1
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
2
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2025; 16:147-167. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
3
|
Zhang H, Zheng X, Yan Z, Guo L, Zheng Y, Zhang D, Ma X. The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1439699. [PMID: 39726950 PMCID: PMC11669696 DOI: 10.3389/fcvm.2024.1439699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis. Methods Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods. Results The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.40, 95% CI: 1.28-1.53, P < 0.001), Saturated fatty acids (OR = 1.44, 95% CI: 1.30-1.60, P < 0.001), Serum total triglyceride levels (OR = 1.33, 95% CI: 1.22-1.46, P < 0.001), Conjugated linoleic acid (OR = 1.16, 95% CI: 1.04-1.30, P = 0.007). Conversely, certain metabolites were found to reduce the occurrence of coronary atherosclerosis, such as: Cholesteryl esters to total lipids ratio in medium HDL (OR = 0.73, 95% CI: 0.67-0.78, P < 0.001), Cholesteryl esters to total lipids ratio in large HDL (OR = 0.64, 95% CI: 0.58-0.71, P < 0.001), Total cholesterol to total lipids ratio in medium HDL (OR = 0.71, 95% CI: 0.65-0.77, P < 0.001). Conclusion There is a close relationship between metabolites and the occurrence of coronary atherosclerosis. This study conducted Mendelian randomization analysis on the causal relationship between 233 metabolites and coronary atherosclerosis, providing potential new insights for the treatment of this disease.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Zheng
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Yang L, Wu Y, Yang J, Li Y, Zhao X, Liang T, Li L, Jiang T, Zhang T, Zhang J, Zhong H, Xie X, Wu Q. Lactiplantibacillus plantarum P470 Isolated from Fermented Chinese Chives Has the Potential to Improve In Vitro the Intestinal Microbiota and Biological Activity in Feces of Coronary Heart Disease (CHD) Patients. Nutrients 2024; 16:2945. [PMID: 39275259 PMCID: PMC11397641 DOI: 10.3390/nu16172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiantian Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
5
|
Nasrollahzadeh A, Mollaei Tavani S, Arjeh E, Jafari SM. Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chem X 2023; 20:100942. [PMID: 38144824 PMCID: PMC10740029 DOI: 10.1016/j.fochx.2023.100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Conjugated linoleic acid (CLA) has recently attracted significant attention as a health-promoting compound. CLA is a group of positional isomers of linoleic acid (LA) with a conjugated double bond naturally occurring in dairy and ruminant meat products. Microbial biosynthesis of CLA is a practical approach for commercial production due to its high safety and purity. There are some factors for the microbial CLA production such as strain type, microbial growth phase, pH, temperature and incubation time, based on which the amount and type of CLA can be controlled. Understanding the interplay of these factors is essential in optimizing the quantity and composition of microbial CLA, as discussed in the current study. Further exploration of CLA and its influences on human health remains a dynamic and evolving area of study.
Collapse
Affiliation(s)
- Ahmad Nasrollahzadeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
- Nobonyad Nasr Food Industry Specialists Company, Tehran, Iran
| | - Samaneh Mollaei Tavani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Edris Arjeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
6
|
Kelm NQ, Solinger JC, Piell KM, Cole MP. Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. Int J Mol Sci 2023; 24:11208. [PMID: 37446386 DOI: 10.3390/ijms241311208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2 levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The observance of cLA-induced ventricular tachyarrhythmia's (VT) led to the subsequent investigation of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or 72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.
Collapse
Affiliation(s)
- Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jane C Solinger
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, Louisville, KY 40202, USA
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
10,12-conjugated linoleic acid supplementation improves HDL composition and function in mice. J Lipid Res 2022; 63:100241. [PMID: 35714730 PMCID: PMC9283942 DOI: 10.1016/j.jlr.2022.100241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022] Open
Abstract
Obesity is associated with inflammation, insulin resistance, and type 2 diabetes, which are major risk factors for CVD. One dietary component of ruminant animal foods, 10,12-conjugated linoleic acid (10,12 CLA), has been shown to promote weight loss in humans. Previous work has shown that 10,12 CLA is atheroprotective in mice by a mechanism that may be distinct from its weight loss effects, but this exact mechanism is unclear. To investigate this, we evaluated HDL composition and function in obese LDL receptor (Ldlr−/−) mice that were losing weight because of 10,12 CLA supplementation or caloric restriction (CR; weight-matched control group) and in an obese control group consuming a high-fat high-sucrose diet. We show that 10,12 CLA-HDL exerted a stronger anti-inflammatory effect than CR- or high-fat high-sucrose-HDL in cultured adipocytes. Furthermore, the 10,12 CLA-HDL particle (HDL-P) concentration was higher, attributed to more medium- and large-sized HDL-Ps. Passive cholesterol efflux capacity of 10,12 CLA-HDL was elevated, as was expression of HDL receptor scavenger receptor class B type 1 in the aortic arch. Murine macrophages treated with 10,12 CLA in vitro exhibited increased expression of cholesterol transporters Abca1 and Abcg1, suggesting increased cholesterol efflux potential of these cells. Finally, proteomics analysis revealed elevated Apoa1 content in 10,12 CLA-HDL-Ps, consistent with a higher particle concentration, and particles were also enriched with alpha-1-antitrypsin, an emerging anti-inflammatory and antiatherosclerotic HDL-associated protein. We conclude that 10,12 CLA may therefore exert its atheroprotective effects by increasing HDL-P concentration, HDL anti-inflammatory potential, and promoting beneficial effects on cholesterol efflux.
Collapse
|
8
|
Amamou A, O’Mahony C, Leboutte M, Savoye G, Ghosh S, Marion-Letellier R. Gut Microbiota, Macrophages and Diet: An Intriguing New Triangle in Intestinal Fibrosis. Microorganisms 2022; 10:490. [PMID: 35336066 PMCID: PMC8952309 DOI: 10.3390/microorganisms10030490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) without specific treatment. As macrophages are the key actors in inflammatory responses and the wound healing process, they have been extensively studied in chronic diseases these past decades. By their exceptional ability to integrate diverse stimuli in their surrounding environment, macrophages display a multitude of phenotypes to underpin a broad spectrum of functions, from the initiation to the resolution of inflammation following injury. The hypothesis that distinct macrophage subtypes could be involved in fibrogenesis and wound healing is emerging and could open up new therapeutic perspectives in the treatment of intestinal fibrosis. Gut microbiota and diet are two key factors capable of modifying intestinal macrophage profiles, shaping their specific function. Defects in macrophage polarisation, inadequate dietary habits, and alteration of microbiota composition may contribute to the development of intestinal fibrosis. In this review, we describe the intriguing triangle between intestinal macrophages, diet, and gut microbiota in homeostasis and how the perturbation of this discreet balance may lead to a pro-fibrotic environment and influence fibrogenesis in the gut.
Collapse
Affiliation(s)
- Asma Amamou
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Mathilde Leboutte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| | - Guillaume Savoye
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France;
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Rachel Marion-Letellier
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| |
Collapse
|
9
|
Chai BK, Murugan DD, Rais MM, Al-Shagga M, Mohankumar SK. Conjugated linoleic acid isomers induced dyslipidemia and lipoatrophy are exacerbated by rosiglitazone in ApoE null mice fed a Western diet. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Insulin sensitizers have been used to treat Type 2 diabetes. However, their non-negligible side effects have led to cardiovascular concerns and the withdrawal of a member, rosiglitazone. OBJECTIVE: We combined conjugated linoleic acid (CLA) with rosiglitazone to test for amelioration of side effects posed by rosiglitazone in vivo. METHODS: We utilized ApoE null mice fed with Western diet (WD) to test our hypothesis. Mice were fed WD, with or without CLA administration, for 12 weeks. CLA utilized in our study consisted of a 1:1 ratio of 95% pure c9,t11, and t10,c12 isomers at a concentration of 0.1% w/v in fat-free milk. Starting from Week 12, select mice received rosiglitazone. RESULTS: It was found that mice receiving CLA from Week 0 and rosiglitazone from Week 12 had the lowest body weight and exacerbated hepatomegaly. Although these mice had attenuated insulin resistance compared to mice receiving only Western diet, they display a marked increase in total plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Mice receiving early CLA administration developed hyperleptinemia, which was not restored by rosiglitazone. CONCLUSION: Taken together, against the background of ApoE null genotype and WD feeding, simultaneous administration of 1:1 CLA and rosiglitazone led to dyslipidemic lipoatrophy.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Biomedical Translation Research Centre, National Biotechnology Research Park, No 99, Lane 130, Academia Road Section 1, Nangang District, Taipei City 11571, Taiwan
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Mohd Rais
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Al-Shagga
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K. Mohankumar
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, United Kingdom
| |
Collapse
|
10
|
Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. Methods Mol Biol 2021; 2278:87-100. [PMID: 33649950 DOI: 10.1007/978-1-0716-1274-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.
Collapse
|
11
|
Fitzsimons S, Oggero S, Bruen R, McCarthy C, Strowitzki MJ, Mahon NG, Ryan N, Brennan EP, Barry M, Perretti M, Belton O. microRNA-155 Is Decreased During Atherosclerosis Regression and Is Increased in Urinary Extracellular Vesicles During Atherosclerosis Progression. Front Immunol 2020; 11:576516. [PMID: 33391256 PMCID: PMC7773661 DOI: 10.3389/fimmu.2020.576516] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Atherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD). Methods miR-155 expression was quantified in aortae from ApoE−/− mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD. Results Here, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs. Conclusion miR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Silvia Oggero
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Robyn Bruen
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Moritz J Strowitzki
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Niall G Mahon
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Cardiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Nicola Ryan
- Department of Cardiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mary Barry
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Faustino MV, Faustino MAF, Silva H, Silva AMS, Pinto DCGA. Lipophilic Metabolites of
Spartina maritima
and
Puccinellia maritima
Involved in Their Tolerance to Salty Environments. Chem Biodivers 2020; 17:e2000316. [DOI: 10.1002/cbdv.202000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Maria V. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Helena Silva
- CESAM Department of Biology University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
13
|
O'Reilly ME, Lenighan YM, Dillon E, Kajani S, Curley S, Bruen R, Byrne R, Heslin AM, Moloney AP, Roche HM, McGillicuddy FC. Conjugated Linoleic Acid and Alpha Linolenic Acid Improve Cholesterol Homeostasis in Obesity by Modulating Distinct Hepatic Protein Pathways. Mol Nutr Food Res 2020; 64:e1900599. [DOI: 10.1002/mnfr.201900599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marcella E. O'Reilly
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Yvonne M. Lenighan
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Eugene Dillon
- Mass Spectrometry ResourceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Sarina Kajani
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Sean Curley
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Robyn Bruen
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Rachel Byrne
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Aoibhin Moore Heslin
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Aidan P. Moloney
- TeagascAnimal & Grassland Research and Innovation Centre Meath Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Institute of Food and HealthUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Fiona C. McGillicuddy
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| |
Collapse
|
14
|
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 2020; 65:695-705. [PMID: 32067143 DOI: 10.1007/s10620-020-06118-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H, Chen W. Orally Administered CLA Ameliorates DSS-Induced Colitis in Mice via Intestinal Barrier Improvement, Oxidative Stress Reduction, and Inflammatory Cytokine and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13282-13298. [PMID: 31690068 DOI: 10.1021/acs.jafc.9b05744] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dietary supplementation with conjugated linoleic acid (CLA) has been reported to alleviate the effect of colitis in mice, but the mechanisms involved need further exploration. The study aimed to investigate how orally administered CLA alleviates dextran sulfate sodium (DSS)-induced colitis in mice. CLA was administered in five different doses: 40, 20, 10, 5, and 2.5 mg/day. Doses of CLA at 10 mg/day and higher alleviated colitis symptoms and reduced inflammation induced by DSS, in which 40, 20, and 10 mg/day CLA significantly increased the concentration of mucin2 and goblet cells, but neither 5 mg/day CLA nor 2.5 mg/day CLA had any effects. Meanwhile, 40 and 20 mg/day CLA treatments significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, and claudin-3) and ameliorated epithelial apoptosis caused by DSS. Moreover, oxidative-stress-related enzymes (superoxide dismutase, glutathione peroxidase, and catalase) and inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-10, and IL-6] were modulated by 40 and 20 mg/day CLA. Furthermore, 40 mg/day CLA rebalanced the gut microbiota damaged by DSS, including reducing Bacteroides and increasing Bifidobacterium and Odoribacter. In conclusion, CLA supplementation alleviated DSS-induced colitis in a dose-dependent manner by modulating inflammatory cytokines and oxidation stress, maintaining the mucosal barrier, and reverting microbiota changes.
Collapse
Affiliation(s)
| | | | - R Paul Ross
- APC Microbiome Ireland , University College Cork , Cork T12 K8AF , Ireland
| | - Yan Jin
- Department of Gastroenterology , The Affiliated Wuxi Second People's Hospital of Nanjing Medical University , Wuxi 214023 , China
| | - Catherine Stanton
- Teagasc Food Research Centre , Moorepark, Fermoy, Cork P61 C996 , Ireland
- APC Microbiome Ireland , University College Cork , Cork T12 K8AF , Ireland
| | | | - Hao Zhang
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch , Wuxi 214122 , China
| | - Wei Chen
- Beijing Innovation Center of Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
16
|
Bruen R, Curley S, Kajani S, Lynch G, O'Reilly ME, Dillon ET, Fitzsimons S, Mthunzi L, McGillicuddy FC, Belton O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis. FASEB J 2019; 33:11006-11020. [PMID: 31284764 DOI: 10.1096/fj.201900922r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis. Apolipoprotein E knockout (ApoE-/-) mice were fed a high-fat (60%) high-cholesterol (1%) diet (HFHCD) for 2 wk, followed by 6-wk 1% CLA 80:20 supplementation to investigate disease progression. Simultaneously, ApoE-/- mice were fed a 12-wk HFHCD with/without CLA for the final 4 wk to investigate regression. Aortic lesions were quantified by en face staining. Proteomic analysis, real-time quantitative PCR and flow cytometry were used to interrogate monocyte/macrophage phenotypes. CLA supplementation inhibited atherosclerosis progression coincident with decreased proinflammatory and increased anti-inflammatory macrophages. However, CLA-induced regression was associated with increased proinflammatory monocytes resulting in increased proresolving M2 bone marrow-derived macrophages, splenic macrophages, and dendritic cells in lesion-draining lymph nodes. Proteomic analysis confirmed regulation of a proinflammatory bone marrow response, which was abolished upon macrophage differentiation. Thus, in attenuation and regression of atherosclerosis, regardless of the monocyte signature, during monocyte to macrophage differentiation, proresolving macrophages prevail, mediating vascular repair. This study provides novel mechanistic insight into the monocyte/macrophage phenotypes in halted atherosclerosis progression and regression of atherosclerosis.-Bruen, R., Curley, S., Kajani, S., Lynch, G., O'Reilly, M. E., Dillon, E. T., Fitzsimons, S., Mthunzi, L., McGillicuddy, F. C., Belton, O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis.
Collapse
Affiliation(s)
- Robyn Bruen
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Seán Curley
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sarina Kajani
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gina Lynch
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Marcella E O'Reilly
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Eugéne T Dillon
- Mass Spectrometry Resource, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Liberty Mthunzi
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Bruen R, Fitzsimons S, Belton O. miR-155 in the Resolution of Atherosclerosis. Front Pharmacol 2019; 10:463. [PMID: 31139076 PMCID: PMC6527595 DOI: 10.3389/fphar.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.
Collapse
Affiliation(s)
- Robyn Bruen
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Saika A, Nagatake T, Kunisawa J. Host- and Microbe-Dependent Dietary Lipid Metabolism in the Control of Allergy, Inflammation, and Immunity. Front Nutr 2019; 6:36. [PMID: 31024921 PMCID: PMC6468274 DOI: 10.3389/fnut.2019.00036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
The intestine is the largest immune organ in the body, provides the first line of defense against pathogens, and prevents excessive immune reactions to harmless or beneficial non-self-materials, such as food and intestinal bacteria. Allergic and inflammatory diseases in the intestine occur as a result of dysregulation of immunological homeostasis mediated by intestinal immunity. Several lines of evidence suggest that gut environmental factors, including nutrition and intestinal bacteria, play important roles in controlling host immune responses and maintaining homeostasis. Among nutritional factors, ω3 and ω6 essential polyunsaturated fatty acids (PUFAs) profoundly influence the host immune system. Recent advances in lipidomics technology have led to the identification of lipid mediators derived from ω3- and ω6-PUFAs. In particular, lipid metabolites from ω3-PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid) have recently been shown to exert anti-allergic and anti-inflammatory responses; these metabolites include resolvins, protectins, and maresins. Furthermore, a new class of anti-allergic and anti-inflammatory lipid metabolites of 17,18-epoxyeicosatetraenoic acid has recently been identified in the control of allergic and inflammatory diseases in the gut and skin. Although these lipid metabolites were found to be endogenously generated in the host, accumulating evidence indicates that intestinal bacteria also participate in lipid metabolism and thus generate bioactive unique lipid mediators. In this review, we discuss the production machinery of lipid metabolites in the host and intestinal bacteria and the roles of these metabolites in the regulation of host immunity.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
19
|
Faustino MV, Faustino MAF, Pinto DCGA. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int J Mol Sci 2019; 20:E1067. [PMID: 30823674 PMCID: PMC6429475 DOI: 10.3390/ijms20051067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
The Poaceae family, known as grasses, is distributed worldwide and is considered the most important group of monocotyledonous crops. Salt stress is multifactorial, therefore to survive, halophytes evolved a variety of adaptations, which include the biosynthesis of different primary and secondary metabolites. This trait enhances the accumulation of important families of compounds crucial to the prevention of a variety of chronic diseases. Besides, if proven edible, these species could cope with the increased soil salinity responsible for the decline of arable land due to their high nutritional/nutraceutical value. Herein, the phytochemical investigations performed in halophytes from the Poaceae family as well as their biological properties were explored. Among the 65 genera and 148 species of known halophytic grasses, only 14% of the taxa were studied phytochemically and 10% were subjected to biological evaluation. Notably, in the studied species, a variety of compound families, as well as bioactivities, were demonstrated, highlighting the potential of halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
21
|
Li JZ, Cao TH, Han JC, Qu H, Jiang SQ, Xie BD, Yan XL, Wu H, Liu XL, Zhang F, Leng XP, Kang K, Jiang SL. Comparison of adipose‑ and bone marrow‑derived stem cells in protecting against ox‑LDL‑induced inflammation in M1‑macrophage‑derived foam cells. Mol Med Rep 2019; 19:2660-2670. [PMID: 30720126 PMCID: PMC6423631 DOI: 10.3892/mmr.2019.9922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Adipose‑derived stem cells (ADSCs) and bone marrow‑derived stem cells (BMSCs) are considered to be prospective sources of mesenchymal stromal cells (MSCs), that can be used in cell therapy for atherosclerosis. The present study investigated whether ADSCs co‑cultured with M1 foam macrophages via treatment with oxidized low‑density lipoprotein (ox‑LDL) would lead to similar or improved anti‑inflammatory effects compared with BMSCs. ADSCs, peripheral blood monocytes, BMSCs and ox‑LDL were isolated from ten coronary heart disease (CHD) patients. After three passages, the supernatants of the ADSCs and BMSCs were collected and systematically analysed by liquid chromatography‑quadrupole time‑of‑flight‑mass spectrometry (6530; Agilent Technologies, Inc., Santa Clara, CA, USA). Cis‑9, trans‑11 was deemed to be responsible for the potential differences in the metabolic characteristics of ADSCs and BMSCs. These peripheral blood monocytes were characterized using flow cytometry. Following peripheral blood monocytes differentiation into M1 macrophages, the formation of M1 foam macrophages was achieved through treatment with ox‑LDL. Overall, 2x106 ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 were co‑cultured with M1 foam macrophages. Anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability and cell viability assays were compared among these groups. It was demonstrated that the accumulation of lipid droplets decreased following ADSCs, BMSCs or BMSCs+cis‑9, trans‑11 treatment in M1 macrophages derived from foam cells. Consistently, ADSCs exhibited great advantageous anti‑inflammatory capabilities, phagocytic activity, anti‑apoptotic capability activity and cell viability over BMSCs or BMSCs+cis‑9, trans‑11. Additionally, BMSCs+cis‑9, trans‑11 also demonstrated marked improvement in anti‑inflammatory capability, phagocytic activity, anti‑apoptotic capability activity and cell viability in comparison with BMSCs. The present results indicated that ADSCs would be more appropriate for transplantation to treat atherosclerosis than BMSCs alone or BMSCs+cis‑9, trans‑11. This may be an important mechanism to regulate macrophage immune function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Tian-Hui Cao
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Jin-Cheng Han
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Qu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shuang-Quan Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Bao-Dong Xie
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Long Yan
- Division of Thoracic Surgery, Tang Du Hospital of Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Wu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Xiang-Lan Liu
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Fan Zhang
- Division of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao-Ping Leng
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Kang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| | - Shu-Lin Jiang
- Division of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Education Ministry for Myocardial Ischemia, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
22
|
Li K, Sinclair AJ, Zhao F, Li D. Uncommon Fatty Acids and Cardiometabolic Health. Nutrients 2018; 10:nu10101559. [PMID: 30347833 PMCID: PMC6213525 DOI: 10.3390/nu10101559] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required. The favorable effects of conjugated linoleic acid (CLA) on cardiometabolic health observed in animal or in vitro cannot be replicated in humans. However, most intervention studies in humans concerning CLA have only evaluated its effect on cardiometabolic risk factors but not its direct effect on risk of CVD, and randomized controlled trials (RCTs) will be required to clarify this point. However, several difficulties and limitations exist for conducting RCTs to evaluate the effect of these fatty acids on cardiometabolic health, especially the high costs for purifying the fatty acids from natural sources. This review provides a basis for better nutritional prevention and therapy of CVD.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Andrew J Sinclair
- Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
23
|
Kanter JE, Goodspeed L, Wang S, Kramer F, Wietecha T, Gomes-Kjerulf D, Subramanian S, O'Brien KD, den Hartigh LJ. 10,12 Conjugated Linoleic Acid-Driven Weight Loss Is Protective against Atherosclerosis in Mice and Is Associated with Alternative Macrophage Enrichment in Perivascular Adipose Tissue. Nutrients 2018; 10:nu10101416. [PMID: 30282904 PMCID: PMC6213611 DOI: 10.3390/nu10101416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
The dietary fatty acid 10,12 conjugated linoleic acid (10,12 CLA) promotes weight loss by increasing fat oxidation, but its effects on atherosclerosis are less clear. We recently showed that weight loss induced by 10,12 CLA in an atherosclerosis-susceptible mouse model with characteristics similar to human metabolic syndrome is accompanied by accumulation of alternatively activated macrophages within subcutaneous adipose tissue. The objective of this study was to evaluate whether 10,12 CLA-mediated weight loss was associated with an atheroprotective phenotype. Male low-density lipoprotein receptor deficient (Ldlr−/−) mice were made obese with 12 weeks of a high-fat, high-sucrose diet feeding (HFHS: 36% fat, 36% sucrose, 0.15% added cholesterol), then either continued on the HFHS diet with or without caloric restriction (CR), or switched to a diet with 1% of the lard replaced by either 9,11 CLA or 10,12 CLA for 8 weeks. Atherosclerosis and lipid levels were quantified at sacrifice. Weight loss in mice following 10,12 CLA supplementation or CR as a weight-matched control group had improved cholesterol and triglyceride levels, yet only the 10,12 CLA-treated mice had improved en face and aortic sinus atherosclerosis. 10,12 CLA-supplemented mice had increased lesion macrophage content, with enrichment of surrounding perivascular adipose tissue (PVAT) alternative macrophages, which may contribute to the anti-atherosclerotic effect of 10,12 CLA.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Tomasz Wietecha
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Diego Gomes-Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Kevin D O'Brien
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Li JZ, Qu H, Wu J, Zhang F, Jia ZB, Sun JY, Lv B, Kang Y, Jiang SL, Kang K. Metabolic profiles of adipose-derived and bone marrow-derived stromal cells from elderly coronary heart disease patients by capillary liquid chromatography quadrupole time-of-flight mass spectrometry. Int J Mol Med 2017; 41:184-194. [PMID: 29115374 PMCID: PMC5746296 DOI: 10.3892/ijmm.2017.3198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Adipose-tissue derived mesenchymal stem cell (ADSC)-based therapy is a promising option for patients with atherosclerotic conditions, including coronary artery disease. However, the potential differences in the metabolic characteristics between bone marrow-derived mesenchymal stem cells (BMSCs) and ADSCs have remained to be fully elucidated. The present study aimed to compare the metabolic profiles of BMSCs and ADSCs via liquid chromatography quadrupole time-of-flight mass spectrometry. BMSCs and ADSCs obtained from elderly coronary heart disease patients were cultured, and after three passages, supernatants of each cell type were collected and systematically analysed. Substantial differences were detected between the metabolite signatures of ADSCs and BMSCs. In addition, further analysis using partial least-squares discriminant analysis score plots indicated significant differences between the supernatants of the two cell types. The following metabolites were deemed to be responsible for the potential differences in the metabolic characteristics of BMSCs and ADSCs: D-lactic acid, hydroxyindoleacetaldehyde, α-D-glucose, bovinic acid, 9,10-epoxyoctadecenoic acid, glyceraldehyde, phenylpyruvic acid, L-octanoylcarnitine, retinyl ester, α-ketoisovaleric acid, guanidoacetic acid, N-acetylneuraminic acid, imidazoleacetic acid riboside, sphingosine and pseudouridine 5′-phosphate. Based on these findings, there may be significant differences in the following metabolic pathways: The linoleic acid metabolic pathway, galactose metabolism, argentines and proline metabolism, retinol metabolism, glycine and serine metabolism, galactose metabolism, and amino sugar and nucleotide sugar metabolism. In conclusion, substantial differences in metabolic characteristics were detected between BMSCs and ADSCs, which may be associated with the different efficacies of atherosclerosis therapies employing these cell types.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Qu
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jian Wu
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fan Zhang
- Division of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhi-Bo Jia
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jian-Yong Sun
- Division of Thoracic Surgery, Tang Du Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Lv
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yue Kang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shu-Lin Jiang
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Kang
- Key Laboratory of Education of the Ministry for Myocardial Ischemia, Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
25
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
26
|
Balci Yuce H, Akbulut N, Ocakli S, Kayir O, Elmastas M. The effect of commercial conjugated linoleic acid products on experimental periodontitis and diabetes mellitus in Wistar rats. Acta Odontol Scand 2017; 75:21-29. [PMID: 27897090 DOI: 10.1080/00016357.2016.1244355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of present study was to determine the effects of conjugated linoleic acid enriched milk on alveolar bone loss, hyperglycaemia, oxidative stress and apoptosis in ligature-induced periodontal disease in diabetic rat model. METHODS Wistar rats were divided into six experimental groups: 1; non-ligated (NL, n = 6) group, 2; ligature only (LO, n = 6) group, 3; streptozotocin only (STZ, n = 8) group, 4; STZ and ligature (STZ + L, n = 8) group, 5; ligature and conjugated linoleic acid (CLA) (L + CLA, n = 8) group, 6; STZ, ligature and CLA group (STZ + L + CLA, n = 8) group. Diabetes mellitus was induced by 60 mg/kg streptozotocin. Rats were fed with CLA enriched milk for four weeks. Silk ligatures were placed at the gingival margin of lower first molars of mandibular quadrant. The study duration was four weeks after diabetes induction and the animals were sacrificed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were histopathologically examined. Inducible nitric oxide synthase (iNOS) and Bax protein expressions, serum interleukin-1β (IL-1β), low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglyceride levels and tartrate resistant acid phosphatase (TRAP)+ osteoclast numbers were also evaluated. RESULTS At the end of four weeks, alveolar bone loss was significantly higher in the STZ + LO group compared to the other groups (p < .05). CLA decreased alveolar bone loss in L + CLA and STZ + L + CLA groups. CLA significantly decreased TRAP + osteoclast numbers and increased osteoblastic activity compared to the STZ + L group (p < .05). Diabetes and CLA increased Bax protein levels (p < .05) however CLA had no effect on iNOS expression (p > .05). CONCLUSION Within the limits of this study, commercial CLA product administration in addition to diet significantly reduced alveolar bone loss, increased osteoblastic activity and decreased osteoclastic activity in the diabetic Wistar rats.
Collapse
|
27
|
Dus-Zuchowska M, Madry E, Krzyzanowska P, Bogdanski P, Walkowiak J. Twelve-week-conjugated linoleic acid supplementation has no effects on the selected markers of atherosclerosis in obese and overweight women. Food Nutr Res 2016; 60:32776. [PMID: 27834186 PMCID: PMC5103664 DOI: 10.3402/fnr.v60.32776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022] Open
Abstract
Background The antiatherogenic effect of conjugated linoleic acid (CLA) has been demonstrated in animal models. Although there are plenty of in vitro studies that suggest the profitable properties of CLA, the results in humans remain inconsistent. Objective In this study, we assessed the impact of CLA supplementation on the levels of atherosclerosis markers – high-sensitivity C-reactive protein (hs-CRP) and asymmetrical dimethylarginine (ADMA). Design Seventy-four adult female subjects with body mass index ≥25 kg/m2 were enrolled in the double-blind, placebo-controlled nutritional intervention. The study participants were randomly assigned to receive 3 g/day CLA or placebo (sunflower oil) for 12 weeks. In all subjects, we measured hs-CRP and ADMA concentrations by using enzyme-linked immunosorbent assay. Results No significant differences were found in hs-CRP and ADMA levels before and after nutritional intervention between both groups. The changes in hs-CRP and ADMA concentration values (Δhs-CRP; ΔADMA median [interquartile range]) did not differ between subjects from the placebo (−0.1 [−0.8 to 0.3]; −0.02 [−0.12 to 0.14]) and CLA (0.2 [−0.7 to 0.9]; 0.04 [−0.14 to 0.13]) groups. The incidence of reduction of hs-CRP or ADMA concentration was not different in subjects of the CLA group compared to those of the placebo group (41.9% vs. 50%, relative risk [RR]=0.8387, 95% confidence interval [CI]=0.4887–1.4493, p=0.5232 and 61.3% vs. 56.2%, RR=1.0896, 95% CI=0.7200–1.6589, p=0.6847, respectively). Conclusion Twelve weeks of CLA supplementation had no effect on selected markers of atherosclerosis in obese and overweight women.
Collapse
Affiliation(s)
- Monika Dus-Zuchowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Madry
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Patrycja Krzyzanowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdanski
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland;
| |
Collapse
|
28
|
de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front Immunol 2016; 7:275. [PMID: 27486460 PMCID: PMC4949256 DOI: 10.3389/fimmu.2016.00275] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis is an inflammatory disease caused by endothelial injury, lipid deposition, and oxidative stress. This progressive disease can be converted into an acute clinical event by plaque rupture and thrombosis. In the context of atherosclerosis, the underlying cause of myocardial infarction and stroke, macrophages uniquely possess a dual functionality, regulating lipid accumulation and metabolism and sustaining the chronic inflammatory response, two of the most well-documented pathways associated with the pathogenesis of the disease. Macrophages are heterogeneous cell populations and it is hypothesized that, during the pathogenesis of atherosclerosis, macrophages in the developing plaque can switch from a pro-inflammatory (MΦ1) to an anti-inflammatory (MΦ2) phenotype and vice versa, depending on the microenvironment. The aim of this study was to identify changes in macrophage subpopulations in the progression of human atherosclerotic disease. Established atherosclerotic plaques from symptomatic and asymptomatic patients with existing coronary artery disease undergoing carotid endarterectomy were recruited to the study. Comprehensive histological and immunohistochemical analyses were performed to quantify the cellular content and macrophage subsets of atherosclerotic lesion. In parallel, expression of MΦ1 and MΦ2 macrophage markers were analyzed by real-time PCR and Western blot analysis. Gross analysis and histological staining demonstrated that symptomatic plaques presented greater hemorrhagic activity and the internal carotid was the most diseased segment, based on the predominant prevalence of fibrotic and necrotic tissue, calcifications, and hemorrhagic events. Immunohistochemical analysis showed that both MΦ1 and MΦ2 macrophages are present in human plaques. However, MΦ2 macrophages are localized to more stable locations within the lesion. Importantly, gene and protein expression analysis of MΦ1/MΦ2 markers evidenced that MΦ1 markers and Th1-associated cytokines are highly expressed in symptomatic plaques, whereas expression of the MΦ2 markers, mannose receptor (MR), and CD163 and Th2 cytokines are inversely related with disease progression. These data increase the understanding of atherosclerosis development, identifying the cellular content of lesions during disease progression, and characterizing macrophage subpopulation within human atherosclerotic plaques.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin , Dublin , Ireland
| | - Daniel Crean
- School of Veterinary Medicine, UCD Conway Institute, University College Dublin , Dublin , Ireland
| | - Mary Barry
- St. Vincent's University Hospital , Dublin , Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin , Dublin , Ireland
| |
Collapse
|
29
|
Siurana A, Calsamiglia S. A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Slocum C, Kramer C, Genco CA. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med 2016; 280:114-28. [PMID: 26791914 DOI: 10.1111/joim.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiovascular disease is an inflammatory disorder characterized by the progressive formation of plaque in coronary arteries, termed atherosclerosis. It is a multifactorial disease that is one of the leading causes of death worldwide. Although a number of risk factors have been associated with disease progression, the underlying inflammatory mechanisms contributing to atherosclerosis remain to be fully delineated. Within the last decade, the potential role for infection in inflammatory plaque progression has received considerable interest. Microbial pathogens associated with periodontal disease have been of particular interest due to the high levels of bacteremia that are observed after routine dental procedures and every day oral activities, such as tooth brushing. Here, we explore the potential mechanisms that may explain how periodontal pathogens either directly or indirectly elicit immune dysregulation and consequently progressive inflammation manifested as atherosclerosis. Periodontal pathogens have been shown to contribute directly to atherosclerosis by disrupting endothelial cell function, one of the earliest indicators of cardiovascular disease. Oral infection is thought to indirectly induce elevated production of inflammatory mediators in the systemic circulation. Recently, a number of studies have been conducted focusing on how disruption of the gut microbiome influences the systemic production of proinflammatory cytokines and consequently exacerbation of inflammatory diseases such as atherosclerosis. It is clear that the immune mechanisms leading to atherosclerotic plaque progression, by oral infection, are complex. Understanding the immune pathways leading to disease progression is essential for the future development of anti-inflammatory therapies for this chronic disease.
Collapse
Affiliation(s)
| | - C Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - C A Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Bruen R, Fitzsimons S, Belton O. Atheroprotective effects of conjugated linoleic acid. Br J Clin Pharmacol 2016; 83:46-53. [PMID: 27037767 DOI: 10.1111/bcp.12948] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis, the underlying cause of heart attack and strokes, is a progressive dyslipidaemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The most predominant isomers in ruminant fats are cis-9, trans-11 CLA (c9,t11-CLA), which accounts for more than 80% of CLA isomers in dairy products and trans-10, cis-12 CLA (t10,c12-CLA). Dietary administration of a blend of the two most abundant isomers of CLA has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis. Studies investigating the mechanisms involved in CLA-induced atheroprotective effects are continually emerging. The purpose of this review is to discuss comprehensively the effects of CLA on monocyte/macrophage function in atherosclerosis and to identify possible mechanisms through which CLA mediates its atheroprotective effects.
Collapse
Affiliation(s)
- Robyn Bruen
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Ireland
| | - Stephen Fitzsimons
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Ireland
| |
Collapse
|
32
|
Druart C, Bindels LB, Schmaltz R, Neyrinck AM, Cani PD, Walter J, Ramer-Tait AE, Delzenne NM. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice. Mol Nutr Food Res 2015; 59:1603-13. [PMID: 25820326 DOI: 10.1002/mnfr.201500014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Abstract
SCOPE The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. METHODS AND RESULTS To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. CONCLUSION Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues.
Collapse
Affiliation(s)
- Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- Nutrition, Microbes, and Gastrointestinal Health, Department of Agricultural, Food & Nutritional Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W. Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.050] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
34
|
Yuan G, Chen X, Li D. Modulation of peroxisome proliferator-activated receptor gamma (PPAR γ) by conjugated fatty acid in obesity and inflammatory bowel disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1883-1895. [PMID: 25634802 DOI: 10.1021/jf505050c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugated fatty acids including conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) have drawn significant attention for their variety of biologically beneficial effects. Evidence suggested that CLA and CLNA could play physiological roles by regulating the expression and activity of PPAR γ. This review summarizes the current understanding of evidence of the role of CLA (cis-9,trans-11 CLA and trans-10,cis-12 CLA) and CLNA (punicic acid and α-eleostearic acid) in modulating the expression or activity of PPAR γ that could in turn be employed as complementary treatment for obesity and inflammatory bowel disease.
Collapse
Affiliation(s)
- Gaofeng Yuan
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhejiang Ocean University , Zhoushan 316022, China
| | | | | |
Collapse
|
35
|
Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. Br J Nutr 2015; 113:728-38. [PMID: 25697178 DOI: 10.1017/s0007114514004206] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main aim of the present study was to investigate the effects of dietary trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) on intestinal microbiota composition and SCFA production. C57BL/6 mice (n 8 per group) were fed a standard diet either supplemented with t10c12-CLA (0·5 %, w/w) (intervention) or with no supplementation (control), daily for 8 weeks. Metabolic markers (serum glucose, leptin, insulin and TAG, and liver TAG) were assessed by ELISA commercial kits, tissue long-chain fatty acids and caecal SCFA by GC, and microbial composition by 16S rRNA pyrosequencing. Dietary t10c12-CLA significantly decreased visceral fat mass (P< 0·001), but did not affect body weight (intervention), when compared with no supplementation (control). Additionally, lipid mass and composition were affected by t10c12-CLA intake. Caecal acetate, propionate and isobutyrate concentrations were higher (P< 0·05) in the t10c12-CLA-supplemented group than in the control group. The analysis of the microbiota composition following 8 weeks of t10c12-CLA supplementation revealed lower proportions of Firmicutes (P= 0·003) and higher proportions of Bacteroidetes (P= 0·027) compared with no supplementation. Furthermore, t10c12-CLA supplementation for 8 weeks significantly altered the gut microbiota composition, harbouring higher proportions of Bacteroidetes, including Porphyromonadaceae bacteria previously linked with negative effects on lipid metabolism and induction of hepatic steatosis. These results indicate that the mechanism of dietary t10c12-CLA on lipid metabolism in mice may be, at least, partially mediated by alterations in gut microbiota composition and functionality.
Collapse
|
36
|
A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation. PLoS One 2015; 10:e0115994. [PMID: 25695432 PMCID: PMC4335063 DOI: 10.1371/journal.pone.0115994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF function when compared to CON and CLA groups. These data suggest that a maternal HF diet causes a developmental programming of endothelial dysfunction and hypertension in male offspring which can be partially improved by maternal CLA supplementation, independent of offspring body weight.
Collapse
|
37
|
de Gaetano M, Alghamdi K, Marcone S, Belton O. Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. JOURNAL OF INFLAMMATION-LONDON 2015; 12:15. [PMID: 25722654 PMCID: PMC4340802 DOI: 10.1186/s12950-015-0060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023]
Abstract
Background Atherosclerosis, the underlying cause of heart attack and strokes, is a progresive dyslipidemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a group of isomers of linoleic acid that differ in the position and/or geometry of their double bonds. We have previously shown that a specific CLA blend (80:20 cis-9,trans-11:trans-10,cis-12-CLA) induces regression of pre-established atherosclerosis in vivo, via modulation of monocyte/macrophage function. However, the exact mechanisms through which CLA mediates this effect remain to be elucidated. Methods Here, we address if CLA primes monocytes towards an anti-inflammatory MΦ2 macrophage and examine the effect of individual CLA isomers and the atheroprotective blend on monocyte-macrophage differentiation, cytokine generation, foam cell formation and cholesterol metabolism in human peripheral blood monocyte (HPBMC)-derived macrophages. Results cis-9,trans-11-CLA and the atheroprotective 80:20 CLA blend regulates expression of pro-inflammatory mediators and modulates the inflammatory cytokine profile of macrophages and foam cells. In addition, cis-9,trans-11-CLA and CLA blend primes HPBMCs towards an anti-inflammatory MΦ2 phenotype, characterised by increased scavenger receptor (CD36) and efflux protein (ABCA-1) expression. Furthermore, this altered macrophage phenotype impacts on foam cell formation, inhibiting ox-LDL accumulation and promoting cholesterol efflux via both PPARγ and LXRα dependent pathways. Conclusion The data increases the understanding of the pathways regulated by CLA in atheroprotection, namely, inhibiting the progressive acquisition of a pro-inflammatory macrophage phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0060-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kawthar Alghamdi
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Simone Marcone
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Orina Belton
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Ramsey SA, Vengrenyuk Y, Menon P, Podolsky I, Feig JE, Aderem A, Fisher EA, Gold ES. Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet 2014; 10:e1004828. [PMID: 25474352 PMCID: PMC4256277 DOI: 10.1371/journal.pgen.1004828] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5′ regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5′ regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that β-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in macrophage emigration from the plaque during lipid lowering-induced regression, and they illustrate the discovery potential of an epigenome-guided, systems approach to understanding atherosclerosis regression. Atherosclerosis, a progressive accumulation of lipid-rich plaque within arteries, is an inflammatory disease in which the response of macrophages (a key cell type of the innate immune system) to plasma lipoproteins plays a central role. In humans, the goal of significantly reducing already-established plaque through drug treatments, including statins, remains elusive. In mice, atherosclerosis can be reversed by experimental manipulations that lower circulating lipid levels. A common feature of many regression models is that macrophages transition to a less inflammatory state and emigrate from the plaque. While the molecular regulators that control these responses are largely unknown, we hypothesized that by integrating global measurements of macrophage gene expression in regressing plaques with measurements of the macrophage chromatin landscape, we could identify key molecules that control macrophage responses to the lowering of circulating lipid levels. Our systems biology analysis of plaque macrophages yielded a network in which the Wnt signaling pathway emerged as a candidate upstream regulator. Wnt signaling is known to affect both inflammation and the ability of macrophages to migrate from one location to another, and our targeted validation studies provide evidence that Wnt signaling is increased in plaque macrophages during regression. Our findings both demonstrate the power of a systems approach to uncover candidate regulators of regression and to identify a potential new therapeutic target.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/physiology
- Female
- Gene Expression Profiling
- Genome/drug effects
- Hypolipidemic Agents/pharmacology
- Hypolipidemic Agents/therapeutic use
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Remission Induction
- Transcriptome/drug effects
- Wnt Signaling Pathway/drug effects
- Wnt Signaling Pathway/genetics
Collapse
Affiliation(s)
- Stephen A. Ramsey
- Department of Biomedical Sciences and School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Yuliya Vengrenyuk
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Prashanthi Menon
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Irina Podolsky
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jonathan E. Feig
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Alan Aderem
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Edward A. Fisher
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
- * E-mail: (EAF); (ESG)
| | - Elizabeth S. Gold
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (EAF); (ESG)
| |
Collapse
|
39
|
Shapiro H, Thaiss CA, Levy M, Elinav E. The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol 2014; 30:54-62. [PMID: 25064714 DOI: 10.1016/j.coi.2014.07.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/28/2014] [Accepted: 07/06/2014] [Indexed: 02/07/2023]
Abstract
The human meta-organism consists of more than 90% of microbial cells. The gastrointestinal tract harbors trillions of commensal microorganisms that influence the development and homeostasis of the host. Alterations in composition and function of the microbiota, termed dysbiosis, have been implicated in a multitude of metabolic and inflammatory diseases in humans. Thus, understanding the molecular underpinnings the cross talk between commensal bacteria and their host during homeostasis and dysbiosis may hold the key to understanding many idiopathic diseases. While most attention has focused on the innate recognition of immune-stimulatory bacterial molecules, such as cell wall components and nucleic acids, we emphasize here the impact of diet-dependent microbial metabolites on the development and function of the immune system.
Collapse
Affiliation(s)
- Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Piell KM, Qipshidze Kelm N, Caroway MP, Aman M, Cole MP. Nitrite treatment rescues cardiac dysfunction in aged mice treated with conjugated linoleic acid. Free Radic Biol Med 2014; 72:66-75. [PMID: 24721151 PMCID: PMC4108078 DOI: 10.1016/j.freeradbiomed.2014.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/11/2014] [Accepted: 03/29/2014] [Indexed: 11/21/2022]
Abstract
Conjugated linoleic acid (cLA) is a commercially available weight-loss supplement that is not currently regulated by the U.S. FDA. Numerous studies suggest that cLA mediates protection against diseases including cancer, diabetes, atherosclerosis, immune function, and obesity. Based upon these reports, it was hypothesized that supplementation with cLA would improve heart function in aged wild-type (WT) mice. At 10 months of age, mice were treated with cLA, nitrite, or the combination of the two. Echocardiograms revealed that cardiac function was decreased in aged compared to young WT mice, as determined by percentage of fractional shortening. Also, contrary to the hypothesis, mice that received cLA (6-week treatment) had significantly worse cardiac function compared to controls. This effect was attenuated when mice were cotreated with cLA and nitrite. Taken together, these results suggest that cLA-mediated cardiac injury can be circumvented by nitrite supplementation in a murine model of aging.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Megan P Caroway
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Masarath Aman
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
41
|
de Gaetano M, Dempsey E, Marcone S, James WG, Belton O. Conjugated Linoleic Acid Targets β2 Integrin Expression To Suppress Monocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 2013; 191:4326-36. [DOI: 10.4049/jimmunol.1300990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
McCarthy C, Lieggi NT, Barry D, Mooney D, de Gaetano M, James WG, McClelland S, Barry MC, Escoubet-Lozach L, Li AC, Glass CK, Fitzgerald DJ, Belton O. Macrophage PPAR gamma Co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol Med 2013; 5:1443-57. [PMID: 23964012 PMCID: PMC3799497 DOI: 10.1002/emmm.201302587] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Conjugated linoleic acid (CLA) has the unique property of inducing regression of pre-established murine atherosclerosis. Understanding the mechanism(s) involved may help identify endogenous pathways that reverse human atherosclerosis. Here, we provide evidence that CLA inhibits foam cell formation via regulation of the nuclear receptor coactivator, peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α, and that macrophage PGC-1α plays a role in atheroprotection in vivo. PGC-1α was identified as a hub gene within a cluster in the aorta of the apoE−/− mouse in the CLA-induced regression model. PGC-1α was localized to macrophage/foam cells in the murine aorta where its expression was increased during CLA-induced regression. PGC-1α expression was also detected in macrophages in human atherosclerosis and was inversely linked to disease progression in patients with the disease. Deletion of PGC-1α in bone marrow derived macrophages promoted, whilst over expression of the gene inhibited foam cell formation. Importantly, macrophage specific deletion of PGC-1α accelerated atherosclerosis in the LDLR−/− mouse in vivo. These novel data support a functional role for PGC-1α in atheroprotection.
Collapse
Affiliation(s)
- Cathal McCarthy
- School of Biomolecular and Biomedical Science, UCD Conway Institute, UCD, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Divergent effects of a CLA-enriched beef diet on metabolic health in ApoE−/− and ob/ob mice. J Nutr Biochem 2013; 24:401-11. [DOI: 10.1016/j.jnutbio.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/01/2011] [Accepted: 12/21/2011] [Indexed: 11/18/2022]
|
44
|
t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles. PLoS One 2012; 7:e52634. [PMID: 23285120 PMCID: PMC3527580 DOI: 10.1371/journal.pone.0052634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 11/20/2012] [Indexed: 01/17/2023] Open
Abstract
Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE−/− and LDLr−/− mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE−/− (p<0.05, n = 11) and LDLr−/− mice (p<0.01, n = 10). Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr−/− strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10), triglyceride (p<0.01, n = 10) and cholesterol ester content (p<0.01, n = 10). Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.
Collapse
|
45
|
McCarthy C, Duffy MM, Mooney D, James WG, Griffin MD, Fitzgerald DJ, Belton O. IL-10 mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis. FASEB J 2012; 27:499-510. [PMID: 23070607 DOI: 10.1096/fj.12-215442] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conjugated linoleic acid (CLA) induces regression of preestablished atherosclerosis in the ApoE(-/-) mouse. Understanding the mechanisms involved may help in identifying novel pathways associated with the regression of human disease. Animals were administered a 1% cholesterol diet for 12 wk, with 1% CLA supplementation from wk 8 to 12. ApoE(-/-) mice fed only the 1% cholesterol diet for 12 wk were employed as controls. Transcriptomic analysis of mouse aorta showed that many of the components of the IL-10 signaling pathway were modified during CLA-induced regression. Real-time PCR and Western blot analysis showed increased IL-10 receptor expression, phosphorylation of STAT3, and downstream target gene expression in the aorta, alongside an increase in serum IL-10 (79.8 ± 22.4 vs. 41.9 ± 5.5 pg/ml, n = 10; P < 0.01). CLA -supplementation also increased IL-10 production in bone marrow-derived macrophages (143.6 ± 28.6 vs. 94 ± 5.6 pg/ml, n = 5; P < 0.05). To explore the mechanisms for altered IL-10 production, we examined the profile of monocyte/macrophage phenotype in the vessel wall, bone marrow, and spleen. CLA increased macrophage polarization toward an anti-inflammatory M2 phenotype in vivo, increasing the population of Ly6C(lo) monocytes (29 vs. 77 ± 14, n=5, P < 0.05) in the aorta. CLA had similar effects on monocytes/macrophages differentiated from marrow-derived progenitor cells and on splenocytes. The induction of IL-10 on CLA supplementation in this model may reflect a systemic alteration toward an anti-inflammatory phenotype, which, in turn promotes increased vascular infiltration by Ly6C(lo) monocytes. These cells may contribute to CLA-induced disease regression.
Collapse
Affiliation(s)
- Cathal McCarthy
- School of Biomedical and Biomolecular Sciences, University College Dublin Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
46
|
Ritzenthaler KL, Shahin AM, Shultz TD, Dasgupta N, McGuire MA, McGuire MK. Dietary intake of c9,t11-conjugated linoleic acid correlates with its concentration in plasma lipid fractions of men but not women. J Nutr 2012; 142:1645-51. [PMID: 22833652 DOI: 10.3945/jn.111.156794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c9,t11-18:2 isomer of conjugated linoleic acid (c9,t11-CLA) represents the main dietary CLA form with putative health benefits. Whereas CLA intake influences the tissue CLA concentration, little is known about the association between dietary CLA and the CLA content of plasma lipid fractions. This study was designed to document fasting and nonfasting plasma c9,t11-CLA concentrations in a population of free-living adults (n = 94) and relate these concentrations to c9,t11-CLA intake. We also determined the c9,t11-CLA content of the primary plasma lipid fractions in a subset (n = 50) of our participants, related these to c9,t11-CLA intake, and determined whether c9,t11-CLA intake or plasma c9,t11-CLA was correlated with plasma cholesterol. Mean fasting plasma c9,t11-CLA concentrations were 0.46 ± 0.01 and 0.54 ± 0.01% (wt:wt) of total fatty acids for men and women, respectively (P < 0.05); nonfasting concentrations were 0.28 ± 0.01 and 0.38 ± 0.01% of total fatty acids, respectively (P < 0.001). All major esterified plasma lipid fractions contained c9,t11-CLA; TG had the highest percentages. In men, c9,t11-CLA intake correlated (r = 0.47; P < 0.05) with TG c9,t11-CLA content, suggesting that TG c9,t11-CLA may serve as a biomarker for c9,t11-CLA intake. In females, there were no correlations between c9,t11-CLA intake and the c9,t11-CLA content of any esterified plasma lipid fraction. In neither sex was there a relation between dietary c9,t11-CLA or plasma c9,t11-CLA concentration and circulating lipoprotein cholesterol concentration. The influence of sex on circulating c9,t11-CLA content and further validation of biomarkers of c9,t11-CLA intake warrant further investigation.
Collapse
|
47
|
Effects of conjugated linoleic acid isomers on monocyte, macrophage and foam cell phenotype in atherosclerosis. Prostaglandins Other Lipid Mediat 2012; 98:56-62. [DOI: 10.1016/j.prostaglandins.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023]
|
48
|
Bachmair EM, Bots ML, Mennen LI, Kelder T, Evelo CT, Horgan GW, Ford I, de Roos B. Effect of supplementation with an 80:20 cis9,trans11 conjugated linoleic acid blend on the human platelet proteome. Mol Nutr Food Res 2012; 56:1148-59. [PMID: 22648731 DOI: 10.1002/mnfr.201100763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 11/06/2022]
Abstract
SCOPE The dietary fatty acid cis9,trans11 conjugated linoleic acid (cis9,trans11 CLA) has been shown to modify the function of endothelial cells, monocytes, and platelets, all of which are involved in the development of atherosclerosis. Potential mechanisms for the platelet effects have not been assessed previously. In this study, we assessed how supplementation of the diet with an 80:20 cis9,trans11 CLA blend affects the platelet proteome. METHODS AND RESULTS In a double-blind, randomized, placebo-controlled, parallel-group trial, 40 overweight but apparently healthy adults received either 4 g per day of cis9,trans11 CLA-enriched oil or placebo oil, consisting of palm oil and soybean oil, for 3 months. Total platelet proteins were extracted from washed platelets, separated using two-dimensional gel electrophoresis and differentially regulated protein spots were identified by LC-ESI-MS/MS. Supplementation with the CLA blend, compared with placebo, resulted in significant alterations in levels of 46 spots (p < 0.05), of which 40 were identified. Network analysis revealed that the majority of these proteins participate in regulation of the cytoskeleton and platelet structure, as well as receptor action, signaling, and focal adhesion. CONCLUSION The platelet proteomics approach revealed novel insights into regulation of cellular biomarkers of atherogenic and thrombotic pathways by an 80:20 cis9,trans11 CLA blend.
Collapse
Affiliation(s)
- Eva-Maria Bachmair
- Rowett Institute of Nutrition & Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dall'Asta M, Derlindati E, Ardigò D, Zavaroni I, Brighenti F, Del Rio D. Macrophage polarization: the answer to the diet/inflammation conundrum? Nutr Metab Cardiovasc Dis 2012; 22:387-392. [PMID: 22397874 DOI: 10.1016/j.numecd.2011.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
Abstract
Macrophages, a heterogeneous and ubiquitous cell population representing up to 15% of the cellular content of different types of tissue, are the principal cell mediators in response to pathogens, inflammation process, tissue homeostasis and repair and play a pivotal role in atherosclerosis and insulin resistance because of their capacity to be the major source of inflammatory cytokines, which can function through paracrine and endocrine mechanisms. Recently, differently activated macrophage populations have been described, depending on a large variety of microenvironmental signals, and it is now recognized that their activation plays a crucial role in the development and progression of atherosclerosis. There is good evidence of the ability of conjugated linoleic acids and polyphenolic compounds to modulate inflammation in experimental models involving macrophages. This observation leaves room to the intriguing hypothesis that macrophage polarization could represent one of the unifying mechanisms through which specific food components can exert anti-inflammatory effects in humans, contributing to the prevention of chronic diseases strongly linked to inflammation, such as atherosclerosis. Future studies should be addressed to substantiate this hypothesis, investigating whether or not physiological concentrations of food-derived metabolites can perturb macrophage activation in vitro. On the in vivo side, the evaluation of macrophage populations in tissues, however complex, should be included among the analyses performed in observational and intervention studies, in order to understand if macrophage activation is involved in the anti-inflammatory activity of a specific dietary regimen.
Collapse
Affiliation(s)
- M Dall'Asta
- The φ² Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Public Health, University of Parma, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Kostogrys RB, Franczyk-Żarów M, Maślak E, Gajda M, Mateuszuk Ł, Chłopicki S. Effects of margarine supplemented with t10c12 and C9T11 CLA on atherosclerosis and steatosis in apoE/LDLR -/- mice. J Nutr Health Aging 2012; 16:482-90. [PMID: 22555796 DOI: 10.1007/s12603-011-0354-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The objective of this study was to evaluate functional effects of margarine supplemented with individual CLA isomers trans-10, cis-12 and cis-9, trans-11 in apoE/LDLR -/- mice. DESIGN In LONG experiment (LONG), two-month old mice with no atherosclerosis were assigned to experimental groups and fed for the next 4 months. In SHORT experiment (SHORT), four-month old mice, with pre-established atherosclerosis, were assigned to experimental groups and fed for the next 2 months. The experimental diets were: AIN-93G (margarine), AIN-93G + 0.5% trans-10, cis-12 CLA (t10c12), and AIN-93G + 0.5% cis-9, trans-11 CLA (c9t11). RESULTS In both experiments (LONG and SHORT), liver weight was significantly (P<0.05) increased in mice fed t10c12 CLA. Hepatic steatosis was found in animals fed t10c12 diet and no signs of the steatosis was observed in mice fed c9t11 CLA. Dietary treatments with t10c12 CLA significantly increased total plasma cholesterol and plasma triacylglycerols. There were no isomer-specific effects of CLA isomers on area of atherosclerotic plaque in aortic root. CONCLUSION In conclusion, t10c12 CLA significantly increased liver weight in mice in LONG and SHORT experiments. Our results do not support the notion that CLA isomer supplementation to the margarine possess anti-atheroclerotic effect. Therefore, no isomer-specific effects of CLA on development of atherosclerosis were observed.
Collapse
Affiliation(s)
- R B Kostogrys
- Department of Human Nutrition, Faculty of Food Technology, Agricultural University of Kraków, ul. Balicka 122, 30-149 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|