1
|
Chikami Y, Yahata K. Soma-germ contact across the basement membrane in the ovary. Biol Lett 2025; 21:20250056. [PMID: 40262642 PMCID: PMC12014236 DOI: 10.1098/rsbl.2025.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
Epithelial cells interact with other cells and environments at their apical side, while the basement membrane typically impedes such interaction at the basal surface. One notable instance is communication between soma and germ cells within the ovary across numerous bilaterian taxa. This contact underlies proper oogenesis and subsequent embryogenesis. Throughout the history of morphology and cell biology, there has been an emphasis on this heterocellular interaction primarily occurring at the apical side of epithelial cells. Contrary to this long-standing understanding, we uncover that ovarian follicle cells in two myriapod species belonging to phylogenetically basal myriapod clades extend their cytoplasmic processes, penetrating the basement membrane to establish direct contact with oocytes. These discoveries demonstrate that the ovarian soma-germ interaction transverses the basement membrane, suggesting that the basal matrix is not always a physical barrier to soma-germ communication. Furthermore, we find that the ovarian somatic cells in a myriapod directly connect with the oogonia or young oocyte before forming their basement membrane. These results encourage reconsidering the conventional view of soma-germ interaction and suggest an overlooked construction manner of heterocellular communication in epithelial cells.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Science, Shizuoka University, Shizuoka, Shizuoka, Japan
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Lu L, Wang T, Liu A, Ye H. A Single-Cell Atlas of Crab Ovary Provides New Insights Into Oogenesis in Crustaceans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409688. [PMID: 39555715 PMCID: PMC11727118 DOI: 10.1002/advs.202409688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Oogenesis is crucial for sexual reproduction and provides the material basis for population continuation. Nonetheless, the identity of the cells involved, the nature of transformation, and underlying regulators of oogenesis in crustaceans remain elusive. Here, an atlas of the ovary is plotted via single-nuclei RNA sequencing (snRNA-seq) in the mud crab Scylla paramamosain, resulting in five cell types, including germ cells, somatic cells, and three follicle cell types identified, which in turn provides abundant candidate markers for them. Moreover, profiles of ligand-receptor in different cells of the crab ovary indicate the roles of cell communication in oogenesis. Dozens of transcription factors in the trajectory from oogonia to oocytes as well as the key molecules/pathways in somatic cells and follicle cells relevant to oogenesis are screened, which is evolutionarily conserved and its underlying regulatory mechanism is subject to some modification across various phyla. The spatiotemporal expression patterns of seven markers are further verified and the RNAi confirms the essential roles of piwi and VgR in oogenesis. These data help to elucidate the mechanism underlying gametogenesis and the evolution of reproductive strategy in invertebrates.
Collapse
Affiliation(s)
- Li Lu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Tao Wang
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - An Liu
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| | - Haihui Ye
- State Key Laboratory of Mariculture BreedingFisheries College of Jimei UniversityXiamenFujian361021China
| |
Collapse
|
3
|
Petrova M, Bogomolova E. The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 81:101370. [PMID: 38848644 DOI: 10.1016/j.asd.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk - specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of P. femoratum, although their specific functions and prevalence in other sea spider species remain unclear.
Collapse
Affiliation(s)
- Maria Petrova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| | - Ekaterina Bogomolova
- Department of Invertebrates Zoology, Faculty of Biology, Moscow State University, Vorob'evy Gory 1, Building 12, Moscow, 119992, Russia.
| |
Collapse
|
4
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
5
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
6
|
Urbisz AZ, Chajec Ł, Małota K, Student S, Sawadro MK, Śliwińska MA, Świątek P. All for one - changes in mitochondrial morphology and activity during syncytial oogenesis. Biol Reprod 2022; 106:1232-1253. [PMID: 35156116 DOI: 10.1093/biolre/ioac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
The syncytial groups of germ cells (germ-line cysts) forming in ovaries of clitellate annelids are an attractive model to study mitochondrial stage-specific changes. Using transmission electron microscopy, serial block-face scanning electron microscopy, and fluorescent microscopy, we analyzed the mitochondria distribution and morphology and the state of membrane potential in female cysts in Enchytraeus albidus. We visualized in 3D at the ultrastructural level mitochondria in cysts at successive stages: 2-celled, 4-celled, 16-celled cysts, and cyst in advanced oogenesis. We found that mitochondria form extensive aggregates - they are fused and connected into large and branched mitochondrial networks. The most extensive networks are formed with up to 10,000 fused mitochondria, whereas individual organelles represent up to 2% of the total mitochondrial volume. We classify such morphology of mitochondria as a dynamic hyperfusion state, and suggest that it can maintain their high activity and intensifies the process of cellular respiration within the syncytial cysts. We found some individual mitochondria undergoing degradation, which implies that damaged mitochondria are removed from networks for their final elimination. As it was shown that growing oocytes possess less active mitochondria than the nurse cells, it suggests that the high activity of mitochondria in the nurse cells and their dynamic hyperfusion state serve the needs of the growing oocyte. Additionally, we measured by calorimetry the total antioxidant capacity of germ-line cysts in comparison to somatic tissue, and it suggests that antioxidative defense systems, together with mitochondrial networks, can effectively protect germ-line mitochondria from damage.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Marta K Sawadro
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
8
|
Tworzydlo W, Sekula M, Bilinski SM. Transmission of Functional, Wild-Type Mitochondria and the Fittest mtDNA to the Next Generation: Bottleneck Phenomenon, Balbiani Body, and Mitophagy. Genes (Basel) 2020; 11:E104. [PMID: 31963356 PMCID: PMC7016935 DOI: 10.3390/genes11010104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
The most important role of mitochondria is to supply cells with metabolic energy in the form of adenosine triphosphate (ATP). As synthesis of ATP molecules is accompanied by the generation of reactive oxygen species (ROS), mitochondrial DNA (mtDNA) is highly vulnerable to impairment and, consequently, accumulation of deleterious mutations. In most animals, mitochondria are transmitted to the next generation maternally, i.e., exclusively from female germline cells (oocytes and eggs). It has been suggested, in this context, that a specialized mechanism must operate in the developing oocytes enabling escape from the impairment and subsequent transmission of accurate (devoid of mutations) mtDNA from one generation to the next. Literature survey suggest that two distinct and irreplaceable pathways of mitochondria transmission may be operational in various animal lineages. In some taxa, the mitochondria are apparently selected: functional mitochondria with high inner membrane potential are transferred to the cells of the embryo, whereas those with low membrane potential (overloaded with mutations in mtDNA) are eliminated by mitophagy. In other species, the respiratory activity of germline mitochondria is suppressed and ROS production alleviated leading to the same final effect, i.e., transmission of undamaged mitochondria to offspring, via an entirely different route.
Collapse
Affiliation(s)
| | | | - Szczepan M. Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (W.T.); (M.S.)
| |
Collapse
|
9
|
Lee D, Nah JS, Yoon J, Kim W, Rhee K. Live observation of the oviposition process in Daphnia magna. PLoS One 2019; 14:e0224388. [PMID: 31682612 PMCID: PMC6827901 DOI: 10.1371/journal.pone.0224388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022] Open
Abstract
In favorable conditions, Daphnia magna undergoes parthenogenesis to increase progeny production in a short time. However, in unfavorable conditions, Daphnia undergoes sexual reproduction instead and produces resting eggs. Here, we report live observations of the oviposition process in Daphnia magna. We observed that the cellular contents flowed irregularly through the narrow egg canal during oviposition. Amorphous ovarian eggs developed an oval shape immediately after oviposition and, eventually, a round shape. Oviposition of resting eggs occurred in a similar way. Based on the observations, we propose that, unlike Drosophila eggs, Daphnia eggs cannot maintain cytoplasmic integrity during oviposition. We also determined that the parthenogenetic eggs were activated within 20 min, as demonstrated by vitelline envelope formation. Therefore, it is plausible that the eggs of Daphnia magna may be activated by squeezing pressure during oviposition.
Collapse
Affiliation(s)
- Dohyong Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ji Soo Nah
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jungbin Yoon
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Janelt K, Jezierska M, Poprawa I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 50:53-63. [PMID: 31004762 DOI: 10.1016/j.asd.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, we describe the female reproductive system organization and oogenesis in the eutardigrade Thulinius ruffoi. Light, confocal and electron microscopy was used in this study. During oogenesis, three phases can be distinguished: previtellogenesis, vitellogenesis, and choriogenesis. Germ-line cells form cell clusters in which the cells are connected by intercellular (cytoplasmic) bridges. These structures are crucial for delivering the yolk materials, macromolecules, ribosomes, and organelles to the developing oocyte. Vitellogenesis is of a mixed type. Autosynthesis and heterosynthesis of the yolk material occur. Yolk precursors that have been synthesized outside the ovary are delivered to the oocyte via endocytosis. We also present data on cortical granules, and moreover, we describe the cortical reaction in tardigrades, possibly for the first time.
Collapse
Affiliation(s)
- Kamil Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Jezierska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
11
|
Abstract
Even though tardigrades have been known since 1772, their phylogenetic position is still controversial. Tardigrades are regarded as either the sister group of arthropods, onychophorans, or onychophorans plus arthropods. Furthermore, the knowledge about their gametogenesis, especially oogenesis, is still poor and needs further analysis. The process of oogenesis has been studied solely for several eutardigradan species. Moreover, the spatial organization of the female germ-line clusters has been described for three species only. Meroistic ovaries characterize all analyzed species. In species of the Parachela, one cell per germ-cell cluster differentiates into the oocyte, while the remaining cells become the trophocytes. In Apochela several cells in the cluster differentiate into oocytes. Vitellogenesis is of a mixed type. The eggs are covered with the egg capsule that is composed of two shells: the thin vitelline envelope that adheres to the oolemma and the thick three-layered chorion. Chorion is formed as a first followed by vitelline envelope. Several features related to the oogenesis and structure of the ovary confirm the hypothesis that tardigrades are the sister group rather for arthropods than for onychophorans.
Collapse
Affiliation(s)
- Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
12
|
Świątek P, Urbisz AZ. Architecture and Life History of Female Germ-Line Cysts in Clitellate Annelids. Results Probl Cell Differ 2019; 68:515-551. [PMID: 31598870 DOI: 10.1007/978-3-030-23459-1_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal female and male germ-line cells often form syncytial units termed cysts, clusters, or clones. Within these cysts, the cells remain interconnected by specific cell junctions known as intercellular bridges or ring canals, which enable cytoplasm to be shared and macromolecules and organelles to be exchanged between cells. Numerous analyses have shown that the spatial organization of cysts and their functioning may differ between the sexes and taxa. The vast majority of our knowledge about the formation and functioning of germ-line cysts comes from studies of model species (mainly Drosophila melanogaster); the other systems of the cyst organization and functioning are much less known and are sometimes overlooked. Here, we present the current state of the knowledge of female germ-line cysts in clitellate annelids (Clitellata), which is a monophyletic taxon of segmented worms (Annelida). The organization of germ-line cysts in clitellates differs markedly from that of the fruit fly and vertebrates. In Clitellata, germ cells are not directly connected one to another, but, as a rule, each cell has one ring canal that connects it to an anuclear central cytoplasmic core, a cytophore. Thus, this pattern of cell distribution is similar to the germ-line cysts of Caenorhabditis elegans. The last decade of studies has revealed that although clitellate female germ-line cysts have a strong morphological plasticity, e.g., cysts may contain from 16 to as many as 2500 cells, the oogenesis always shows a meroistic mode, i.e., the interconnected cells take on different fates; a few (sometimes only one) become oocytes, whereas the rest play the role of supporting (nurse) cells and do not continue oogenesis.This is the first comprehensive summary of the current knowledge on the organization and functioning of female germ-line cysts in clitellate annelids.
Collapse
Affiliation(s)
- Piotr Świątek
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Anna Z Urbisz
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
13
|
Yahata K, Chikami Y, Umetani E. Morphological study of the ovary in Hanseniella caldaria (Myriapoda; Symphyla): The position of oocyte-growth and evolution of ovarian structure in Arthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:655-661. [PMID: 30273712 DOI: 10.1016/j.asd.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
In Arthropoda, the ovary is classified into Chelicerata-type and Mandibulata-type, based on the oocyte-growth position within the ovary. By contrast, oocytes of Diplopoda and Chilopoda grow within the hemocoelic space. However, as the position of oocyte-growth in Symphyla and Pauropoda has not been confirmed, whether the hemocoelic nature of oocyte-growth is common among myriapods remains ambiguous. This study described the ovarian structure of Hanseniella caldaria to reveal the oocyte-growth position in Symphyla. The oocyte is surrounded by the follicle epithelium, and the inner surface of the follicle epithelium, i.e., the space between follicle cells and oocytes, is lined with a basement membrane. The follicle epithelial layer continues to the ovarian epithelium via the follicle extension with a continuous layer of basement membrane. Data on the architecture of the follicle suggest that the follicle pouch opens to the hemocoel. Hence, the oocyte of H. caldaria grows within the hemocoelic space. Based on our findings in H. caldaria and previous studies in a millipede and in centipedes, the hemocoelic nature of oocyte-growth is considered as a common feature among myriapods and a synapomorphy of the Myriapoda for which morphological synapomorphies have been ambiguous.
Collapse
Affiliation(s)
- Kensuke Yahata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Department of Basic Biology in the School of Life Science, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.
| | - Erika Umetani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
14
|
Urbisz AZ, Chajec Ł, Ito M, Ito K. The ovary organization in the marine limnodriloidin Thalassodrilides cf. briani (Annelida: Clitellata: Naididae) resembles the ovary of freshwater tubificins. ZOOLOGY 2018; 128:16-26. [DOI: 10.1016/j.zool.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
|
15
|
Świątek P, de Wit P, Jarosz N, Chajec Ł, Urbisz AZ. Micromorphology of ovaries and oogenesis in Grania postclitellochaeta (Clitellata: Enchytraeidae). ZOOLOGY 2018; 126:119-127. [DOI: 10.1016/j.zool.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
16
|
Bilinski SM, Kloc M, Tworzydlo W. Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 2017; 34:1405-1412. [PMID: 28755153 PMCID: PMC5699987 DOI: 10.1007/s10815-017-1006-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Early oocytes of nearly all animal species contain a transient organelle assemblage termed the Balbiani body. Structure and composition of this assemblage may vary even between closely related species. Despite this variability, the Balbiani body always comprises of numerous tightly clustered mitochondria and accumulations of nuage material. It has been suggested that the Balbiani body is an evolutionarily ancestral structure, which plays a role in various processes such as the localization of organelles and macromolecules to the germ plasm, lipidogenesis, as well as the selection/elimination of dysfunctional mitochondria from female germline cells. We suggest that the selection/elimination of mitochondria is a primary and evolutionarily ancestral function of Balbiani body, and that the other functions are secondary, evolutionarily derived additions. We propose a simple model explaining the role of the Balbiani body in the selection of mitochondria, i.e., in the mitochondrial DNA (mtDNA) bottleneck phenomenon.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute and The Houston Methodist Hospital, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|