1
|
Gu JX, Hong TT, Zhang AM, Xu L, Hu NJ, Li SS, Zhang N, Qin L, Wang CY, Yin Y, Wang K, Jia M, Su M. Correlation of glycosylated apolipoprotein A1 and glycosylated low-density lipoprotein cholesterol levels with glucose homeostasis and the risk of developing type 2 diabetes mellitus. Diabetes Res Clin Pract 2025; 223:112155. [PMID: 40185244 DOI: 10.1016/j.diabres.2025.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION This study explored the relationship between Glycosylated apolipoprotein A-1 (G-apoA1) and glycosylated low-density lipoprotein cholesterol (G-LDL-C) levels and the risk of developing type 2 diabetes mellitus (T2DM). METHODS This study included 3,098 patients with prediabetes and T2DM from two centers. Over a 3-year follow-up period, the study analyzed and assessed the risk of developing T2DM based on G-apoA1 and G-LDL-C levels. RESULTS In patients with T2DM, the levels of G-apoA1 and G-LDL-C were significantly higher than in patients with prediabetes. G-apoA1 and G-LDL-C levels were positively correlated with insulin resistance (HOMA-IR) and negatively correlated with insulin sensitivity (HOMA-IS). During the 3-year follow-up period, 197 patients with prediabetes progressed to T2DM. G-apoA1 and G-LDL-C levels were positively correlated with the risk of developing T2DM. Patients with the highest levels of G-apoA1 [hazard ratio (HR) = 3.452, 95 % confidence interval (95 % CI): 2.120-5.768, p < 0.001] and G-LDL-C (HR: 2.190, 95 % CI: 1.338-3.578, p = 0.002) had a significantly higher risk of developing T2DM compared to those in the lowest quartile. CONCLUSION G-apoA1 and G-LDL-C levels are inversely related to pancreatic β-cell function, positively related to insulin resistance, and linked with an increased risk of developing T2DM.
Collapse
Affiliation(s)
- Jun-Xu Gu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Ting-Ting Hong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, PR China
| | - Ai-Min Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Lei Xu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, PR China
| | - Nai-Jing Hu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Shan-Shan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Na Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Chun-Yan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, PR China.
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China.
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China.
| |
Collapse
|
2
|
Durrington PN, Bashir B, Soran H. How Does HDL Participate in Atherogenesis? Antioxidant Activity Versus Role in Reverse Cholesterol Transport. Antioxidants (Basel) 2025; 14:430. [PMID: 40298833 PMCID: PMC12023944 DOI: 10.3390/antiox14040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Low-density lipoprotein (LDL) chemically modified by reactive oxygen species (ROS), for example, leaking from red blood cells in the vascular compartment, more readily crosses the vascular endothelium than does nonoxidatively modified LDL to enter tissue fluid. Oxidatively modified LDL (oxLDL) may also be created in the tissue fluid by ROS leaking from cells by design, for example, by inflammatory white cells, or simply leaking from other cells as a consequence of oxygen metabolism. As well as oxLDL, glycatively modified LDL (glycLDL) is formed in the circulation. High-density lipoprotein (HDL) appears capable of decreasing the burden of lipid peroxides formed on LDL exposed to ROS or to glucose and its metabolites. The mechanism for this that has received the most attention is the antioxidant activity of HDL, which is due in large part to the presence of paraoxonase 1 (PON1). PON1 is intimately associated with its apolipoprotein A1 component and with HDL's lipid domains into which lipid peroxides from LDL or cell membranes can be transferred. It is frequently overlooked that for PON1 to hydrolyze lipid substrates, it is essential that it remain by virtue of its hydrophobic amino acid sequences within a lipid micellar environment, for example, during its isolation from serum or genetically modified cells in tissue culture. Otherwise, it may retain its capacity to hydrolyze water-soluble substrates, such as phenyl acetate, whilst failing to hydrolyze more lipid-soluble molecules. OxLDL and probably glycLDL, once they have crossed the arterial endothelium by receptor-mediated transcytosis, are rapidly taken up by monocytes in a process that also involves scavenger receptors, leading to subendothelial foam cell formation. These are the precursors of atheroma, inducing more monocytes to cross the endothelium into the lesion and the proliferation and migration of myocytes present in the arterial wall into the developing lesion, where they transform into foam cells and fibroblasts. The atheroma progresses to have a central extracellular lake of cholesteryl ester following necrosis and apoptosis of foam cells with an overlying fibrous cap whilst continuing to grow concentrically around the arterial wall by a process involving oxLDL and glycLDL. Within the arterial wall, additional oxLDL is generated by ROS secreted by inflammatory cells and leakage from cells generally when couplet oxygen is reduced. PON1 is important for the mechanism by which HDL opposes atherogenesis, which may provide a better avenue of inquiry in the identification of vulnerable individuals and the provision of new therapies than have emerged from the emphasis placed on its role in RCT.
Collapse
Affiliation(s)
- Paul N. Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
| | - Bilal Bashir
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester, Manchester M13 9NT, UK; (B.B.); (H.S.)
- Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
3
|
Su X, Zhao C, Li D, Zhang X. Association between the atherogenic index of plasma and abdominal aortic calcification: results from the National Health and Nutrition Examination Survey 2013-2014. Front Endocrinol (Lausanne) 2025; 16:1472267. [PMID: 40034228 PMCID: PMC11872722 DOI: 10.3389/fendo.2025.1472267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Coronary artery calcification and cardiovascular disease are associated with elevated levels of atherogenic plasma index (AIP). However, the relationship with abdominal aortic calcification (AAC) remains unclear. This study aimed to explore the association between AIP and AAC using the National Health and Nutrition Examination Survey (NHANES) database. Methods A cross-sectional analysis was conducted on 2,811 individuals aged 40 years or older from the 2013-2014 NHANES dataset. Participants with missing AAC-24 scores, AIP data, or covariate information were excluded. AAC was quantified using the Kauppila score (AAC-24), with a score > 0 indicating the presence of AAC, and severe AAC (SAAC) being defined as an AAC-24 score ≥ 6. Multivariable regression models and restricted cubic spline analyses were employed to assess the associations between AIP and AAC. Sensitivity analysis was used to validate the robustness of the findings. Results The study population had a mean age of 57.7 years, with 48.22% being male. A significant positive association was found between AIP and both the AAC score and the risk of AAC and SAAC, particularly in females. For the overall population, each unit increase in AIP was associated with an overall increase in AAC-24 score of 0.90 (95% CI: 0.22, 1.58; p = 0.009), and for women, the AAC risk and SAAC risk would be 4.01-fold higher (95% CI: 1.65, 9.74; p = 0.002) and 9.37-fold higher (95% CI: 2.37, 37.03; p = 0.001). No significant associations were found in males. Further analysis revealed a significant interaction between AIP and gender regarding both AAC scores and the risk of SAAC. Conclusions This study demonstrates a positive relationship between AIP and increased AAC scores, as well as a higher risk of AAC and SAAC in U.S. women. However, these findings require further investigation to confirm the observed gender-specific differences.
Collapse
Affiliation(s)
- Xiaozhou Su
- Department of Cardiology, Minzu Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | - Xianwei Zhang
- Department of Cardiology, Minzu Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Durrington P, Soran H. Paraoxonase 1: evolution of the enzyme and of its role in protecting against atherosclerosis. Curr Opin Lipidol 2024; 35:171-178. [PMID: 38887979 PMCID: PMC11224571 DOI: 10.1097/mol.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW To review the discoveries which led to the concept that serum paraoxonase 1 (PON1) is inversely related to atherosclerotic cardiovascular disease (ASCVD) incidence, how this association came to be regarded as causal and how such a role might have evolved. RECENT FINDINGS Animal models suggest a causal link between PON1 present on HDL and atherosclerosis. Serum PON1 activity predicts ASCVD with a similar reliability to HDL cholesterol, but at the extremes of high and low HDL cholesterol, there is discordance with PON1 being potentially more accurate. The paraoxonase gene family has its origins in the earliest life forms. Its greatest hydrolytic activity is towards lactones and organophosphates, both of which can be generated in the natural environment. It is active towards a wide range of substrates and thus its conservation may have resulted from improved survival of species facing a variety of evolutionary challenges. SUMMARY Protection against ASCVD is likely to be the consequence of some promiscuous activity of PON1, but nonetheless has the potential for exploitation to improve risk prediction and prevention of ASCVD.
Collapse
Affiliation(s)
- Paul Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester
| | - Handrean Soran
- NIHR/Wellcome Trust Clinical Research Facility & Department of Diabetes, Metabolism and Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
7
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Bashir B, Adam S, Ho JH, Linn Z, Durrington PN, Soran H. Established and potential cardiovascular risk factors in metabolic syndrome: Effect of bariatric surgery. Curr Opin Lipidol 2023; 34:221-233. [PMID: 37560987 DOI: 10.1097/mol.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
PURPOSE OF REVIEW The aim of this review was to provide an overview of the role of novel biomarkers in metabolic syndrome, their association with cardiovascular risk and the impact of bariatric surgery on these biomarkers. RECENT FINDINGS Metabolic syndrome encompasses an intricate network of health problems, and its constituents extend beyond the components of its operational definition. Obesity-related dyslipidaemia not only leads to quantitative changes in lipoprotein concentration but also alteration in qualitative composition of various lipoprotein subfractions, including HDL particles, rendering them proatherogenic. This is compounded by the concurrent existence of obstructive sleep apnoea (OSA) and nonalcoholic fatty liver disease (NAFLD), which pave the common pathway to inflammation and oxidative stress culminating in heightened atherosclerotic cardiovascular disease (ASCVD) risk. Bariatric surgery is an exceptional modality to reverse both conventional and less recognised aspects of metabolic syndrome. It reduces the burden of atherosclerosis by ameliorating the impact of obesity and its related complications (OSA, NAFLD) on quantitative and qualitative composition of lipoproteins, ultimately improving endothelial function and cardiovascular morbidity and mortality. SUMMARY Several novel biomarkers, which are not traditionally considered as components of metabolic syndrome play a crucial role in determining ASCVD risk in metabolic syndrome. Due to their independent association with ASCVD, it is imperative that these are addressed. Bariatric surgery is a widely recognized intervention to improve the conventional risk factors associated with metabolic syndrome; however, it also serves as an effective treatment to optimize novel biomarkers.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology, Medicine and Health, University of Manchester
- Centre for Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
| | - Safwaan Adam
- The Christie NHS Foundation Trust, Manchester, UK
| | - Jan H Ho
- The Christie NHS Foundation Trust, Manchester, UK
| | - Zara Linn
- Faculty of Biology, Medicine and Health, University of Manchester
| | | | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Centre for Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
| |
Collapse
|
9
|
Jigoranu RA, Roca M, Costache AD, Mitu O, Oancea AF, Miftode RS, Haba MȘC, Botnariu EG, Maștaleru A, Gavril RS, Trandabat BA, Chirica SI, Haba RM, Leon MM, Costache II, Mitu F. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life (Basel) 2023; 13:1639. [PMID: 37629496 PMCID: PMC10455542 DOI: 10.3390/life13081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is a significant health concern with a growing incidence worldwide. It is directly linked to an increased cardiovascular risk and to major adverse cardiovascular events, such as acute coronary syndromes. In this review, we try to assess the potential diagnostic role of biomarkers in the early identification of patients susceptible to the development of atherosclerosis and other adverse cardiovascular events. We have collected publications concerning already established parameters, such as low-density lipoprotein cholesterol (LDL-C), as well as newer markers, e.g., apolipoprotein B (apoB) and the ratio between apoB and apoA. Additionally, given the inflammatory nature of the development of atherosclerosis, high-sensitivity c-reactive protein (hs-CRP) or interleukin-6 (IL-6) are also discussed. Additionally, newer publications on other emerging components linked to atherosclerosis were considered in the context of patient evaluation. Apart from the already in-use markers (e.g., LDL-C), emerging research highlights the potential of newer molecules in optimizing the diagnosis of atherosclerotic disease in earlier stages. After further studies, they might be fully implemented in the screening protocols.
Collapse
Affiliation(s)
- Raul-Alexandru Jigoranu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandru-Dan Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru-Florinel Oancea
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Radu-Stefan Miftode
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Ștefan Cristian Haba
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Eosefina Gina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Radu-Sebastian Gavril
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Bogdan-Andrei Trandabat
- Department of Surgery II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Orthopedics and Trauma, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Sabina Ioana Chirica
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Raluca Maria Haba
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Maria Magdalena Leon
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina-Iuliana Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
10
|
Nomura SO, Karger AB, Garg P, Cao J, Bhatia H, Duran EK, Duprez D, Guan W, Tsai MY. Small dense low-density lipoprotein cholesterol compared to other lipoprotein biomarkers for predicting coronary heart disease among individuals with normal fasting glucose: The Multi-Ethnic Study of Atherosclerosis. Am J Prev Cardiol 2023; 13:100436. [PMID: 36545388 PMCID: PMC9760650 DOI: 10.1016/j.ajpc.2022.100436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Objective This study compared small dense low-density lipoprotein cholesterol (sdLDL-C) with apolipoprotein B (apo B), and low-density lipoprotein particles (LDL-P) in predicting CHD risk in generally healthy adults with normal fasting glucose (NFG). Methods This study was conducted among participants with NFG in the Multi-Ethnic Study of Atherosclerosis (MESA) prospective cohort with measurements of sdLDL-C, LDL-P, and apo B available at baseline (2000-2002) and follow-up CHD data (through 2015) (N = 3,258). Biomarkers were evaluated as quartiles, and in categories using clinically and 75th percentile-defined cut-points. Discordance/concordance of sdLDL-C relative to other biomarkers was calculated using 75th percentile cut-points and linear regression residuals. Associations between individual biomarkers, sdLDL-C discordance and CHD incidence were evaluated using Cox proportional hazards regression. Results There were 241 incident CHD events in this population through 2015. Higher sdLDL-C, apo B, LDL-P were similarly associated with increased CHD in individuals with NFG. Discordance of sdLDL-C with apo B or LDL-P by 75th percentiles was not significantly associated with CHD. Residuals discordantly higher/lower sdLDL-C relative to apo B (discordant high HR=1.26, 95% CI: 0.89, 1.78; discordant low HR=0.94, 95% CI: 0.68, 1.29) and LDL-P (discordant high HR=1.25, 95% CI: 0.88, 1.75; discordant low HR=0.84, 95% CI:0.60, 1.16), compared to those with concordant measures, had non-statistically significant higher/lower risk of CHD. Conclusions Results suggest sdLDL-C, apo B and LDL-P are generally comparable for predicting CHD events in normoglycemic individuals. Larger studies are needed to confirm findings and to investigate whether measurement of sdLDL-C may be beneficial to evaluate as an additional risk-enhancing factor.
Collapse
Affiliation(s)
- Sarah O. Nomura
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Mayo Mail Code 609, Minneapolis, MN 55455, United States
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Mayo Mail Code 609, Minneapolis, MN 55455, United States
| | - Parveen Garg
- Keck Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Harpreet Bhatia
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, CA, United States
| | - Edward K. Duran
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Daniel Duprez
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Mayo Mail Code 609, Minneapolis, MN 55455, United States
| |
Collapse
|
11
|
Wani MJ, Salman KA, Moin S, Arif A. Effect of crocin on glycated human low-density lipoprotein: A protective and mechanistic approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121958. [PMID: 36244155 DOI: 10.1016/j.saa.2022.121958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Human low-density lipoprotein (LDL) is known to have a role in coronary artery diseases when it undergoes modification due to hyperglycaemic conditions. Plant products like crocin play an essential role in protecting against oxidative stress and in the production of advanced glycation end-products (A.G.E.s). In this study, the anti-glycating effect of crocin was analyzed using various biochemical, spectroscopic, and in silico approaches. Glycation-mediated oxidative stress was confirmed by nitroblue tetrazolium, carbonyl content, and lipid peroxidation assays, and it was efficiently protected by crocin in a concentration-dependent manner. A.N.S. fluorescence, thioflavin T (ThT) assay, and electron microscopy confirmed that the structural changes in LDL during glycation lead to the formation of fibrillar aggregates, which can be minimized by crocin treatment. Moreover, secondary structural perturbations in LDL were observed using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), where crocin was found to prevent the loss of secondary structure in glycated LDL. Spectroscopic studies like U.V. absorbance, fluorescence spectroscopy, CD, FTIR, and fluorescence resonance energy transfer (FRET) provided insights into the interaction mechanism between LDL and crocin. Molecular docking supports these results with a highly negative binding energy of -10.3 kcal/mol, suggesting the formation of a stable ldl-crocin complex. Our study indicates that crocin may be a potent protective agent against coronary artery diseases by limiting the glycation of LDL in people with such disorders.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, (U.P.), India.
| | - Khushtar Anwar Salman
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, (U.P.), India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, (U.P.), India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, (U.P.), India
| |
Collapse
|
12
|
The Role of Advanced Glycation End Products on Dyslipidemia. Metabolites 2023; 13:metabo13010077. [PMID: 36677002 PMCID: PMC9862879 DOI: 10.3390/metabo13010077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Disorders of lipoprotein metabolism and glucose homeostasis are common consequences of insulin resistance and usually co-segregate in patients with metabolic syndrome and type 2 diabetes mellitus (DM). Insulin-resistant subjects are characterized by atherogenic dyslipidemia, a specific lipid pattern which includes hypertriglyceridemia, reduced high-density lipoprotein cholesterol level, and increased proportion of small, dense low-density lipoprotein (LDL). Chronic hyperglycemia favors the processes of non-enzymatic glycation, leading to the increased production of advanced glycation end products (AGEs). Apart from direct harmful effects, AGEs are also potent inducers of oxidative stress and inflammation. In addition, increased AGEs' production may induce further qualitative modifications of small, dense LDL particles, converting them to glycated LDLs. These particles are even more atherogenic and may confer an increased cardiovascular risk. In this narrative review, we summarize the available evidence of the pathophysiological role and clinical importance of circulating AGEs and glycated LDLs in patients with dyslipidemia, particularly those with DM and related complications. In addition, we discuss recent advances and the issues that should be improved regarding laboratory assessment of AGEs and glycated LDLs, as well as the possibilities for their therapeutic modulation.
Collapse
|
13
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
14
|
Kim H, Hong J, Ahn S, Lee W, Chun S, Min W. Association between measured or calculated small dense low-density lipoprotein cholesterol and oxidized low-density lipoprotein in subjects with or without type 2 diabetes mellitus. J Clin Lab Anal 2022; 37:e24807. [PMID: 36525335 PMCID: PMC9833976 DOI: 10.1002/jcla.24807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Small dense low-density lipoprotein (sdLDL) possesses atherogenic potential and is predicted to be susceptible to atherogenic modifications, which further increases its atherogenicity. However, studies on the association between measured or estimated sdLDL cholesterol (sdLDL-C) levels and atherogenic modification in diverse population groups are lacking. METHODS Surplus serum samples were collected from male subjects with type 2 diabetes mellitus (DM) under treatment (n = 300) and without DM (non-DM; n = 150). sdLDL and oxidized LDL (oxLDL) levels were measured using the Lipoprint LDL subfractions kit (Quantimetrix Corporation) and the Mercodia oxidized LDL competitive enzyme-linked immunosorbent assay kit (Mercodia), respectively. The estimated sdLDL-Cs were calculated from two relevant equations. The effects of sdLDL-C on oxLDL were assessed using multiple linear regression (MLR) models. RESULTS The mean (±SD) of measured sdLDL-C and oxLDL concentrations were 11.8 ± 10.0 mg/dl and 53.4 ± 14.2 U/L in the non-DM group and 0.20 ± 0.81 mg/dl and 46.0 ± 15.3 U/L in the DM group, respectively. The effects of measured sdLDL-Cs were significant (p = 0.031), whereas those of estimated sdLDL-Cs were not (p = 0.060, p = 0.116) in the non-DM group in the MLR models. The effects of sdLDL-Cs in the DM group were not significant. CONCLUSION In the general population, high level of sdLDL-C appeared to be associated with high level of oxLDL. The equation for estimating sdLDL-C developed from a general population should be applied with caution to a special population, such as patients with DM on treatment.
Collapse
Affiliation(s)
- Hyun‐Ki Kim
- Department of Laboratory MedicineUniversity of Ulsan College of Medicine, Ulsan University HospitalUlsanKorea
| | - Jinyoung Hong
- Department of Laboratory MedicineUniversity of Ulsan College of Medicine and Asan Medical CenterSeoulKorea
| | - Sunyoung Ahn
- Department of Laboratory MedicineDong In Medical CenterGangneungKorea
| | - Woochang Lee
- Department of Laboratory MedicineUniversity of Ulsan College of Medicine and Asan Medical CenterSeoulKorea
| | - Sail Chun
- Department of Laboratory MedicineUniversity of Ulsan College of Medicine and Asan Medical CenterSeoulKorea
| | - Won‐Ki Min
- Department of Laboratory MedicineUniversity of Ulsan College of Medicine and Asan Medical CenterSeoulKorea
| |
Collapse
|
15
|
Mironov AA, Beznoussenko GV. Opinion: On the Way towards the New Paradigm of Atherosclerosis. Int J Mol Sci 2022; 23:2152. [PMID: 35216269 PMCID: PMC8879789 DOI: 10.3390/ijms23042152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a multicausal disease characterized by the formation of cholesterol-containing plaque in the pronounced intima nearest to the heart's elastic-type arteries that have high levels of blood circulation. Plaques are formed due to arterial pressure-induced damage to the endothelium in areas of turbulent blood flow. It is found in the majority of the Western population, including young people. This denies the monogenic mechanism of atherogenesis. In 1988, Orekhov et al. and Kawai et al. discovered that the presence of atherogenic (modified, including oxidized ones) LDLs is necessary for atherogenesis. On the basis of our discovery, suggesting that the overloading of enterocytes with lipids could lead to the formation of modified LDLs, we proposed a new hypothesis explaining the main factors of atherogenesis. Indeed, when endothelial cells are damaged and then pass through the G2 phase of their cell cycle they secrete proteins into their basement membrane. This leads to thickening of the basement membrane and increases its affinity to LDL especially for modified ones. When the enterocyte transcytosis pathway is overloaded with fat, very large chylomicrons are formed, which have few sialic acids, circulate in the blood for a long time, undergo oxidation, and can induce the production of autoantibodies. It is the sialic acids that shield the short forks of the polysaccharide chains to which autoantibodies are produced. Here, these data are evaluated from the point of view of our new model.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy;
| | | |
Collapse
|
16
|
Glycated apolipoprotein B decreases after bariatric surgery in people with and without diabetes: A potential contribution to reduction in cardiovascular risk. Atherosclerosis 2022; 346:10-17. [DOI: 10.1016/j.atherosclerosis.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
|
17
|
Hu N, Chen C, Wang J, Huang J, Yao D, Li C. Atorvastatin Ester Regulates Lipid Metabolism in Hyperlipidemia Rats via the PPAR-signaling Pathway and HMGCR Expression in the Liver. Int J Mol Sci 2021; 22:11107. [PMID: 34681767 PMCID: PMC8538474 DOI: 10.3390/ijms222011107] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Atorvastatin ester (Ate) is a structural trim of atorvastatin that can regulate hyperlipidemia. The purpose of this study was to evaluate the lipid-lowering effect of Ate. Male Sprague Dawley (SD) rats were fed a high-fat diet for seven months and used as a hyperlipidemia model. The lipid level and liver function of the hyperlipidemia rats were studied by the levels of TG, TC, LDL, HDL, ALT, and AST in serum after intragastric administration with different doses of Ate. HE staining was used to observe the pathological changes of the rat liver and gastrocnemius muscle. The lipid deposits in the liver of rats were observed by staining with ORO. The genes in the rat liver were sequenced by RNA-sequencing. The results of the RNA-sequencing were further examined by qRT-PCR and western blotting. Biochemical test results indicated that Ate could obviously improve the metabolic disorder and reduce both the ALT and AST levels in serum of the hyperlipidemia rats. Pathological results showed that Ate could improve HFD-induced lipid deposition and had no muscle toxicity. The RNA-sequencing results suggested that Ate affected liver lipid metabolism and cholesterol, metabolism in the hyperlipidemia-model rats may vary via the PPAR-signaling pathway. The western blotting and qRT-PCR results demonstrated the Ate-regulated lipid metabolism in the hyperlipidemia model through the PPAR-signaling pathway and HMGCR expression. In brief, Ate can significantly regulate the blood lipid level of the model rats, which may be achieved by regulating the PPAR-signaling pathway and HMGCR gene expression.
Collapse
Affiliation(s)
- Nan Hu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Chunyun Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Jinhui Wang
- School of Pharmacy, Harbin Medical University, Harbin 150000, China; (J.W.); (J.H.)
| | - Jian Huang
- School of Pharmacy, Harbin Medical University, Harbin 150000, China; (J.W.); (J.H.)
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China;
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| |
Collapse
|
18
|
Alizadeh-Fanalou S, Nazarizadeh A, Alian F, Faraji P, Sorori B, Khosravi M. Small dense low-density lipoprotein-lowering agents. Biol Chem 2021; 401:1101-1121. [PMID: 32427116 DOI: 10.1515/hsz-2019-0426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Metabolic disorders, including obesity, diabetes, and hyperlipidemia, as well as cardiovascular diseases (CVD), particularly atherosclerosis, are still leading causes of death worldwide. Plasma levels of low-density lipoprotein (LDL) are currently being considered as a critical risk factor for the diseases mentioned above, especially atherosclerosis. Because of the heterogeneous nature of LDL, many studies have already been conducted on its subclasses, especially small dense LDL (sdLDL). According to available evidence, sdLDL levels can be considered as an ideal alternative to LDL levels for monitoring CVD and early diagnosis of atherosclerosis. Recently, several researchers have focused on factors that are able to decrease sdLDL levels and improve health quality. Therefore, the purpose of this study is to describe the production process of sdLDL particles and review the effects of pharmaceutical and dietary agents as well as lifestyle on sdLDL plasma levels. In brief, their mechanisms of action are discussed. Apparently, cholesterol and LDL-lowering compounds are also effective in the reduction of sdLDL levels. In addition, improving lipid profile, especially the reduction of triglyceride levels, appropriate regimen, and lifestyle can decrease sdLDL levels. Therefore, all the aforementioned parameters should be taken into consideration simultaneously in sdLDL levels reducing strategies.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Student Research Committee, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran1449614535,Islamic Republic of Iran
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran1449614535,Islamic Republic of Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran131451365,Islamic Republic of Iran
| | - Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran131451365,Islamic Republic of Iran
| | - Bahareh Sorori
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Islamic Republic of Iran
| | - Mohsen Khosravi
- Department of Medicine, Islamic Azad University, Qom Branch, Qom3714668669,Islamic Republic of Iran
| |
Collapse
|
19
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
20
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
21
|
Mahdavifard S, Nakhjavani M. Preventive Effect of Eucalyptol on the Formation of Aorta Lesions in the Diabetic-Atherosclerotic Rat. Int J Prev Med 2021; 12:45. [PMID: 34211676 PMCID: PMC8223915 DOI: 10.4103/ijpvm.ijpvm_319_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Glycation, inflammation, and oxidative stress are the cardinal motivators of diabetes vascular complications. Here, we studied the effect of eucalyptol (EUC) on the formation of atheromatous lesions, glycation, oxidative stress, and inflammatory markers as well as insulin resistance, lipid profile, and activity of glyoxalase-1 (GLO-I) in the atherosclerotic rat model. Methods: Diabetic-atherosclerosis induced in rats with a combination of streptozotocin and atherogenic diet. Two groups of rats, normal and diabetic-atherosclerotic, were treated intragastrically with EUC (200 mg/kg) once daily for 3 months. Fasting blood sugar (FBS), insulin, insulin resistance index, lipid profile, the activity of GLO-I, low-density lipoprotein (LDL) glycation and oxidation markers, inflammatory markers, creatinine in the serum, and proteinuria in the urine of all rats were determined. Results: EUC inhibited the formation of any atheromatous lesions in atherosclerotic rats. Further, EUC displayed the lowering effect on glycemia, insulin resistance, LDL glycation, and oxidation products, and tumor necrosis factor (TNF)-α as well as it exhibited the improving effect on lipid profile, the activity of GLO-I, and renal function in the diabetic rat (P < 0.001). Conclusions: EUC prevented the formation of the atheromatous lesions and improved renal function in the atherosclerotic rat model due to a reduction of glycation, oxidative stress, and inflammatory mediators.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Manochehr Nakhjavani
- Department of Endocrinology and Metabolism, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 879] [Impact Index Per Article: 219.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Abstract
A new cardiometabolic-based chronic disease (CMBCD) model is presented that provides a basis for early and sustainable, evidence-based therapeutic targeting to promote cardiometabolic health and mitigate the development and ravages of cardiovascular disease. In the first part of this JACC State-of-the-Art Review, a framework is presented for CMBCD, focusing on 3 primary drivers (genetics, environment, and behavior) and 2 metabolic drivers (adiposity and dysglycemia) with applications to 3 cardiovascular endpoints (coronary heart disease, heart failure, and atrial fibrillation). Specific mechanistic pathways are presented configuring early primary drivers with subsequent adiposity, insulin resistance, β-cell dysfunction, and metabolic syndrome, leading to cardiovascular disease. The context for building this CMBCD model is to expose actionable targets for prevention to achieve optimal cardiovascular outcomes. The tactical implementation of this CMBCD model is the subject of second part of this JACC State-of-the-Art Review.
Collapse
|
24
|
Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75:525-538. [PMID: 32029136 DOI: 10.1016/j.jacc.2019.11.044] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
A new cardiometabolic-based chronic disease (CMBCD) model is presented that provides a basis for early and sustainable, evidence-based therapeutic targeting to promote cardiometabolic health and mitigate the development and ravages of cardiovascular disease. In the first part of this JACC State-of-the-Art Review, a framework is presented for CMBCD, focusing on 3 primary drivers (genetics, environment, and behavior) and 2 metabolic drivers (adiposity and dysglycemia) with applications to 3 cardiovascular endpoints (coronary heart disease, heart failure, and atrial fibrillation). Specific mechanistic pathways are presented configuring early primary drivers with subsequent adiposity, insulin resistance, β-cell dysfunction, and metabolic syndrome, leading to cardiovascular disease. The context for building this CMBCD model is to expose actionable targets for prevention to achieve optimal cardiovascular outcomes. The tactical implementation of this CMBCD model is the subject of second part of this JACC State-of-the-Art Review.
Collapse
|
25
|
Mahdavifard S, Nakhjavani M. Thiamine pyrophosphate improved vascular complications of diabetes in rats with type 2 diabetes by reducing glycation, oxidative stress, and inflammation markers. Med J Islam Repub Iran 2020; 34:47. [PMID: 32884922 PMCID: PMC7456440 DOI: 10.34171/mjiri.34.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background: Thiamine deficiency contributes to hyperglycemia and diabetes complications. Thus, in this study, the effect of thiamine pyrophosphate (TPP) on the in vivo and in vitro formation of glycation, oxidative stress, and inflammatory markers (the main contributors of vascular diabetes complications) was examined in type 2 diabetes rat model. Methods: Type 2 diabetes was induced in rats with a combination of streptozotocin and nicotinamide (55+200 mg/kg). Two groups of rats, healthy and diabetic, were treated with 0.1% TPP in drinking water daily for 3 months and the 2 others received water only. The glucose, insulin, early to end glycation products, the activity of glyoxalase system, lipid profile, LDL oxidation markers, inflammatory markers, creatinine in the serum, and proteinuria in the urine of all rats were determined. Moreover, albumin and LDL were incubated with glucose in the presence and absence of TPP, and the samples were investigated for glycation and oxidation products. Different variables in all 4 groups were compared with multiple analysis of variance (MANOVA-Tukey) test using SPSS version 16. Significance level was set at p<0.05. Results: TPP decreased the formation of diverse glycation and oxidation products in both in vivo (glycated LDL= 144.50±3.48 and oxidized LDL= 54.08±2.67 μmol/l) and in vitro (glycated LDL= 107.00±2.82 and oxidized LDL= 50.83±1.22 μmol/l). In addition, the vitamin reduced fasting blood sugar (9.23±0.29), insulin resistance (9.10±0.50), tumor necrosis factor-α (285.43±15.97), interleukin-6 (257.65±13.06), and improved the lipid profile, the activity of Glo system (Glo-I= 31.65±1.06 and Glo-II= 27.01±0.90 U/mL) and renal function in the diabetic rat (p<0.001). Conclusion: TPP decreased the major risk factors for diabetic complications and corrected the alternations of glucose and lipid metabolism in type 2 diabetic rats; thus, it is recommended for diabetes treatment.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Manochehr Nakhjavani
- Endocrine Division, Vali-asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Cao J, Nomura SO, Steffen BT, Guan W, Remaley AT, Karger AB, Ouyang P, Michos ED, Tsai MY. Apolipoprotein B discordance with low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol in relation to coronary artery calcification in the Multi-Ethnic Study of Atherosclerosis (MESA). J Clin Lipidol 2020; 14:109-121.e5. [PMID: 31882375 PMCID: PMC7085429 DOI: 10.1016/j.jacl.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Discordant levels of apolipoprotein B (apo B) relative to low-density lipoprotein cholesterol (LDL-C) or non-high-density lipoprotein cholesterol (non-HDL-C) may be associated with subclinical atherosclerotic cardiovascular disease (ASCVD). OBJECTIVE The present study investigated whether discordance between apo B and LDL-C or non-HDL-C levels was associated with subclinical ASCVD measured by coronary artery calcium (CAC). METHODS This study was conducted in a subpopulation of the Multi-Ethnic Study of Atherosclerosis (MESA) cohort, aged 45 to 84 years, free of ASCVD, and not taking lipid-lowering medications at the baseline (2000-2002) (prevalence analytic N = 4623; incidence analytic N = 2216; progression analytic N = 3947). Apo B discordance relative to LDL-C and non-HDL-C was defined using residuals and percentile rankings (>5/10/15 percentile). Associations with prevalent and incident CAC (CAC > 0 vs CAC = 0) were assessed using prevalence ratio/relative risk regression and CAC progression (absolute increase/year) using multinomial logistic regression. RESULTS Higher apo B levels were associated with CAC prevalence, incidence, and progression. Apo B discordance relative to LDL-C or non-HDL-C was inconsistently associated with CAC prevalence and progression. Discordantly high apo B relative to LDL-C and non-HDL-C was associated with CAC progression. Associations for apo B discordance with non-HDL-C remained after further adjustment for metabolic syndrome components. CONCLUSION Apo B was associated with CAC among adults aged ≥45 years not taking statins, but provided only modest additional predictive value of apo B for CAC prevalence, incidence, or progression beyond LDL-C or non-HDL-C. Apo B discordance may still be important for ASCVD risk assessment and further research is needed to confirm findings.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sarah O Nomura
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Brian T Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Amy B Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Pamela Ouyang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Summerhill VI, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int J Mol Sci 2019; 20:E3561. [PMID: 31330845 PMCID: PMC6678182 DOI: 10.3390/ijms20143561] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Lipid accumulation in the arterial wall is a crucial event in the development of atherosclerotic lesions. Circulating low-density lipoprotein (LDL) is the major source of lipids that accumulate in the atherosclerotic plaques. It was discovered that not all LDL is atherogenic. In the blood plasma of atherosclerotic patients, LDL particles are the subject of multiple enzymatic and non-enzymatic modifications that determine their atherogenicity. Desialylation is the primary and the most important atherogenic LDL modification followed by a cascade of other modifications that also increase blood atherogenicity. The enzyme trans-sialidase is responsible for the desialylation of LDL, therefore, its activity plays an important role in atherosclerosis development. Moreover, circulating modified LDL is associated with immune complexes that also have a strong atherogenic potential. Moreover, it was shown that antibodies to modified LDL are also atherogenic. The properties of modified LDL were described, and the strong evidence indicating that it is capable of inducing intracellular accumulation of lipids was presented. The accumulated evidence indicated that the molecular properties of modified LDL, including LDL-containing immune complexes can serve as the prognostic/diagnostic biomarkers and molecular targets for the development of anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Volha I Summerhill
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, Moscow 109240, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Igor A Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
- Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia.
| |
Collapse
|
28
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
29
|
Protective effect of the hydroalcoholic extract of Tripodanthus acutifolius in hypercholesterolemic Wistar rats. Pharmacotherapy 2018; 97:300-309. [DOI: 10.1016/j.biopha.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 01/24/2023]
|
30
|
Padhi EM, Ramdath DD. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Theodosis-Nobelos P, Athanasekou C, Rekka EA. Dual antioxidant structures with potent anti-inflammatory, hypolipidemic and cytoprotective properties. Bioorg Med Chem Lett 2017; 27:4800-4804. [PMID: 29017787 DOI: 10.1016/j.bmcl.2017.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Novel amide derivatives of trolox, 3,5-di-tert-butyl-4-hydroxybenzoic acid, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid and cinnamic acid with cysteamine and l-cysteine ethyl ester were synthesised. In four cases, the disulfide derivatives were also isolated and tested. All compounds were examined for antioxidant activity, expressed as their ability to inhibit lipid peroxidation and to scavenge free radicals. They were found to demonstrate up to 17-fold better activity than that of the parent antioxidant acids. They could reduce acute inflammation up to 87%. The most active antioxidant compounds were further tested for their in vivo hypolipidemic effect, which ranged from 47% to 73%, and for their ability to protect the liver against oxidative toxicity caused by high paracetamol dose. The disulfide derivatives of 3,5-di-tert-butyl-4-hydroxybenzoic acid and cinnamic acid had no antioxidant activity and presented equal or lower anti-inflammatory effect than their thiol analogues, indicating that their molecular characteristics may not permit biological barrier penetration.
Collapse
Affiliation(s)
- Panagiotis Theodosis-Nobelos
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece
| | - Chrysoula Athanasekou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15310 Agia Paraskevi Attikis, Athens, Greece
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
32
|
Toma L, Sanda GM, Niculescu LS, Deleanu M, Stancu CS, Sima AV. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors 2017; 43:685-697. [PMID: 28753257 DOI: 10.1002/biof.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023]
Abstract
Type 2 diabetes mellitus is a worldwide epidemic and its atherosclerotic complications determine the high morbidity and mortality of diabetic patients. Caffeic acid (CAF), a phenolic acid present in normal diets, is known for its antioxidant properties. The aim of this study was to investigate CAF's anti-inflammatory properties and its mechanism of action, using cultured human endothelial cells (HEC) incubated with glycated low-density lipoproteins (gLDL). Levels of the receptor for advanced glycation end-products (RAGE), inflammatory stress markers (C reactive protein, CRP; vascular cell adhesion molecule-1, VCAM-1; monocyte chemoattractant protein-1, MCP-1), and oxidative stress and endoplasmic reticulum stress (ERS) markers were evaluated in gLDL-exposed HEC, in the presence/absence of CAF. RAGE silencing or blocking, specific inhibitors for oxidative stress (apocynin, N-acetyl-cysteine), and ERS (salubrinal) were used. The results showed that: (i) gLDL induced CRP synthesis and secretion through mechanisms involving NADPH oxidase-dependent oxidative stress and ERS in HEC; (ii) gLDL-RAGE interaction, oxidative stress, and ERS stimulated the secretion of VCAM-1 and MCP-1 in HEC; and (iii) CAF reduced the secretion of CRP, VCAM-1, and MCP-1 in gLDL-exposed HEC by inhibiting RAGE expression, oxidative stress, and ERS. In conclusion, CAF might be a promising alternative to ameliorate a wide spectrum of disorders due to its complex mechanisms of action resulting in anti-inflammatory and antioxidative properties. © 2017 BioFactors, 43(5):685-697, 2017.
Collapse
Affiliation(s)
- Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Gabriela M Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mariana Deleanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
- Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
33
|
Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1273042. [PMID: 28572872 PMCID: PMC5441126 DOI: 10.1155/2017/1273042] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
Low-density lipoprotein (LDL) plays a key role in the development and progression of atherosclerosis and cardiovascular disease. LDL consists of several subclasses of particles with different sizes and densities, including large buoyant (lb) and intermediate and small dense (sd) LDLs. It has been well documented that sdLDL has a greater atherogenic potential than that of other LDL subfractions and that sdLDL cholesterol (sdLDL-C) proportion is a better marker for prediction of cardiovascular disease than that of total LDL-C. Circulating sdLDL readily undergoes multiple atherogenic modifications in blood plasma, such as desialylation, glycation, and oxidation, that further increase its atherogenicity. Modified sdLDL is a potent inductor of inflammatory processes associated with cardiovascular disease. Several laboratory methods have been developed for separation of LDL subclasses, and the results obtained by different methods can not be directly compared in most cases. Recently, the development of homogeneous assays facilitated the LDL subfraction analysis making possible large clinical studies evaluating the significance of sdLDL in the development of cardiovascular disease. Further studies are needed to establish guidelines for sdLDL evaluation and correction in clinical practice.
Collapse
|
34
|
Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017; 9:E324. [PMID: 28338639 PMCID: PMC5409663 DOI: 10.3390/nu9040324] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect.
Collapse
Affiliation(s)
- D Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Emily M T Padhi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Sidra Sarfaraz
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Simone Renwick
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2E1, Canada.
| |
Collapse
|
35
|
Kalaria TR, Sirajwala HB, Gohel MG. Serum fructosamine, serum glycated albumin and serum glycated β-lipoprotein in type 2 diabetes mellitus patients with and without microvascular complications. J Diabetes Metab Disord 2016; 15:53. [PMID: 27896233 PMCID: PMC5117551 DOI: 10.1186/s40200-016-0276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022]
Abstract
Background Glycation of serum proteins has been proposed as an important mechanism of complications of diabetes but whether there are differences in glycation of different serum proteins and whether it has any correlation with development of microvascular complications has not been studied in depth. This study aimed to assess level of serum fructosamine, glycated albumin and glycated β-lipoprotein in type 2 diabetes mellitus patients with and without microvascular complications and to find out their correlation with diabetes complications. Methods Case–control study involving 150 individuals at a tertiary care hospital in western India. Fifty participants were healthy controls (group 1), 50 were type 2 diabetes patients without any evident microvascular complication (group 2) and 50 were type 2 diabetes patients with one or more microvascular complications (group 3). Serum fructosamine, FBS, PP2BS and other biochemical parameters were measured. Glycated albumin and glycated β-lipoprotein were measured by agarose gel electrophoresis followed by NBT staining. Unpaired t-test was used to find out significance of difference between two groups and correlation coefficient to find out statistical correlation between two variables. Results Type 2 diabetes patients with one or more microvascular complications had poor glycemic control as indicated by markers of short and mid-term glycemia. Differences between the groups for fructosamine, glycated albumin and glycated β-lipoprotein were significant (p < 0.001). Glycated albumin correlated with FBS, PP2BS and fructosamine in all diabetic patients (group 2 and 3) whereas glycated β-lipoprotein correlated with these parameters only in group 3 and it was markedly elevated in group 3. Conclusion Serum glycated β-lipoprotein was disproportionately elevated compared to fructosamine and glycated albumin in diabetes patients with microvascular complications (group 3) and it correlated with rest of glycemic markers only in this group. Glycated β-lipoprotein might help in identifying diabetic individuals at high future risk of developing microvascular complications.
Collapse
|
36
|
Gliozzi M, Maiuolo J, Oppedisano F, Mollace V. The effect of bergamot polyphenolic fraction in patients with non alcoholic liver steato-hepatitis and metabolic syndrome. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress. Mol Cell Biochem 2016; 417:169-79. [DOI: 10.1007/s11010-016-2724-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
38
|
Brinton EA. Management of Hypertriglyceridemia for Prevention of Atherosclerotic Cardiovascular Disease. Endocrinol Metab Clin North Am 2016; 45:185-204. [PMID: 26893005 DOI: 10.1016/j.ecl.2015.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mendelian randomization data strongly suggest that hypertriglyceridemia (HTG) causes atherosclerotic cardiovascular disease (ASCVD), and so triglyceride (TG) level-lowering treatment in HTG is now more strongly recommended to address the residual ASCVD risk than has been the case in (generally earlier) published guidelines. Fibrates are the best-established agents for TG level lowering and are generally used as first-line treatment of TG levels greater than 500 mg/dL. Statins are the best-established agents for ASCVD prevention, and so are usually used as first-line treatment of TG levels less than 500 mg/dL.
Collapse
Affiliation(s)
- Eliot A Brinton
- Atherometabolic Research, Utah Foundation for Biomedical Research, 419 Wakara Way, Suite 211, Salt Lake City, UT 84108, USA.
| |
Collapse
|
39
|
Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity. Bioorg Med Chem Lett 2015; 26:910-913. [PMID: 26750253 DOI: 10.1016/j.bmcl.2015.12.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/08/2023]
Abstract
Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis.
Collapse
|
40
|
Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol 2015; 6:222. [PMID: 26528181 PMCID: PMC4607861 DOI: 10.3389/fphar.2015.00222] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022] Open
Abstract
High-density lipoprotein (HDL) provides a pathway for the passage of lipid peroxides and lysophospholipids to the liver via hepatic scavenger receptors. Perhaps more importantly, HDL actually metabolizes lipid hydroperoxides preventing their accumulation on low-density lipoprotein (LDL), thus impeding its atherogenic structural modification. A number of candidates have been suggested to be responsible for HDL's antioxidant function, with paraoxonase-1 (PON1) perhaps the most prominent. Here we review the evidence for HDL anti-oxidative function and the potential contributions of apolipoproteins, lipid transfer proteins, paraoxonases and other enzymes associated with HDL.
Collapse
Affiliation(s)
- Handrean Soran
- Cardiovascular Research Group, Core Technology Facility, University of Manchester Manchester, UK ; Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust Manchester, UK
| | - Jonathan D Schofield
- Cardiovascular Research Group, Core Technology Facility, University of Manchester Manchester, UK ; Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust Manchester, UK
| | - Paul N Durrington
- Cardiovascular Research Group, Core Technology Facility, University of Manchester Manchester, UK
| |
Collapse
|
41
|
Yadav R, Liu Y, Kwok S, Hama S, France M, Eatough R, Pemberton P, Schofield J, Siahmansur TJ, Malik R, Ammori BA, Issa B, Younis N, Donn R, Stevens A, Durrington P, Soran H. Effect of Extended-Release Niacin on High-Density Lipoprotein (HDL) Functionality, Lipoprotein Metabolism, and Mediators of Vascular Inflammation in Statin-Treated Patients. J Am Heart Assoc 2015; 4:e001508. [PMID: 26374297 PMCID: PMC4599486 DOI: 10.1161/jaha.114.001508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background The aim of this study was to explore the influence of extended-release niacin/laropiprant (ERN/LRP) versus placebo on high-density lipoprotein (HDL) antioxidant function, cholesterol efflux, apolipoprotein B100 (apoB)-containing lipoproteins, and mediators of vascular inflammation associated with 15% increase in high-density lipoprotein cholesterol (HDL-C). Study patients had persistent dyslipidemia despite receiving high-dose statin treatment. Methods and Results In a randomized double-blind, placebo-controlled, crossover trial, we compared the effect of ERN/LRP with placebo in 27 statin-treated dyslipidemic patients who had not achieved National Cholesterol Education Program-ATP III targets for low-density lipoprotein cholesterol (LDL-C). We measured fasting lipid profile, apolipoproteins, cholesteryl ester transfer protein (CETP) activity, paraoxonase 1 (PON1) activity, small dense LDL apoB (sdLDL-apoB), oxidized LDL (oxLDL), glycated apoB (glyc-apoB), lipoprotein phospholipase A2 (Lp-PLA2), lysophosphatidyl choline (lyso-PC), macrophage chemoattractant protein (MCP1), serum amyloid A (SAA) and myeloperoxidase (MPO). We also examined the capacity of HDL to protect LDL from in vitro oxidation and the percentage cholesterol efflux mediated by apoB depleted serum. ERN/LRP was associated with an 18% increase in HDL-C levels compared to placebo (1.55 versus 1.31 mmol/L, P<0.0001). There were significant reductions in total cholesterol, triglycerides, LDL cholesterol, total serum apoB, lipoprotein (a), CETP activity, oxLDL, Lp-PLA2, lyso-PC, MCP1, and SAA, but no significant changes in glyc-apoB or sdLDL-apoB concentration. There was a modest increase in cholesterol efflux function of HDL (19.5%, P=0.045), but no change in the antioxidant capacity of HDL in vitro or PON1 activity. Conclusions ERN/LRP reduces LDL-associated mediators of vascular inflammation, but has varied effects on HDL functionality and LDL quality, which may counter its HDL-C-raising effect. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01054508.
Collapse
Affiliation(s)
- Rahul Yadav
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.) Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.)
| | - Yifen Liu
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.)
| | - See Kwok
- Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.)
| | - Salam Hama
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.)
| | - Michael France
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.) Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.) The Institute of Inflammation & Repair at the University of Manchester, United Kingdom (M.F.)
| | - Ruth Eatough
- Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.)
| | - Phil Pemberton
- Department of Biochemistry, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (P.P.)
| | - Jonathan Schofield
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.) Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.)
| | - Tarza J Siahmansur
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.)
| | - Rayaz Malik
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.)
| | - Basil A Ammori
- Department of Surgery, Salford Royal NHS Foundation Trust, Salford, United Kingdom (B.A.A.)
| | - Basil Issa
- Department of Diabetes and Endocrinology, University Hospital of South Manchester, United Kingdom (B.I., N.Y.)
| | - Naveed Younis
- Department of Diabetes and Endocrinology, University Hospital of South Manchester, United Kingdom (B.I., N.Y.)
| | - Rachelle Donn
- Complex Disease Genetics, Centre for Musculoskeletal Research, University of Manchester, United Kingdom (R.D.)
| | - Adam Stevens
- Royal Manchester Children's Hospital, Manchester, United Kingdom (A.S.)
| | - Paul Durrington
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.)
| | - Handrean Soran
- Cardiovascular Research Group, Core Technologies Facility, University of Manchester, United Kingdom (R.Y., Y.L., S.H., M.F., J.S., T.J.S., R.M., P.D., H.S.) Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (R.Y., S.K., M.F., R.E., J.S., H.S.)
| |
Collapse
|
42
|
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 2015; 11:525-32. [PMID: 26357481 PMCID: PMC4559248 DOI: 10.2147/vhrm.s74697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Pediatric Nephrology and Growth and Regeneration, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Yuri V Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia ; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
43
|
Soran H, Schofield JD, Liu Y, Durrington PN. How HDL protects LDL against atherogenic modification: paraoxonase 1 and other dramatis personae. Curr Opin Lipidol 2015; 26:247-56. [PMID: 26103614 DOI: 10.1097/mol.0000000000000194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To summarize the current evidence about how HDL impedes the oxidative and glycative atherogenic modification of LDL. RECENT FINDINGS Paraoxonase 1 (PON1) is located on HDL. Meta-analysis of clinical epidemiological investigations reveals a substantial association of low serum PON1 activity with coronary heart disease incidence independent of other risk factors including HDL cholesterol and apolipoprotein AI (apoAI). Transgenic animal models also indicate an antiatherosclerotic role for PON1. However, highly purified and recombinant PON1 do not retain their antioxidant properties. SUMMARY The therapeutic potential of PON1 should be recognized in preventing atherosclerosis and combating infection and organophosphate toxicity. In unleashing this potential, it is important to consider that both highly purified and recombinant PON1 are dissociated from the lipid phase and other components of HDL, such as apoAI and apoM, all of which may be required for HDL (through its PON1 component) to hydrolyze more lipophilic substrates.
Collapse
Affiliation(s)
- Handrean Soran
- aCardiovascular Research Group, School of Medicine, Core Technology Facility, University of Manchester bCardiovascular Trials Unit, Central Manchester and Manchester Children University Hospital NHS Foundation Trust, Manchester, UK
| | | | | | | |
Collapse
|
44
|
Lu M, Gursky O. Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol Concepts 2015; 4:501-18. [PMID: 25197325 DOI: 10.1515/bmc-2013-0016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low-density lipoproteins (LDLs, also known as 'bad cholesterol') are the major carriers of circulating cholesterol and the main causative risk factor of atherosclerosis. Plasma LDLs are 20- to 25-nm nanoparticles containing a core of cholesterol esters surrounded by a phospholipid monolayer and a single copy of apolipoprotein B (550 kDa). An early sign of atherosclerosis is the accumulation of LDL-derived lipid droplets in the arterial wall. According to the widely accepted 'response-to-retention hypothesis', LDL binding to the extracellular matrix proteoglycans in the arterial intima induces hydrolytic and oxidative modifications that promote LDL aggregation and fusion. This enhances LDL uptake by the arterial macrophages and triggers a cascade of pathogenic responses that culminate in the development of atherosclerotic lesions. Hence, LDL aggregation, fusion, and lipid droplet formation are important early steps in atherogenesis. In vitro, a variety of enzymatic and nonenzymatic modifications of LDL can induce these reactions and thereby provide useful models for their detailed analysis. Here, we summarize current knowledge of the in vivo and in vitro modifications of LDLs leading to their aggregation, fusion, and lipid droplet formation; outline the techniques used to study these reactions; and propose a molecular mechanism that underlies these pro-atherogenic processes. Such knowledge is essential in identifying endogenous and exogenous factors that can promote or prevent LDL aggregation and fusion in vivo and to help establish new potential therapeutic targets to decelerate or even block these pathogenic reactions.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Physiology and Biophysics, Boston University School of Medicine, W321, 700 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
45
|
Ströher DJ, Escobar Piccoli JDC, Güllich AADC, Pilar BC, Coelho RP, Bruno JB, Faoro D, Manfredini V. 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model. Int J Food Sci Nutr 2015; 66:559-68. [PMID: 26171628 DOI: 10.3109/09637486.2015.1064870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of supplementation with blueberry (BE) extract (Vaccinium ashei Reade) for 14 consecutive days on biochemical, hematological, histopathological and oxidative parameters in hypercholesterolemic rats were investigated. After supplementation with lyophilized extract of BE, the levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides were decreased. Histopathological analysis showed significant decrease (p < 0.05) of aortic lesions in hypercholesterolemic rats. Oxidative parameters showed significant reductions (p < 0.05) in oxidative damage to lipids and proteins and an increase in activities of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. The BE extract showed an important cardioprotective effect by the improvements in the serum lipid profile, antioxidant system, particularly in reducing oxidative stress associated with hypercholesterolemia and anti-atherogenic effect in rats.
Collapse
|
46
|
Brinton EA. Management of Hypertriglyceridemia for Prevention of Atherosclerotic Cardiovascular Disease. Cardiol Clin 2015; 33:309-23. [DOI: 10.1016/j.ccl.2015.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Zhu L, He Z, Wu F, Ding R, Jiang Q, Zhang J, Fan M, Wang X, Eva B, Jan N, Liang C, Wu Z. Immunization with advanced glycation end products modified low density lipoprotein inhibits atherosclerosis progression in diabetic apoE and LDLR null mice. Cardiovasc Diabetol 2014; 13:151. [PMID: 25391642 PMCID: PMC4234834 DOI: 10.1186/s12933-014-0151-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/10/2023] Open
Abstract
Background Diabetes accelerates atherosclerosis through undefined molecular mechanisms. Hyperglycemia induces formation of advanced glycation end product (AGE)-modified low-density lipoprotein (LDL). Anti-AGE-LDL autoantibodies favor atherosclerosis (AS) progression in humans, while anti oxidized LDL immunization inhibits AS in hypercholesterolemic, non-diabetic mice. We here investigated if AGE-LDL immunization protects against AS in diabetic mice. Methods After diabetes induction with streptozotocin and high fat diet, both low density lipoprotein receptor (LDLR)−/− and apoE female mice were randomized to: AGE-LDL immunization with aluminum hydroxide (Alum) adjuvant; Alum alone; or PBS. Results AGE-LDL immunization: significantly reduced AS; induced specific plasma IgM and IgG antibodies; upregulated splenic Th2, Treg and IL-10 levels, without altering Th1 or Th17 cells; and increased serum high density lipoprotein(HDL) while numerically lowering HbA1c levels. Conclusions Subcutaneous immunization with AGE-LDL significantly inhibits atherosclerosis progression in hyperlipidemic diabetic mice possibly through activation of specific humoral and cell mediated immune responses and metabolic control improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0151-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China. .,457th hospital of PLA, Wuhan, People's Republic of China.
| | - Zhiqing He
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Feng Wu
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China. .,Department of Research, Center for Stem Cell Biology, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA.
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Qixia Jiang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Jiayou Zhang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Min Fan
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Xing Wang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Bengtsson Eva
- Experimental Cardiovascular Research, CRC 91:12, Lund University, Entrance 72, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden.
| | - Nilsson Jan
- Experimental Cardiovascular Research, CRC 91:12, Lund University, Entrance 72, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden.
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| | - Zonggui Wu
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
48
|
Krauss RM. All Low-Density Lipoprotein Particles Are Not Created Equal. Arterioscler Thromb Vasc Biol 2014; 34:959-61. [DOI: 10.1161/atvbaha.114.303458] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ronald M. Krauss
- From the Children’s Hospital Oakland Research Institute, Oakland, CA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is the leading cause of morbidity and premature mortality in Europe and the United States, and is increasingly common in developing countries. High-density lipoprotein cholesterol (HDL-C) is an independent risk factor for CVD and is superior to low-density lipoprotein cholesterol (LDL-C) as a predictor of cardiovascular events. The residual risk conferred by low HDL-C in patients with a satisfactory LDL-C was recently highlighted by the European Atherosclerosis Society. Despite the lack of randomized controlled trials, it has been suggested that raising the level of HDL-C should be considered as a therapeutic strategy in high-risk patients because of the strong epidemiological evidence, compelling biological plausibility, and both experimental and clinical research supporting its cardioprotective effects. RECENT FINDINGS Three recent large randomized clinical trials investigating the effect of HDL-C raising with niacin and dalcetrapib in statin-treated patients failed to demonstrate an improvement in cardiovascular outcomes. SUMMARY There is evidence to support the view that HDL functionality and the mechanism by which a therapeutic agent raises HDL-C are more important than plasma HDL-C levels. Future therapeutic agents will be required to improve this functionality rather than simply raising the cholesterol cargo.
Collapse
|
50
|
Gliozzi M, Carresi C, Musolino V, Palma E, Muscoli C, Vitale C, Gratteri S, Muscianisi G, Janda E, Muscoli S, Romeo F, Ragusa S, Mollace R, Walker R, Ehrlich J, Mollace V. The Effect of Bergamot-Derived Polyphenolic Fraction on LDL Small Dense Particles and Non Alcoholic Fatty Liver Disease in Patients with Metabolic Syndrome. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abc.2014.42017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|