Iba-1 and CD86 were detected by immunofluorescence and flow cytometry. The contents of TNF-α and IL-1β were detected by ELISA. Western blot assay was used to detect the expression of PPARγ, p-NF-κB p65, NF-κB p65 proteins and inflammatory cytokines iNOS and COX-2 in PPARγ/NF-κB pathway with and without PPARγ inhibitor GW9662. Results CRD ameliorated the learning and memory ability of 3×Tg-AD mice, repaired the damaged nerve cells in the hippocampus, reduced the area of Iba-1 and CD86 positive areas in both the hippocampus and cortex regions, as well as attenuated serum levels of IL-1β and TNF-α in mice. CRD-containing serum significantly decreased the expression level of Iba-1, significantly reduced the levels of TNF-α and IL-1β, significantly increased the protein expression of PPARγ, and significantly decreased the proteins expression of iNOS, COX-2 and p-NF-κB p65 in BV2 microglia cells. After addition of PPARγ inhibitor GW9662, the inhibitory effect of CRD-containing serum on NF-κB activation was significantly weakened. Conclusion CRD can activate PPARγ, regulating PPARγ/NF-κB signaling pathway, inhibiting microglia over-activation and reducing AD neuroinflammation.
Collapse
Affiliation(s)
- Jinling Hou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiaoyan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jian Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhuojun Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
15
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
16
|
Song Z, He J, Yu W, He C, Yang M, Li P, Li Z, Jian G, Cheng S. Exploring the multifaceted therapeutic mechanism of Schisanlactone E (XTS) in APP/PS1 mouse model of Alzheimer's disease through multi-omics analysis. Front Microbiol 2024; 15:1440564. [PMID: 39044957 PMCID: PMC11263214 DOI: 10.3389/fmicb.2024.1440564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Background Schisanlactone E, also known as XueTongSu (XTS), is an active compound extracted from the traditional Tujia medicine Kadsura heteroclita ("XueTong"). Recent studies highlight its anti-inflammatory and antioxidant properties, yet the mechanisms of XTS's therapeutic effects on Alzheimer's disease (AD) are unclear. This study aims to elucidate the therapeutic efficacy and mechanisms of XTS in AD. Methods Ten C57BL/6 mice were assigned to the control group (NC), and twenty APP/PS1 transgenic mice were randomly divided into the model group (M) (10 mice) and the XTS treatment group (Tre) (10 mice). After an acclimatization period of 7 days, intraperitoneal injections were administered over a 60-day treatment period. The NC and M groups received saline, while the Tre group received XTS at 2 mg/kg. Learning and memory abilities were assessed using the Morris Water Maze (MWM) test. Histopathological changes were evaluated using hematoxylin and eosin (HE) and Nissl staining, and immunofluorescence was used to assess pathological products and glial cell activation. Cytokine levels (IL-1β, IL-6, TNF-α) in the hippocampus were quantified by qPCR. 16S rDNA sequencing analyzed gut microbiota metabolic alterations, and metabolomic analysis was performed on cortical samples. The KEGG database was used to analyze the regulatory mechanisms of XTS in AD treatment. Results XTS significantly improved learning and spatial memory in APP/PS1 mice and ameliorated histopathological changes, reducing Aβ plaque aggregation and glial cell activation. XTS decreased the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α. It also enhanced gut microbiota diversity, notably increasing Akkermansia species, and modulated levels of metabolites such as isosakuranetin, 5-KETE, 4-methylcatechol, and sphinganine. Pathway analysis indicated that XTS regulated carbohydrate metabolism, neuroactive ligand-receptor interactions, and alanine, aspartate, and glutamate metabolism, mitigating gut microbiota dysbiosis and metabolic disturbances. Conclusion XTS ameliorates cognitive deficits, pathological changes, and inflammatory responses in APP/PS1 mice. It significantly modulates the gut microbiota, particularly increasing Akkermansia abundance, and influences levels of key metabolites in both the gut and brain. These findings suggest that XTS exerts anti-AD effects through the microbial-gut-brain axis (MGBA).
Collapse
Affiliation(s)
- Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Miao Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
17
|
Zhang C, Shao Q, Zhang Y, Liu W, Kang J, Jin Z, Huang N, Ning B. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury. CNS Neurosci Ther 2024; 30:e14826. [PMID: 38973179 PMCID: PMC11228357 DOI: 10.1111/cns.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
AIM We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFβ, and the influence of nicotinamide on TGFβ-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFβ/SMADs pathway. CONCLUSION Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFβ/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qiang Shao
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjing Liu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Nana Huang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Barzegar Behrooz A, Latifi‐Navid H, Lotfi J, Khodagholi F, Shojaei S, Ghavami S, Fahanik Babaei J. CSF amino acid profiles in ICV-streptozotocin-induced sporadic Alzheimer's disease in male Wistar rat: a metabolomics and systems biology perspective. FEBS Open Bio 2024; 14:1116-1132. [PMID: 38769074 PMCID: PMC11216934 DOI: 10.1002/2211-5463.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 μL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Hamid Latifi‐Navid
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Molecular MedicineNational Institute of Genetic Engineering and BiotechnologyTehranIran
- School of Biological SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIran
| | - Jabar Lotfi
- Growth and Development Research CenterTehran University of Medical SciencesIran
| | - Fariba Khodagholi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
- Faculty of Medicine in ZabrzeUniversity of Technology in KatowiceZabrzePoland
- Research Institute of Oncology and HematologyCancer Care Manitoba‐University of ManitobaWinnipegCanada
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| |
Collapse
|
19
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
20
|
Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: a path towards new targets and drugs. Front Mol Neurosci 2024; 17:1414886. [PMID: 38952421 PMCID: PMC11215216 DOI: 10.3389/fnmol.2024.1414886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jessica V. Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| |
Collapse
|
21
|
Yu X, Tao J, Xiao T, Duan X. 4,4'-methylenediphenol reduces Aβ-induced toxicity in a Caenorhabditis elegans model of Alzheimer's disease. Front Aging Neurosci 2024; 16:1393721. [PMID: 38872629 PMCID: PMC11171718 DOI: 10.3389/fnagi.2024.1393721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Gastrodia elata Blume is a widely used medicinal and edible herb with a rich chemical composition. Moreover, prescriptions containing Gastrodia elata are commonly used for the prevention and treatment of cardiovascular, cerebrovascular, and aging-related diseases. Recent pharmacological studies have confirmed the antioxidant and neuroprotective effects of Gastrodia elata, and, in recent years, this herb has also been used in the treatment of Alzheimer's disease (AD) and other neurodegenerative disorders. We have previously shown that 4,4'-methylenediphenol, a key active ingredient of Gastrodia elata, can mitigate amyloid-β (Aβ)-induced paralysis in AD model worms as well as prolong the lifespan of the animals, thus displaying potential as a treatment of AD. Methods We investigated the effects of 4,4'-methylenediphenol on AD and aging through paralysis, lifespan, and behavioral assays. In addition, we determined the anti-AD effects of 4,4'-methylenediphenol by reactive oxygen species (ROS) assay, lipofuscin analysis, thioflavin S staining, metabolomics analysis, GFP reporter gene worm assay, and RNA interference assay and conducted in-depth studies on its mechanism of action. Results 4,4'-Methylenediphenol not only delayed paralysis onset and senescence in the AD model worms but also enhanced their motility and stress tolerance. Meanwhile, 4,4'-methylenediphenol treatment also reduced the contents of reactive oxygen species (ROS) and lipofuscin, and decreased Aβ protein deposition in the worms. Broad-spectrum targeted metabolomic analysis showed that 4,4'-methylenediphenol administration had a positive effect on the metabolite profile of the worms. In addition, 4,4'-methylenediphenol promoted the nuclear translocation of DAF-16 and upregulated the expression of SKN-1, SOD-3, and GST-4 in the respective GFP reporter lines, accompanied by an enhancement of antioxidant activity and a reduction in Aβ toxicity; importantly, our results suggested that these effects of 4,4'-methylenediphenol were mediated, at least partly, via the activation of DAF-16. Conclusion We have demonstrated that 4,4'-methylenediphenol can reduce Aβ-induced toxicity in AD model worms, suggesting that it has potential for development as an anti-AD drug. Our findings provide ideas and references for further research into the anti-AD effects of Gastrodia elata and its active ingredients.
Collapse
Affiliation(s)
| | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
22
|
Hooshmand K, Xu J, Simonsen AH, Wretlind A, de Zawadzki A, Sulek K, Hasselbalch SG, Legido-Quigley C. Human Cerebrospinal Fluid Sample Preparation and Annotation for Integrated Lipidomics and Metabolomics Profiling Studies. Mol Neurobiol 2024; 61:2021-2032. [PMID: 37843799 DOI: 10.1007/s12035-023-03666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Cerebrospinal fluid (CSF) is a metabolically diverse biofluid and a key specimen for exploring biochemical changes in neurodegenerative diseases. Detecting lipid species in CSF using mass spectrometry (MS)-based techniques remains challenging because lipids are highly complex in structure, and their concentrations span over a broad dynamic range. This work aimed to develop a robust lipidomics and metabolomics method based on commonly used two-phase extraction systems from human CSF samples. Prioritizing lipid detection, biphasic extraction methods, Folch, Bligh and Dyer (B&D), Matyash, and acidified Folch and B&D (aFolch and aB&D) were compared using 150 μL of human CSF samples for the simultaneous extraction of lipids and metabolites with a wide range of polarity. Multiple chromatographical separation approaches, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and gas chromatography (GC), were utilized to characterize human CSF metabolome. The aB&D method was found as the most reproducible technique (RSD < 15%) for lipid extraction. The aB&D and B&D yielded the highest peak intensities for targeted lipid internal standards and displayed superior extracting power for major endogenous lipid classes. A total of 674 unique metabolites with a wide polarity range were annotated in CSF using, combining RPLC-MS/MS lipidomics (n = 219), HILIC-MS/MS (n = 304), and GC-quadrupole time of flight (QTOF) MS (n = 151). Overall, our findings show that the aB&D extraction method provided suitable lipid coverage, reproducibility, and extraction efficiency for global lipidomics profiling of human CSF samples. In combination with RPLC-MS/MS lipidomics, complementary screening approaches enabled a comprehensive metabolite signature that can be employed in an array of clinical studies.
Collapse
Affiliation(s)
| | - Jin Xu
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asger Wretlind
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Karolina Sulek
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
23
|
Yuan Y, Huang L, Yu L, Yan X, Chen S, Bi C, He J, Zhao Y, Yang L, Ning L, Jin H, Yang R, Li Y. Clinical metabolomics characteristics of diabetic kidney disease: A meta-analysis of 1875 cases with diabetic kidney disease and 4503 controls. Diabetes Metab Res Rev 2024; 40:e3789. [PMID: 38501707 DOI: 10.1002/dmrr.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/20/2024]
Abstract
AIMS Diabetic Kidney Disease (DKD), one of the major complications of diabetes, is also a major cause of end-stage renal disease. Metabolomics can provide a unique metabolic profile of the disease and thus predict or diagnose the development of the disease. Therefore, this study summarises a more comprehensive set of clinical biomarkers related to DKD to identify functional metabolites significantly associated with the development of DKD and reveal their driving mechanisms for DKD. MATERIALS AND METHODS We searched PubMed, Embase, the Cochrane Library and Web of Science databases through October 2022. A meta-analysis was conducted on untargeted or targeted metabolomics research data based on the strategy of standardized mean differences and the process of ratio of means as the effect size, respectively. We compared the changes in metabolite levels between the DKD patients and the controls and explored the source of heterogeneity through subgroup analyses, sensitivity analysis and meta-regression analysis. RESULTS The 34 clinical-based metabolomics studies clarified the differential metabolites between DKD and controls, containing 4503 control subjects and 1875 patients with DKD. The results showed that a total of 60 common differential metabolites were found in both meta-analyses, of which 5 metabolites (p < 0.05) were identified as essential metabolites. Compared with the control group, metabolites glycine, aconitic acid, glycolic acid and uracil decreased significantly in DKD patients; cysteine was significantly higher. This indicates that amino acid metabolism, lipid metabolism and pyrimidine metabolism in DKD patients are disordered. CONCLUSIONS We have identified 5 metabolites and metabolic pathways related to DKD which can serve as biomarkers or targets for disease prevention and drug therapy.
Collapse
Affiliation(s)
- Yu Yuan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liping Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingxu Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenghao Bi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqing Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liu Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Ning
- Department Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hua Jin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Kim JS, Kim MG, Ryu JE, Lee YB, Liu QF, Kim KK, Cho SH, Shin SJ, Koo BS, Choi HK. Effect of woohwangchungsimwon and donepezil co-treatment on cognitive function and serum metabolic profiles in a scopolamine-induced model of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117359. [PMID: 37924999 DOI: 10.1016/j.jep.2023.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Woohwangchungsimwon (WCW) is a traditional medicine used in East Asian countries to treat central nervous system disorders. Reported pharmacological properties include antioxidant effects, enhanced learning and memory, and protection against ischemic neuronal cell death, supporting its use in treating neurodegenerative diseases like Alzheimer's disease (AD). AIM OF THE STUDY The study aims to assess the effects of co-treatment with WCW and donepezil on cognitive functions and serum metabolic profiles in a scopolamine-induced AD model. MATERIALS AND METHODS Cell viability and reactive oxygen species (ROS) levels were measured in amyloid β-peptide25-35 (Aβ25-35)-induced SH-SY5Y cells. An AD model was established in ICR mice by intraperitoneal scopolamine administration. Animals underwent the step-through passive avoidance test (PAT) and Morris water maze (MWM) test. Hippocampal tissues were collected to examine specific protein expression. Serum metabolic profiles were analyzed using nuclear magnetic resonance (NMR) spectroscopy. RESULTS Co-treatment with WCW and donepezil increased cell viability and reduced ROS production in Aβ25-35-induced SH-SY5Y cells compared to that with donepezil treatment alone. Co-treatment improved cognitive functions and was comparable to donepezil treatment alone in the PAT and MWM tests. Pathways related to tyrosine, phenylalanine, and tryptophan biosynthesis, phenylalanine metabolism, and cysteine and methionine metabolism were altered by co-treatment. Levels of tyrosine and methionine, major serum metabolites in these pathways, were significantly reduced after co-treatment. CONCLUSIONS Co-treatment with WCW and donepezil shows promise as a therapeutic strategy for AD and is comparable to donepezil alone in improving cognitive function. Reduced tyrosine and methionine levels after co-treatment may enhance cognitive function by mitigating hypertyrosinemia and hyperhomocysteinemia, known risk factors for AD. The serum metabolic profiles obtained in this study can serve as a foundation for developing other bioactive compounds using a scopolamine-induced mouse model.
Collapse
Affiliation(s)
- Jung-Seop Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Man-Gi Kim
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Ji Eun Ryu
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ye-Been Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Quan Feng Liu
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Kwang Ki Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Gyeonggi-do, Republic of Korea
| | - Seung-Hun Cho
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Joon Shin
- Division of Nephrology, Department of Internal Medicine, Medical Cannabis Center, Dongguk University Ilsan Hospital, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Byung-Soo Koo
- Department of Neuropsychiatry, College of Korean Medicine, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Conde R, Oliveira N, Morais E, Amaral AP, Sousa A, Graça G, Verde I. NMR analysis seeking for cognitive decline and dementia metabolic markers in plasma from aged individuals. J Pharm Biomed Anal 2024; 238:115815. [PMID: 37952448 DOI: 10.1016/j.jpba.2023.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Blood biomarkers can improve the ability to diagnose dementia, providing new information to better understand the pathophysiology and causes of the disease. Some studies with patients have already shown changes in metabolic profiles among patients with pathological cognitive decline or Alzheimer's disease, when compared to individuals with normal cognition. METHODS To search for new metabolic biomarkers of dementia, we analyzed serum levels of several metabolites, measured by nuclear magnetic resonance spectroscopy, in elderly individuals, a group with normal cognitive decline (control), and three other groups with cognitive decline. pathological (low, moderate, and severe). RESULTS Decreased plasma levels of tyrosine, glutamate, valine, leucine, and isoleucine are associated with worsening of pathological cognitive decline. However, the area under analysis of receptor operating characteristics suggests that tyrosine and glutamate have low specificity and sensitivity. Valine, leucine, and isoleucine are influenced by blood glucose or diabetes, but these conditions do not seem to be of great influence in the differences observed. Isobutyrate, histidine, acetone and unknown-1 metabolite also decrease their plasma levels with increasing CD. Isobutyrate ad histidine could have neuroprotective and antioxidant actions, respectively. To elucidate the role of decreased unknown metabolite-1 as a CD biomarker, it will be necessary to previously investigate its identity. To define and elucidate the role of acetone in pathological CD, additional laboratory and clinical studies must be performed. All these metabolites together may constitute a set of biomarkers with capability to identify pathological CD or dementia. SIGNIFICANCE AND NOVELTY Decrease of glutamate, tyrosine, valine, leucine, isoleucine, histidine, isobutyrate, acetone and unknown-1 metabolite together are a set of biomarkers able to identify pathological CD or dementia. Histidine, isobutyrate, acetone and unknown-1 metabolite are more specific biomarkers of CD.
Collapse
Affiliation(s)
- Ricardo Conde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Nádia Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Elisabete Morais
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Paula Amaral
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana Sousa
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gonçalo Graça
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Ignacio Verde
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior (UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
26
|
Yan L, Deng Y, Du Y, Fang X, Fang X, Zhang Q. Metabolic Regulations of Smilax china L. against β-Amyloid Toxicity in Caenorhabditis elegans. Metabolites 2024; 14:49. [PMID: 38248852 PMCID: PMC10818737 DOI: 10.3390/metabo14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Smilax china L. (Chinaroot) is a natural herb that has multiple uses, such as being used to make tea and food. Both its roots and leaves have different uses due to their unique components. In this study, we analyzed the extract of S. china. roots using LC-HRMS and evaluated the neuroprotective effects and metabolic regulation of S. china on Caenorhabditis elegans. Chinaroot extract prolonged the life span of healthy nematodes, delayed the paralysis time of transgenic CL4176, and reduced the level of β-amyloid deposition in transgenic CL2006. The comprehensive analysis of metabolomics and qRT-PCR revealed that Chinaroot extract exerted neuroprotective effects through the valine, leucine and isoleucine degradation and fatty acid degradation pathways. Moreover, we first discovered that the expressions of T09B4.8, ech-7, and agxt-1 were linked to the neuroprotective effects of Chinaroot. The material exerted neuroprotective effects by modulating metabolic abnormalities in AD model C. elegans. Our study provides a new foundation for the development of functional food properties and functions.
Collapse
Affiliation(s)
- Lili Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yuchan Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yulan Du
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xutong Fang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
He J, Jin Y, He C, Li Z, Yu W, Zhou J, Luo R, Chen Q, Wu Y, Wang S, Song Z, Cheng S. Danggui Shaoyao San: comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer's disease-related pathology. Front Pharmacol 2024; 14:1338804. [PMID: 38283834 PMCID: PMC10811133 DOI: 10.3389/fphar.2023.1338804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, currently lacks effective clinical therapeutics. Traditional Chinese Medicine (TCM) holds promising potential in AD treatment, exemplified by Danggui Shaoyao San (DSS), a TCM formulation. The precise therapeutic mechanisms of DSS in AD remain to be fully elucidated. This study aims to uncover the therapeutic efficacy and underlying mechanisms of DSS in AD, employing an integrative approach encompassing gut microbiota and metabolomic analyses. Methods: Thirty Sprague-Dawley (SD) rats were allocated into three groups: Blank Control (Con), AD Model (M), and Danggui Shaoyao San (DSS). AD models were established via bilateral intracerebroventricular injections of streptozotocin (STZ). DSS was orally administered at 24 g·kg-1·d-1 (weight of raw herbal materials) for 14 days. Cognitive functions were evaluated using the Morris Water Maze (MWM) test. Pathological alterations were assessed through hematoxylin and eosin (HE) staining. Bloodstream metabolites were characterized, gut microbiota profiled through 16S rDNA sequencing, and cortical metabolomics analyzed. Hippocampal proinflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using RT-qPCR, and oxidative stress markers (SOD, CAT, GSH-PX, MDA) in brain tissues were measured with biochemical assays. Results: DSS identified a total of 1,625 bloodstream metabolites, predominantly Benzene derivatives, Carboxylic acids, and Fatty Acyls. DSS significantly improved learning and spatial memory in AD rats and ameliorated cerebral tissue pathology. The formulation enriched the probiotic Ligilactobacillus, modulating metabolites like Ophthalmic acid (OA), Phosphocreatine (PCr), Azacridone A, Inosine, and NAD. DSS regulated Purine and Nicotinate-nicotinamide metabolism, restoring balance in the Candidatus Saccharibacteria-OA interplay and stabilizing gut microbiota-metabolite homeostasis. Additionally, DSS reduced hippocampal IL-1β, IL-6, TNF-α expression, attenuating the inflammatory state. It elevated antioxidative enzymes (SOD, CAT, GSH-PX) while reducing MDA levels, indicating diminished oxidative stress in AD rat brains. Conclusion: DSS addresses AD pathology through multifaceted mechanisms, encompassing gut microbiome regulation, specific metabolite modulation, and the mitigation of inflammation and oxidative stress within the brain. This holistic intervention through the Microbial-Gut-Brain Axis (MGBA) underscores DSS's potential as an integrative therapeutic agent in combatting AD.
Collapse
Affiliation(s)
- Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yijie Jin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixiao Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shiwei Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Office of Science and Technology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
28
|
Das S. Omics Approaches in Alzheimer's Disease Research. J Alzheimers Dis 2024; 99:S183-S185. [PMID: 38640162 DOI: 10.3233/jad-240272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Mir M, Khosravani P, Ramezannezhad E, Saadabad FP, Falahati M, Ghanbarian M, Saberian P, Sadeghi M, Niknam N, Ghejelou SE, Jafari M, Gulisashvili D, Mayeli M. Associations Between Metabolomics Findings and Brain Hypometabolism in Mild Cognitive Impairment and Alzheimer's Disease. Curr Alzheimer Res 2024; 21:679-689. [PMID: 39878109 DOI: 10.2174/0115672050350196250110092338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data. METHODS The data used in this study were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose- positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable. RESULTS Across models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) (p = 0.005) and CE (18:3) (p = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations (p = 0.017). CONCLUSION This research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.
Collapse
Affiliation(s)
- Moein Mir
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parinaz Khosravani
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Pourali Saadabad
- Department of Psychology, Faculty of Humanities and Social Sciences, Khayyam University of Mashhad, Mashhad, Iran
| | - Marjan Falahati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Ghanbarian
- Department of Health Psychology, Faculty of Medical Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Parsa Saberian
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafise Niknam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Eskandari Ghejelou
- Department of Clinical Psychology, Faculty of Psychology and Educational Sciences, Tabriz branch, Islamic Azad University, Tabriz, Iran
| | - Masoumeh Jafari
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - David Gulisashvili
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mahsa Mayeli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Snytnikova O, Telegina D, Savina E, Tsentalovich Y, Kolosova N. Quantitative Metabolomic Analysis of the Rat Hippocampus: Effects of Age and of the Development of Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2024; 99:S327-S344. [PMID: 37980669 DOI: 10.3233/jad-230706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia in the elderly. Incomplete knowledge about the pathogenesis of this disease determines the absence of medications for the treatment of AD today. Animal models can provide the necessary knowledge to understand the mechanisms of biochemical processes occurring in the body in health and disease. Objective To identify the most promising metabolomic predictors and biomarkers reflecting metabolic disorders in the development of AD signs. Methods High resolution 1H NMR spectroscopy was used for quantitative metabolomic profiling of the hippocampus of OXYS rats, an animal model of sporadic AD, which demonstrates key characteristics of this disease. Animals were examined during several key periods: 20 days group corresponds to the "preclinical" period preceding the development of AD signs, during their manifestation (3 months), and active progression (18 months). Wistar rats of the same age were used as control. Results Ranges of variation and mean concentrations were established for 59 brain metabolites. The main metabolic patterns during aging, which are involved in energy metabolism pathways and metabolic shifts of neurotransmitters, have been established. Of particular note is the significant increase of scyllo-inositol and decrease of hypotaurine in the hippocampus of OXYS rats as compared to Wistars for all studied age groups. Conclusions We suggest that the accumulation of scyllo-inositol and the reduction of hypotaurine in the brain, even at an early age, can be considered as predictors and potential biomarkers of the development of AD signs in OXYS rats and, probably, in humans.
Collapse
Affiliation(s)
- Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya Telegina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Savina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Kolosova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
González-Domínguez Á, González-Domínguez R. How far are we from reliable metabolomics-based biomarkers? The often-overlooked importance of addressing inter-individual variability factors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166910. [PMID: 37802155 DOI: 10.1016/j.bbadis.2023.166910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Metabolomics has proven great potential to unravel the molecular basis of diseases. However, most attempts aimed at identifying reliable metabolomics-based biomarkers for diagnosis, prediction, and prognosis of diseases have repeatedly failed because of inconsistent results and unsatisfactory replication in independent cohorts. This review article explores the possible causes behind this reproducibility crisis, with special focus on the role that inter-individual variability factors play in modulating the susceptibility to disease development. Furthermore, we provide future perspectives on the applicability of metabolomics in biomedical research and its translatability into clinical practice.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11009 Cádiz, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11009 Cádiz, Spain.
| |
Collapse
|