1
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
2
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
3
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Wang Y, Wang Q, Xu D. New insights into macrophage subsets in atherosclerosis. J Mol Med (Berl) 2022; 100:1239-1251. [PMID: 35930063 DOI: 10.1007/s00109-022-02224-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
Macrophages in atherosclerotic patients are notably plastic and heterogeneous. Single-cell RNA sequencing (Sc RNA-seq) can provide information about all the RNAs in individual cells, and it is used to identify cell subpopulations in atherosclerosis (AS) and reveal the heterogeneity of these cells. Recently, some findings from Sc RNA-seq experiments have suggested the existence of multiple macrophage subsets in atherosclerotic plaque lesions, and these subsets exhibit significant differences in their gene expression levels and functions. These cells affect various aspects of plaque lesion development, stabilization, and regression, as well as plaque rupture. This article aims to review the content and results of current studies that used RNA-seq to explore the different types of macrophages in AS and the related molecular mechanisms as well as to identify the potential roles of these macrophage types in the pathogenesis of atherosclerotic plaques. Also, this review listed some new therapeutic targets for delaying atherosclerotic lesion progression and treatment based on the experimental results.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
7
|
Tian M, Cao M, Zhang L, Fu Q, Yang N, Tan F, Song L, Su B, Li C. Characterization and initial functional analysis of cathepsin K in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 93:153-160. [PMID: 31319206 DOI: 10.1016/j.fsi.2019.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Cathepsins are the best-known group of proteases in lysosomes, playing a significant role in immune responses. Cathepsin K (CTSK) is abundantly and selectively expressed in osteoclasts, dendritic cells and monocyte-derived macrophages, where it is involved in ECM degradation and bone remodeling. A growing body of evidences have indicated the vital roles of cathepsin K in innate immune responses. Here, one CTSK gene was captured in turbot (SmCTSK) with a 993 bp open reading frame (ORF). The genomic structure analysis showed that SmCTSK had 7 exons similar to other vertebrate species. The syntenic analysis revealed that CTSK had the same neighboring genes across all the selected species, which suggested the synteny encompassing CTSK region was conserved during vertebrate evolution. Subsequently, SmCTSK was widely expressed in all the examined tissues, with the highest expression level in spleen and the lowest expression level in liver. In addition, SmCTSK was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum immersion challenge, but up-regulated in three tissues (gill, skin and intestine) following Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmCTSK showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmCTSK played vital roles in fish innate immune responses against infection. However, the knowledge of SmCTSK is still limited in teleost species, further studies should be carried out to better characterize its comprehensive roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Skripnikova IA, Kosmatova OV, Kolchinа MA, Myagkova MA, Alikhanova NA. Atherosclerosis and Osteoporosis. Common Targets for the Effects of Cardiovascular and Anti-Osteoporotic Drugs (Part II). The Effect of Antiosteoporotic Drugs on the Vascular Wall State. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-359-367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the second part of the literature review, data are presented on the possible effect of anti-osteoporosis therapy on the vascular wall and the development of calcification. The discovery of common biological substances involved in the development of atherosclerosis, calcification of the vascular wall and osteoporosis attracts the attention of scientists in terms of targets for assessing the effects of already known drugs or developing new drugs that can simultaneously prevent or slow the progression of both atherosclerosis and osteoporosis. Currently, various groups of drugs for the treatment of osteoporosis have been studied to prevent or reduce the progression of subclinical atherosclerosis and calcification. Both antiresorptive drugs (bisphosphonates, monoclonal antibodies to RANKL, selective estrogen receptor modulators), and bone-anabolic therapy, which includes teriparatide, were studied. However, there are a few such studies and the most promising drugs that have a preventive effect in the early stages of atherosclerotic damage are bisphosphonates. Other classes of antiosteoporotic drugs did not reveal a positive effect on the vascular wall, and some of them increased the cardiovascular risk. Divergences in the results of experimental and clinical studies attract attention. If in the experiment almost all drugs for the treatment of osteoporosis had an atheroprotective effect and suppressed vascular calcification, then in clinical conditions only bisphosphonates confirmed the positive effect on the vascular wall.
Collapse
Affiliation(s)
| | | | - M. A. Kolchinа
- National Medical Research Center for Preventive Medicine
| | - M. A. Myagkova
- National Medical Research Center for Preventive Medicine
| | | |
Collapse
|
9
|
Andrault PM, Panwar P, Mackenzie NCW, Brömme D. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep 2019; 9:9682. [PMID: 31273243 PMCID: PMC6609650 DOI: 10.1038/s41598-019-45918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Elastin plays an important role in maintaining blood vessel integrity. Proteolytic degradation of elastin in the vascular system promotes the development of atherosclerosis, including blood vessel calcification. Cysteine cathepsins have been implicated in this process, however, their role in disease progression and associated complications remains unclear. Here, we showed that the degradation of vascular elastin by cathepsins (Cat) K, S, and V directly stimulates the mineralization of elastin and that mineralized insoluble elastin fibers were ~25–30% more resistant to CatK, S, and V degradation when compared to native elastin. Energy dispersive X-ray spectroscopy investigations showed that insoluble elastin predigested by CatK, S, or V displayed an elemental percentage in calcium and phosphate up to 8-fold higher when compared to non-digested elastin. Cathepsin-generated elastin peptides increased the calcification of MOVAS-1 cells acting through the ERK1/2 pathway by 34–36%. We made similar observations when cathepsin-generated elastin peptides were added to ex vivo mouse aorta rings. Altogether, our data suggest that CatK-, S-, and V-mediated elastolysis directly accelerates the mineralization of the vascular matrix by the generation of nucleation points in the elastin matrix and indirectly by elastin-derived peptides stimulating the calcification by vascular smooth muscle cells. Both processes inversely protect against further extracellular matrix degradation.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Neil C W Mackenzie
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada. .,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
10
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
12
|
Cathepsin K-deficiency impairs mouse cardiac function after myocardial infarction. J Mol Cell Cardiol 2018; 127:44-56. [PMID: 30465799 DOI: 10.1016/j.yjmcc.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular matrix metabolism and cardiac cell death participate centrally in myocardial infarction (MI). This study tested the roles of collagenolytic cathepsin K (CatK) in post-MI left ventricular remodeling. METHODS AND RESULTS Patients with acute MI had higher plasma CatK levels (20.49 ± 7.07 pmol/L, n = 26) than those in subjects with stable angina pectoris (8.34 ± 1.66 pmol/L, n = 28, P = .01) or those without coronary heart disease (6.63 ± 0.84 pmol/L, n = 93, P = .01). CatK protein expression increases in mouse hearts at 7 and 28 days post-MI. Immunofluorescent staining localized CatK expression in cardiomyocytes, endothelial cells, fibroblasts, macrophages, and CD4+ T cells in infarcted mouse hearts at 7 days post-MI. To probe the direct participation of CatK in MI, we produced experimental MI in CatK-deficient mice (Ctsk-/-) and their wild-type (Ctsk+/+) littermates. CatK-deficiency yielded worsened cardiac function at 7 and 28 days post-MI, compared to Ctsk+/+ littermates (fractional shortening percentage: 5.01 ± 0.68 vs. 8.62 ± 1.04, P < .01, 7 days post-MI; 4.32 ± 0.52 vs. 7.60 ± 0.82, P < .01, 28 days post-MI). At 7 days post-MI, hearts from Ctsk-/- mice contained less CatK-specific type-I collagen fragments (10.37 ± 1.91 vs. 4.60 ± 0.49 ng/mg tissue extract, P = .003) and more fibrosis (1.67 ± 0.93 vs. 0.69 ± 0.20 type-III collagen positive area percentage, P = .01; 14.25 ± 4.12 vs. 6.59 ± 0.79 α-smooth muscle actin-positive area percentage, P = .016; and 0.82 ± 0.06 vs. 0.31 ± 0.08 CD90-positive area percentage, P = .008) than those of Ctsk+/+ mice. Immunostaining demonstrated that CatK-deficiency yielded elevated cardiac cell death but reduced cardiac cell proliferation. In vitro studies supported a role of CatK in cardiomyocyte survival. CONCLUSION Plasma CatK levels are increased in MI patients. Heart CatK expression is also elevated post-MI, but CatK-deficiency impairs post-MI cardiac function in mice by increasing myocardial fibrosis and cardiomyocyte death.
Collapse
|
13
|
Zeisbrich M, Yanes RE, Zhang H, Watanabe R, Li Y, Brosig L, Hong J, Wallis BB, Giacomini JC, Assimes TL, Goronzy JJ, Weyand CM. Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. Ann Rheum Dis 2018; 77:1053-1062. [PMID: 29431119 PMCID: PMC6589337 DOI: 10.1136/annrheumdis-2017-212647] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accelerated atherosclerotic disease typically complicates rheumatoid arthritis (RA), leading to premature cardiovascular death. Inflammatory macrophages are key effector cells in both rheumatoid synovitis and the plaques of coronary artery disease (CAD). Whether both diseases share macrophage-dependent pathogenic mechanisms is unknown. METHODS Patients with RA or CAD (at least one myocardial infarction) and healthy age-matched controls were recruited into the study. Peripheral blood CD14+ monocytes were differentiated into macrophages. Metabolic profiles were assessed by Seahorse Analyzer, intracellular ATP concentrations were quantified and mitochondrial protein localisation was determined by confocal image analysis. RESULTS In macrophages from patients with RA or CAD, mitochondria consumed more oxygen, generated more ATP and built tight interorganelle connections with the endoplasmic reticulum, forming mitochondria-associated membranes (MAM). Calcium transfer through MAM sites sustained mitochondrial hyperactivity and was dependent on inactivation of glycogen synthase kinase 3b (GSK3b), a serine/threonine kinase functioning as a metabolic switch. In patient-derived macrophages, inactivated pGSK3b-Ser9 co-precipitated with the mitochondrial fraction. Immunostaining of atherosclerotic plaques and synovial lesions confirmed that most macrophages had inactivated GSK3b. MAM formation and GSK3b inactivation sustained production of the collagenase cathepsin K, a macrophage effector function closely correlated with clinical disease activity in RA and CAD. CONCLUSIONS Re-organisation of the macrophage metabolism in patients with RA and CAD drives unopposed oxygen consumption and ultimately, excessive production of tissue-destructive enzymes. The underlying molecular defect relates to the deactivation of GSK3b, which controls mitochondrial fuel influx and as such represents a potential therapeutic target for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Markus Zeisbrich
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rolando E. Yanes
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Hui Zhang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Ryu Watanabe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Lukas Brosig
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jison Hong
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara B. Wallis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - John C. Giacomini
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Themistocles L. Assimes
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Lindesay G, Bézie Y, Ragonnet C, Duchatelle V, Dharmasena C, Villeneuve N, Vayssettes-Courchay C. Differential Stiffening between the Abdominal and Thoracic Aorta: Effect of Salt Loading in Stroke-Prone Hypertensive Rats. J Vasc Res 2018; 55:144-158. [PMID: 29886482 DOI: 10.1159/000488877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Central artery stiffening is recognized as a cardiovascular risk. The effects of hypertension and aging have been shown in human and animal models but the effect of salt is still controversial. We studied the effect of a high-salt diet on aortic stiffness in salt-sensitive spontaneously hypersensitive stroke-prone rats (SHRSP). Distensibility, distension, and β-stiffness were measured at thoracic and abdominal aortic sites in the same rats, using echotracking recording of the aortic diameter coupled with blood pressure (BP), in SHRSP-salt (5% salted diet, 5 weeks), SHRSP, and normotensive Wistar-Kyoto (WKY) rats. Hemodynamic parameters were measured at BP matched to that of WKY. Histological staining and immunohistochemistry were used for structural analysis. Hemodynamic isobaric parameters in SHRSP did not differ from WKY and only those from the abdominal aorta of SHRSP-salt presented decreased distensibility and increased stiffness compared with WKY and SHRSP. The abdominal and thoracic aortas presented similar thickening, increased fibrosis, and remodeling with no change in collagen content. SHRSP-salt presented a specific increased elastin disarray at the abdominal aorta level but a decrease in elastin content in the thoracic aorta. This study demonstrates the pro-stiffening effect of salt in addition to hypertension; it shows that only the abdominal aorta presents a specific pressure-independent stiffening, in which elastin disarray is likely a key mechanism.
Collapse
Affiliation(s)
- George Lindesay
- Cardiovascular Discovery Research Unit Suresnes, Servier Research Institute, Suresnes, France
| | - Yvonnick Bézie
- Department of Pharmacy, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Christophe Ragonnet
- Cardiovascular Discovery Research Unit Suresnes, Servier Research Institute, Suresnes, France
| | | | - Chandima Dharmasena
- Department of Pharmacy, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Nicole Villeneuve
- Cardiovascular Discovery Research Unit Suresnes, Servier Research Institute, Suresnes, France
| | | |
Collapse
|
15
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Panwar P, Butler GS, Jamroz A, Azizi P, Overall CM, Brömme D. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biol 2018. [DOI: 10.1016/j.matbio.2017.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine Protease Cathepsins in Atherosclerotic Cardiovascular Diseases. J Atheroscler Thromb 2017; 25:111-123. [PMID: 28978867 PMCID: PMC5827079 DOI: 10.5551/jat.rv17016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is an inflammatory disease characterized by extensive arterial wall matrix protein degradation. Cysteine protease cathepsins play a pivotal role in extracellular matrix (ECM) remodeling and have been implicated in the development and progression of atherosclerosis-based cardiovascular diseases. An imbalance in expression between cathepsins (such as cathepsins S, K, L, C) and their inhibitor cystatin C may favor proteolysis of ECM in the pathogenesis of cardiovascular disease such as atherosclerosis, aneurysm formation, restenosis, and neovascularization. New insights into cathepsin functions have been made possible by the generation of knock-out mice and by the application of specific inhibitors. Inflammatory cytokines regulate the expression and activities of cathepsins in cultured vascular cells and macrophages. In addition, evaluations of the possibility of cathepsins as a diagnostic tool revealed that the circulating levels of cathepsin S, K, and L, and their endogenous inhibitor cystatin C could be promising biomarkers in the diagnosis of coronary artery disease, aneurysm, adiposity, peripheral arterial disease, and coronary artery calcification. In this review, we summarize the available information regarding the mechanistic contributions of cathepsins to ASCVD.
Collapse
Affiliation(s)
- Hongxian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University
| | - Qiuyan Dai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University, Graduate School of Medicine.,Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Zhao H, Qin X, Wang S, Sun X, Dong B. Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability. Exp Ther Med 2017; 14:3471-3476. [PMID: 29042935 PMCID: PMC5639282 DOI: 10.3892/etm.2017.4935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Gerontology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiujiao Qin
- Department of Gerontology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Wang
- Department of Cardiology, Jihua General Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiwei Sun
- Department of Vascular Surgery, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Dong
- Department of Gerontology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Zhou Y, Chen H, Liu L, Yu X, Sukhova GK, Yang M, Kyttaris VC, Stillman IE, Gelb B, Libby P, Tsokos GC, Shi GP. Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in Faslpr Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:1846-1854. [PMID: 28093526 DOI: 10.4049/jimmunol.1501145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Cysteinyl cathepsin K (CatK) is expressed in osteoclasts to mediate bone resorption, but is also inducible under inflammatory conditions. Faslpr mice on a C57BL/6 background develop spontaneous systemic lupus erythematosus-like manifestations. Although normal mouse kidneys expressed negligible CatK, those from Faslpr mice showed elevated CatK expression in the glomeruli and tubulointerstitial space. Faslpr mice also showed elevated serum CatK levels. CatK deficiency in Faslpr mice reduced all tested kidney pathologies, including glomerulus and tubulointerstitial scores, glomerulus complement C3 and IgG deposition, chemokine expression and macrophage infiltration, and serum autoantibodies. CatK contributed to Faslpr mouse autoimmunity and pathology in part by its activity in TLR-7 proteolytic processing and consequent regulatory T (Treg) cell biology. Elevated TLR7 expression and proteolytic processing in Faslpr mouse kidneys and Tregs showed significantly reduced levels in CatK-deficient mice, leading to increased spleen and kidney Treg content. Purified CD4+CD25highFoxp3+ Tregs from CatK-deficient mice doubled their immunosuppressive activity against T effector cells, compared with those from CatK-sufficient mice. In Faslpr mice, repopulation of purified Tregs from CatK-sufficient mice reduced spleen sizes, autoantibody titers, and glomerulus C3 and IgG deposition, and increased splenic and kidney Treg contents. Tregs from CatK-deficient mice had significantly more potency than CatK-sufficient Tregs in reducing spleen sizes, serum autoantibody titers, and glomerulus C3 deposition, and in increasing splenic and kidney Treg content. This study established a possible role of CatK in TLR7 proteolytic activation, Treg immunosuppressive activity, and lupus autoimmunity and pathology.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Li Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Biology, School of Life Science, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Min Yang
- Department of Rheumatology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bruce Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
20
|
Jung IH, Oh GT. The Roles of CD137 Signaling in Atherosclerosis. Korean Circ J 2016; 46:753-761. [PMID: 27826331 PMCID: PMC5099328 DOI: 10.4070/kcj.2016.46.6.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF), which includes CD40, LIGHT, and OX40, plays important roles in the initiation and progression of cardiovascular diseases, involving atherosclerosis. CD137, a member of TNFRSF, is a well-known activation-induced T cell co-stimulatory molecule and has been reported to be expressed in human atherosclerotic plaque lesions, and plays pivotal roles in mediating disease processes. In this review, we focus on and summarize recent advances in mouse studies on the involvement of CD137 signaling in the pathogenesis and plaque stability of atherosclerosis, thereby highlighting a valuable therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Department of Life Sciences, Ewha Womans University, Seoul, Korea.; Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
21
|
Characterizing Cathepsin Activity and Macrophage Subtypes in Excised Human Carotid Plaques. Stroke 2016; 47:1101-8. [DOI: 10.1161/strokeaha.115.011573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
|
22
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
|
24
|
Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochem J 2015; 465:163-73. [PMID: 25279554 DOI: 10.1042/bj20140809] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Although its collagenase activity is unique, CatK also exerts a potent elastolytic activity that is shared with human cathepsins V and S. Other members of the cysteine cathepsin family, which are structurally similar, do not exhibit significant collagen and elastin degrading activities. This raises the question of the presence of specific structural elements, exosites, that are required for these activities. CatK has two exosites that control its collagenolytic and elastolytic activity. Modifications of exosites 1 and 2 block the elastase activity of CatK, whereas only exosite-1 alterations prevent collagenolysis. Neither exosite affects the catalytic activity, protease stability, subsite specificity of CatK or the degradation of other biological substrates by this protease. A low-molecular-mass inhibitor that docks into exosite-1 inhibits the elastase and collagenase activity of CatK without interfering with the degradation of other protein substrates. The identification of CatK exosites opens up the prospect of designing highly potent inhibitors that selectively inhibit the degradation of therapeutically relevant substrates by this multifunctional protease.
Collapse
|
25
|
Jung I, Choi J, Jin J, Jeong S, Jeon S, Lim C, Lee M, Yoo J, Sonn S, Kim YH, Choi BK, Kwon BS, Seoh J, Lee CW, Kim D, Oh GT. CD137‐inducing factors from T cells and macrophages accelerate the destabilization of atherosclerotic plaques in hyperlipidemic mice. FASEB J 2014; 28:4779-91. [DOI: 10.1096/fj.14-253732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In‐Hyuk Jung
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Jae‐Hoon Choi
- Department of Life ScienceCollege of Natural SciencesHanyang UniversitySeoulKorea
| | - Jing Jin
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Se‐Jin Jeong
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Sejin Jeon
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Chaeji Lim
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Mi‐Ran Lee
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Ji‐Young Yoo
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Seong‐Keun Sonn
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Young Ho Kim
- Immune Cell Production UnitProgram for Immunotherapeutic ResearchNational Cancer CenterGoyangKorea
| | - Beom Kyu Choi
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Byoung S. Kwon
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Ju‐Young Seoh
- Department of MicrobiologyGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Cheol Whan Lee
- Department of MedicineAsan Medical CenterUniversity of UlsanSeoulKorea
| | - Dae‐Yong Kim
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Goo Taeg Oh
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| |
Collapse
|
26
|
Bitu CC, Kauppila JH, Bufalino A, Nurmenniemi S, Teppo S, Keinänen M, Vilen ST, Lehenkari P, Nyberg P, Coletta RD, Salo T. Cathepsin K is present in invasive oral tongue squamous cell carcinoma in vivo and in vitro. PLoS One 2013; 8:e70925. [PMID: 23951042 PMCID: PMC3737264 DOI: 10.1371/journal.pone.0070925] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Objectives Cathepsin K, a lysosomal cysteine protease, is expressed in the tumor microenvironment (TME) of skin carcinoma, but nothing is known about cathepsin K in oral tongue squamous cell carcinoma (OTSCC). Our aim was to describe the expression of cathepsin K in invasive OTSCC in vitro and in a series of clinical cancer specimens. Materials and Methods OTSCC invasion in vitro was studied using invasive HSC-3 tongue carcinoma cells in 3D organotypic models. In total, 121 mobile tongue OTSCCs and 10 lymph node metastases were analyzed for cathepsin K expression. The association between cathepsin K expression and clinicopathological factors was evaluated. Results Cysteine protease inhibitor E64 and cathepsin K silencing significantly (p<0.0001) reduced HSC-3 cell invasion in the 3D models. Cathepsin K was expressed in a majority of carcinoma and metastatic cells, but the expression pattern in carcinoma cells did not correlate with clinical parameters. Instead, the weak expression of cathepsin K in the invasive TME front correlated with increased overall recurrence (p<0.05), and in early-stage tumors this pattern predicted both cancer recurrence and cancer-specific mortality (p<0.05 and p<0.005, respectively). Conclusions Cathepsin K is expressed in OTSCC tissue in both carcinoma and TME cells. Although the diminished activity and expression in aggressive tongue HSC-3 cells reduced 3D invasion in vitro, the amount of cathepsin K in carcinoma cells was not associated with the outcome of cancer patients. Instead, cathepsin K in the invasive TME front seems to have a protective role in the complex progression of tongue cancer.
Collapse
Affiliation(s)
- Carolina C. Bitu
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Joonas H. Kauppila
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
- Department of Surgery, Institute of Clinical Medicine, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Andréia Bufalino
- Piracicaba Dental School – UNICAMP, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Sini Nurmenniemi
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Susanna Teppo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Meeri Keinänen
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Suvi-Tuuli Vilen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Department of Cell Biology of Oral Diseases, Institute of Dentistry, Biomedicum Helsinki Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Lehenkari
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Pia Nyberg
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Ricardo D. Coletta
- Piracicaba Dental School – UNICAMP, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Department of Cell Biology of Oral Diseases, Institute of Dentistry, Biomedicum Helsinki Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Oulu University Hospital, Oulu, Finland
- * E-mail:
| |
Collapse
|
27
|
Skjøt-Arkil H, Barascuk N, Larsen L, Dziegiel M, Henriksen K, Karsdal MA. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes. Assay Drug Dev Technol 2011; 10:69-77. [PMID: 22053710 DOI: 10.1089/adt.2010.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By secreting proteases such as cathepsins and matrix metalloproteinases (MMPs), macrophage foam cells may be a major cause of ruptured atherosclerotic plaques. The aims of the present study were to investigate in vitro role of human macrophage foam cells in degrading type I collagen, a major component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated into macrophage foam cells and cultured on a type I collagen matrix in the presence of TNF-alpha and RANK-L. Matrix degradation was measured by the cathepsin K-generated C-terminal cross-linked telopeptide of type I collagen (CTX-I) and the MMP-generated carboxyterminal telopeptide of type I collagen (ICTP) in supernatants showing that macrophage foam cells secrete MMPs and cathepsin K, resulting in release of ICTP and CTX-I. Stimulation with TNF-alpha increased CTX-I and ICTP dose dependently, with ICTP levels increasing by 59% and CTX-I levels increasing by 43%. RANK-L enhanced the release of CTX-I and ICTP by 56% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation. This in vitro system in part is a model system for the macrophage-mediated proteolytic degradation of the ECM, which is found in many diseases with an inflammatory component.
Collapse
|
28
|
Kirschner R, Hubmacher D, Iyengar G, Kaur J, Fagotto-Kaufmann C, Brömme D, Bartels R, Reinhardt DP. Classical and neonatal Marfan syndrome mutations in fibrillin-1 cause differential protease susceptibilities and protein function. J Biol Chem 2011; 286:32810-23. [PMID: 21784848 DOI: 10.1074/jbc.m111.221804] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in fibrillin-1 give rise to Marfan syndrome (MFS) characterized by vascular, skeletal, and ocular abnormalities. Fibrillins form the backbone of extracellular matrix microfibrils in tissues including blood vessels, bone, and skin. They are crucial for regulating elastic fiber biogenesis and growth factor bioavailability. To compare the molecular consequences of mutations causing the severe neonatal MFS with mutations causing the milder classical MFS, we introduced representative point mutations from each group in a recombinant human fibrillin-1 fragment. Structural effects were analyzed by circular dichroism spectroscopy and analytical gel filtration chromatography. Proteolytic susceptibility was probed with non-physiological and physiological proteases, including plasmin, thrombin, matrix metalloproteinases, and cathepsins. All mutant proteins showed a similar gross secondary structure and no differences in heat stability as compared with the wild-type protein. Proteins harboring neonatal mutations were typically more susceptible to proteolytic cleavage compared with those with classical mutations and the wild-type protein. Proteolytic neo-cleavage sites were found both in close proximity and distant to the mutations, indicating small but significant structural changes exposing cryptic cleavage sites. We also report for the first time that cathepsin K and V cleave non-mutated fibrillin-1 at several domain boundaries. Compared with the classical mutations and the wild type, the group of neonatal mutations more severely affected the ability of fibrillin-1 to interact with heparin/heparan sulfate, which plays a role in microfibril assembly. These results suggest differential molecular pathogenetic concepts for neonatal and classical MFS including enhanced proteolytic susceptibility for physiologically relevant enzymes and loss of function for heparin binding.
Collapse
Affiliation(s)
- Ryan Kirschner
- Faculty of Dentistry, Division of Biomedical Sciences, Faculty of Medicine, McGill University, Montreal H3A 2B2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 2011; 1:21-34. [PMID: 20126511 DOI: 10.4155/fmc.09.4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Until fairly recently, cathepsin K was recognized solely as a bone-resorbing enzyme expressed selectively in the osteoclast. Evidence of its requirement for normal bone remodeling has resulted in this protease receiving considerable attention from the pharmaceutical industry. In the last decade, intense research efforts were aimed at development of cathepsin K inhibitors for treatment of osteoporosis and other skeletal disorders associated with pathological bone loss. Emerging new evidence suggests that in addition to bone resorption, cathepsin K is involved in the turnover of extracellular matrix proteins in organs, such as the lung, thyroid and skin, and plays important roles in cardiovascular disease, inflammation and obesity. DISCUSSION This review highlights the physiological and pathophysiological implications of this potent protease, with a focus on recent developments in the design and use of cathepsin K inhibitors to target skeletal pathologies. Therapeutic implications of anticathepsin K drugs in the context of common links between bone disease and atherosclerosis are also discussed. CONCLUSION The association of cathepsin K with skeletal and cardiovascular disorders offers intriguing future applications for inhibitors of this potent protease.
Collapse
|
30
|
Sjöberg S, Shi GP. Cysteine Protease Cathepsins in Atherosclerosis and Abdominal Aortic Aneurysm. Clin Rev Bone Miner Metab 2011; 9:138-147. [PMID: 22505840 DOI: 10.1007/s12018-011-9098-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular matrix remodeling is an important mechanism in the initiation and progression of cardiovascular diseases. Cysteine protease cathepsins are among the important proteases that affect major events in the pathogenesis of atherosclerosis and abdominal aortic aneurysm, including smooth muscle cell transmigration through elastic lamina, macrophage foam cell formation, vascular cell and macrophage apoptosis, and plaque rupture. These events have been studied in cathepsin deficiencies and cathepsin inhibitor deficiencies in mice and have provided invaluable insights regarding the roles of cathepsins in cardiovascular diseases. Pharmacological inhibitions for cathepsins are under evaluation for other human diseases and may be used as clinical treatments for cardiovascular diseases in the near future. This article reviews different mechanisms for cathepsins in atherosclerosis and abdominal aortic aneurysm that could be targeted by selective cathepsin inhibitors.
Collapse
Affiliation(s)
- Sara Sjöberg
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 2011; 7:447-56. [PMID: 21670768 DOI: 10.1038/nrrheum.2011.77] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone remodeling consists of two phases--bone resorption and bone formation--that are normally balanced. When bone resorption exceeds bone formation, pathologic processes, such as osteoporosis, can result. Cathepsin K is a member of the papain family of cysteine proteases that is highly expressed by activated osteoclasts. Cathepsin K readily degrades type I collagen, the major component of the organic bone matrix. With such a major role in the initial process of bone resorption, cathepsin K has become a therapeutic target in osteoporosis. The antiresorptive properties of cathepsin K inhibitors have been studied in phase I and phase II clinical trials. Phase III studies are currently underway for odanacatib, a selective cathepsin K inhibitor.
Collapse
Affiliation(s)
- Aline G Costa
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
32
|
Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther 2011; 131:338-50. [PMID: 21605595 DOI: 10.1016/j.pharmthera.2011.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/10/2023]
Abstract
The initiation and progression of cardiovascular diseases involve extensive arterial wall matrix protein degradation. Proteases are essential to these pathological events. Recent discoveries suggest that proteases do more than catabolize matrix proteins. During the pathogenesis of atherosclerosis, abdominal aortic aneuryms, and associated complications, cysteinyl cathepsins and mast cell tryptases and chymases participate importantly in vascular cell apoptosis, foam cell formation, matrix protein gene expression, and pro-enzyme, latent cytokine, chemokine, and growth factor activation. Experimental animal disease models have been invaluable in examining each of these protease functions. Deficiency and pharmacological inhibition of cathepsins or mast cell proteases have allowed their in vivo evaluation in the setting of pathological conditions. Recent discoveries of highly selective and potent inhibitors of cathepsins, chymase, and tryptase, and their applications in vascular diseases in animal models and non-vascular diseases in human trials, have led to the hypothesis that selective inhibition of cathepsins, chymases, and tryptase will benefit patients suffering from cardiovascular diseases. This review highlights recent discoveries from in vitro cell-based studies to experimental animal cardiovascular disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with cathepsin-associated non-vascular diseases to those affected by cardiovascular complications.
Collapse
Affiliation(s)
- Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | | |
Collapse
|
33
|
Changes in proteomics profile during maturation of marrow-derived dendritic cells treated with oxidized low-density lipoprotein. Proteomics 2011; 11:1893-902. [DOI: 10.1002/pmic.201000658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/25/2023]
|
34
|
Samokhin AO, Gauthier JY, Percival MD, Brömme D. Lack of cathepsin activities alter or prevent the development of lung granulomas in a mouse model of sarcoidosis. Respir Res 2011; 12:13. [PMID: 21251246 PMCID: PMC3036631 DOI: 10.1186/1465-9921-12-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Remodeling of lung tissues during the process of granuloma formation requires significant restructuring of the extra-cellular matrix and cathepsins K, L and S are among the strongest extra-cellular matrix degrading enzymes. Cathepsin K is highly expressed in various pathological granulomatous infiltrates and all three enzymes in their active form are detected in bronchoalveolar lavage fluids from patients with sarcoidosis. Granulomatous inflammation is driven by T-cell response and cathepsins S and L are actively involved in the regulation of antigen presentation and T-cell selection. Here, we show that the disruption of the activities of cathepsins K, L, or S affects the development of lung granulomas in a mouse model of sarcoidosis. METHODS Apolipoprotein E-deficient mice lacking cathepsin K or L were fed Paigen diet for 16 weeks and lungs were analyzed and compared with their cathepsin-expressing littermates. The role of cathepsin S in the development of granulomas was evaluated using mice treated for 8 weeks with a potent and selective cathepsin S inhibitor. RESULTS When compared to wild-type litters, more cathepsin K-deficient mice had lung granulomas, but individually affected mice developed smaller granulomas that were present in lower numbers. The absence of cathepsin K increased the number of multinucleated giant cells and the collagen content in granulomas. Cathepsin L deficiency resulted in decreased size and number of lung granulomas. Apoe-/- mice treated with a selective cathepsin S inhibitor did not develop lung granulomas and only individual epithelioid cells were observed. CONCLUSIONS Cathepsin K deficiency affected mostly the occurrence and composition of lung granulomas, whereas cathepsin L deficiency significantly reduced their number and cathepsin S inhibition prevented the formation of granulomas.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
35
|
Skjøt-Arkil H, Barascuk N, Register T, Karsdal MA. Macrophage-Mediated Proteolytic Remodeling of the Extracellular Matrix in Atherosclerosis Results in Neoepitopes: A Potential New Class of Biochemical Markers. Assay Drug Dev Technol 2010; 8:542-52. [DOI: 10.1089/adt.2009.0258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Helene Skjøt-Arkil
- Nordic Bioscience, Herlev, Denmark
- Southern University of Denmark, Odense, Denmark
| | - Natasha Barascuk
- Nordic Bioscience, Herlev, Denmark
- Southern University of Denmark, Odense, Denmark
| | - Thomas Register
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
36
|
Abstract
PURPOSE Metabolic assessment of vascular inflammation by 2-[F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG)-PET is a promising new approach for the evaluation of the vulnerability of atherosclerotic plaques. Quantitative real-time PCR allows measurement of gene expression of markers of atherosclerotic plaque vulnerability. These techniques were applied in advanced atherosclerotic disease to relate metabolism and inflammatory activity to the gene expression profile of the vulnerable atherosclerotic plaque. METHODS Seventeen patients with clinical symptoms of cerebral vascular events (<3 months) and an additional ipsilateral internal carotid artery stenosis of greater than 60% were recruited. FDG uptake in the carotids was determined by PET/computed tomography and expressed as mean and maximal standardized uptake values (SUVmean and SUVmax). The atherosclerotic plaques were subsequently recovered by carotid endarterectomy. The gene expression of markers of vulnerability - CD68, IL-18, matrix metalloproteinase 9, cathepsin K, GLUT-1, and hexokinase type II (HK2) - were measured in plaques by quantitative PCR. RESULTS In a multivariate linear regression model, GLUT-1, CD68, cathepsin K, and HK2 gene expression remained in the final model as predictive variables of FDG accumulation calculated as SUVmean (R=0.26, P<0.0001). In addition, a multivariate linear regression model found GLUT-1, CD68, cathepsin K, and HK2 gene expression as independent predictive variables of FDG accumulation calculated as SUVmax (R=0.30, P<0.0001). CONCLUSION GLUT-1, HK2, CD68, and cathepsin K remained in both multivariate models and thus provided independent information regarding FDG uptake. We suggest that FDG uptake is a composite indicator of macrophage load, overall inflammatory activity and collagenolytic plaque destabilization. Accordingly, FDG-PET could prove to be an important predictor of cerebrovascular events in patients with carotid plaques.
Collapse
|
37
|
Pharmacological Inhibition of Cathepsin S Decreases Atherosclerotic Lesions in Apoe-/- Mice. J Cardiovasc Pharmacol 2010; 56:98-105. [DOI: 10.1097/fjc.0b013e3181e23e10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Yang X, Peterson L, Thieringer R, Deignan JL, Wang X, Zhu J, Wang S, Zhong H, Stepaniants S, Beaulaurier J, Wang IM, Rosa R, Cumiskey AM, Luo JMJ, Luo Q, Shah K, Xiao J, Nickle D, Plump A, Schadt EE, Lusis AJ, Lum PY. Identification and validation of genes affecting aortic lesions in mice. J Clin Invest 2010; 120:2414-22. [PMID: 20577049 DOI: 10.1172/jci42742] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/12/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis represents the most significant risk factor for coronary artery disease (CAD), the leading cause of death in developed countries. To better understand the pathogenesis of atherosclerosis, we applied a likeli-hood-based model selection method to infer gene-disease causality relationships for the aortic lesion trait in a segregating mouse population demonstrating a spectrum of susceptibility to developing atherosclerotic lesions. We identified 292 genes that tested causal for aortic lesions from liver and adipose tissues of these mice, and we experimentally validated one of these candidate causal genes, complement component 3a receptor 1 (C3ar1), using a knockout mouse model. We also found that genes identified by this method overlapped with genes progressively regulated in the aortic arches of 2 mouse models of atherosclerosis during atherosclerotic lesion development. By comparing our gene set with findings from public human genome-wide association studies (GWAS) of CAD and related traits, we found that 5 genes identified by our study overlapped with published studies in humans in which they were identified as risk factors for multiple atherosclerosis-related pathologies, including myocardial infarction, serum uric acid levels, mean platelet volume, aortic root size, and heart failure. Candidate causal genes were also found to be enriched with CAD risk polymorphisms identified by the Wellcome Trust Case Control Consortium (WTCCC). Our findings therefore validate the ability of causality testing procedures to provide insights into the mechanisms underlying atherosclerosis development.
Collapse
Affiliation(s)
- Xia Yang
- Department of Molecular Profiling, Rosetta Inpharmactics LLC, a wholly owned subsidiary of Merck & Co. Inc., Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lafarge JC, Naour N, Clément K, Guerre-Millo M. Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie 2010; 92:1580-6. [PMID: 20417681 DOI: 10.1016/j.biochi.2010.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Given the increasing prevalence of human obesity worldwide, there is an urgent need for a better understanding of the molecular mechanisms linking obesity to metabolic and cardiovascular diseases. Our knowledge is nevertheless limited regarding molecules linking adipose tissue to downstream complications. The importance of cathepsins was brought to light in this context. Through a large scale transcriptomic analysis, our group recently identified the gene encoding cathepsin S as one of the most deregulated gene in the adipose tissue of obese subjects and positively correlated with body mass index. Other members of the cathepsin family are expressed in the adipose tissue, including cathepsin K and cathepsin L. Given their implication in atherogenesis, these proteases could participate into the well established deleterious relationship between enlarged adipose tissue and increased cardiovascular risk. Here, we review the clinical and experimental evidence relevant to the role of cathepsins K, L and S and their most abundant endogenous inhibitor, cystatin C, in atherosclerosis and in obesity.
Collapse
|
40
|
Samokhin AO, Wilson S, Nho B, Lizame MLG, Musenden OEE, Brömme D. Cholate-containing high-fat diet induces the formation of multinucleated giant cells in atherosclerotic plaques of apolipoprotein E-/- mice. Arterioscler Thromb Vasc Biol 2010; 30:1166-73. [PMID: 20203298 DOI: 10.1161/atvbaha.110.203976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the role of multinucleated giant cells (MGCs) in cardiovascular diseases. METHODS AND RESULTS MGCs are a hallmark of giant cell arteritis. They are also described in atherosclerotic plaques from aortic aneurysms and carotid and coronary arteries. Herein, we demonstrate that the cholate-containing Paigen diet yields many MGCs in atherosclerotic plaques of apolipoprotein E-/- mice. These mice revealed a 4-fold increase in MGC numbers when compared with mice on a Western or Paigen diet without cholate. Most of the MGCs stained intensively for cathepsin K and were located at fibrous caps and close to damaged elastic laminae, with associated medial smooth muscle cell depletion. During in vitro experiments, MGCs demonstrated a 6-fold increase in elastolytic activity when compared with macrophages and facilitated transmigration of smooth muscle cells through a collagen-elastin matrix. An elastin-derived hexapeptide (Val-Gly-Val-Ala-Pro-Gly [VGVAPG]) significantly increased the rate of macrophage fusion, providing a possible mechanism of in vivo MGC formation. Comparable to the mouse model, human specimens from carotid arteries and aortic aneurysms contained cathepsin K-positive MGCs. CONCLUSIONS Apolipoprotein E-/- mice fed a Paigen diet provide a model to analyze the tissue-destructive role of MGCs in vascular diseases.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sasaki T, Kuzuya M, Nakamura K, Cheng XW, Hayashi T, Song H, Hu L, Okumura K, Murohara T, Iguchi A, Sato K. AT1 blockade attenuates atherosclerotic plaque destabilization accompanied by the suppression of cathepsin S activity in apoE-deficient mice. Atherosclerosis 2010; 210:430-7. [PMID: 20079903 DOI: 10.1016/j.atherosclerosis.2009.12.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/20/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Although it has been suggested that the renin-angiotensin (RA) system and cathepsins contribute to the development and vulnerability of atherosclerotic plaque, the interaction of the RA system and cathepsins is unclear. Thus, we investigated the effects of an angiotensin II type 1 receptor (AT1) antagonist, olmesartan, on the levels of cathepsins in brachiocephalic atherosclerotic plaque and plaque stabilization in apolipoprotein E (apoE)-deficient mice receiving a high-fat diet. Under a high fat diet, treatment with olmesartan (3 mg/kg per day) maintained collagen and elastin at high levels and attenuated the plaque development and cathepsin S (Cat S) level in the atherosclerotic plaque of apoE-deficient mice. The administration of olmesartan suppressed the accumulation of macrophages in plaque. Immunoreactivities of Cat S and AT1 were observed in macrophages. The amount of Cat S mRNA and the macrophage-mediated collagenolytic and elastolytic activities in cultured macrophages were increased by exposure to angiotensin II (Ang II), and these effects were diminished by olmesartan and the NADPH-oxidase inhibitor apocynin. These results suggested that Cat S derived from macrophages is involved in the mechanisms of atherosclerotic plaque vulnerability, and AT1 blocker maintained the plaque stabilization alongside the suppression of Cat S and macrophage activities.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, 1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brömme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 2009; 18:585-600. [PMID: 19388876 PMCID: PMC3110777 DOI: 10.1517/13543780902832661] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin K is a highly potent collagenase and the predominant papain-like cysteine protease expressed in osteoclasts. Cathepsin K deficiencies in humans and mice have underlined the central role of this protease in bone resorption and, thus, have rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. In the past decade, a lot of efforts have been made in developing highly potent, selective and orally applicable cathepsin K inhibitors. Some of these inhibitors have passed preclinical studies and are presently in clinical trials at different stages of advancement. The development of the inhibitors and preliminary results of the clinical trials revealed problems and lessons concerning the in situ specificity of the compounds and their tissue targeting. In this review, we briefly summarize the history of cathepsin K research and discuss the current development of cathepsin K inhibitors as novel anti-resorptives for the treatment of osteoporosis. We also discuss potential off-target effects of cathepsin K inhibition and alternative applications of cathepsin K inhibitors in arthritis, atherosclerosis, blood pressure regulation, obesity and cancer.
Collapse
Affiliation(s)
- Dieter Brömme
- University of British Columbia, Department of Oral Biological and Medical Sciences, Vancouver, BC V6T1Z3, Canada.
| | | |
Collapse
|
43
|
Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis 2009; 14:1435-50. [PMID: 19360474 DOI: 10.1007/s10495-009-0340-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
Abstract
Since the early observation that similarities between thyroiditis and insulitis existed, the important role played by inflammation in the development of diabetes has been appreciated. More recently, experiments have shown that inflammation also plays a prominent role in the development of target organ damage arising as complications, with both elements of the innate and the adaptive immune system being involved, and that cytokines contributing to local tissue damage may arise from both infiltrating and resident cells. This review will discuss the experimental evidence that shows that inflammatory cell-mediated apoptosis contributes to target organ damage, from beta cell destruction to both micro- and macro-vascular disease complications, and also how alterations in leukocyte turnover affects immune function.
Collapse
|
44
|
Sun Y, Ishibashi M, Seimon T, Lee M, Sharma SM, Fitzgerald KA, Samokhin AO, Wang Y, Sayers S, Aikawa M, Jerome WG, Ostrowski MC, Bromme D, Libby P, Tabas IA, Welch CL, Tall AR. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ Res 2009; 104:455-65. [PMID: 19122179 DOI: 10.1161/circresaha.108.182568] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular events linking lipid accumulation in atherosclerotic plaques to complications such as aneurysm formation and plaque disruption are poorly understood. BALB/c-Apoe(-/-) mice bearing a null mutation in the Npc1 gene display prominent medial erosion and atherothrombosis, whereas their macrophages accumulate free cholesterol in late endosomes and show increased cathepsin K (Ctsk) expression. We now show increased cathepsin K immunostaining and increased cysteinyl proteinase activity using near infrared fluorescence imaging over proximal aortas of Apoe(-/-), Npc1(-/-) mice. In mechanistic studies, cholesterol loading of macrophage plasma membranes (cyclodextrin-cholesterol) or endosomal system (AcLDL+U18666A or Npc1 null mutation) activated Toll-like receptor (TLR) signaling, leading to sustained phosphorylation of p38 mitogen-activated protein kinase and induction of p38 targets, including Ctsk, S100a8, Mmp8, and Mmp14. Studies in macrophages from knockout mice showed major roles for TLR4, following plasma membrane cholesterol loading, and for TLR3, after late endosomal loading. TLR signaling via p38 led to phosphorylation and activation of the transcription factor Microphthalmia transcription factor, acting at E-box elements in the Ctsk promoter. These studies suggest that free cholesterol enrichment of either plasma or endosomal membranes in macrophages leads to activation of signaling via various TLRs, prolonged p38 mitogen-activated protein kinase activation, and induction of Mmps, Ctsk, and S100a8, potentially contributing to plaque complications.
Collapse
Affiliation(s)
- Yu Sun
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|