1
|
Accacha S, Voloshyna I, Kasselman LJ, Mejia-Corletto J, Srivastava A, Renna HA, De Leon J, Levine RL, Reiss AB. Plasma from type 1 diabetes patients promotes pro-atherogenic cholesterol transport in human macrophages. J Investig Med 2025; 73:183-192. [PMID: 39417428 DOI: 10.1177/10815589241296025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hyperglycemia, one of the major risk factors for atherosclerosis, leads to the accumulation of advanced glycation end products (AGEs), contributing to cardiovascular complications. Such accumulation may accelerate the progression of vascular disease in patients with diabetes. Reverse cholesterol transport (RCT) protein, ATP-binding membrane cassette transporters A1 and G1 (ABCA1 and ABCG1) and cholesterol 27-hydroxylase facilitate cholesterol removal from macrophages. AGE inhibits RCT by reducing the expression of ABCA1 and ABCG1. This study aimed to evaluate whether plasma from poorly controlled adolescents with type 1 diabetes (T1D) disrupts cholesterol homeostasis in human monocytes/macrophages. Twenty healthy controls (HCs) and 20 patients with type 1 diabetes mellitus (T1DM), 10-19 years old, were enrolled. Naïve THP-1 macrophages were exposed to plasma from each HC and patient with T1D. Following incubation, mRNA for cholesterol efflux (ABCA1, ABCG1, and 27-hydroxylase) and cholesterol uptake (CD36, ScR-A1, lectin oxidized low-density lipoprotein (LOX)-1, and CXCL16) were isolated. Foam cell formation was quantified to confirm the pro-atherogenic effects of T1D plasma on macrophages. Results showed that T1D plasma had an elevated level of N-(carboxymethyl)-lysine-modified proteins and upregulated CXCL16 and, to a lesser degree, ScR-A1. This change in gene expression in the presence of T1D plasma is associated with increased lipid accumulation and foam cell formation by THP-1 macrophages. In our study, these cells' uptake of an AGE product occurred mainly through the SR-A1 and CXCL16 receptors, leading to increased intracellular oxidized low-density lipoprotein. We conclude that AGEs may contribute to accelerated atherosclerosis in diabetes through effects on both forward and reverse cholesterol movement.
Collapse
Affiliation(s)
- Siham Accacha
- Department of Pediatrics, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Iryna Voloshyna
- Department of Medicine, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Lora J Kasselman
- Hackensack Meridian Jersey Shore University Medical Center, Hackensack, NJ, USA
| | | | - Ankita Srivastava
- Department of Medicine, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Heather A Renna
- Department of Medicine, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Joshua De Leon
- Department of Medicine, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Robert L Levine
- Department of Pediatrics, NYU Langone Hospital Long Island, Mineola, NY, USA
| | - Allison B Reiss
- Department of Medicine, NYU Langone Hospital Long Island, Mineola, NY, USA
| |
Collapse
|
2
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
3
|
Chiu TH, Ku CW, Ho TJ, Tsai KL, Yang YD, Ou HC, Chen HI. Schisanhenol ameliorates oxLDL-caused endothelial dysfunction by inhibiting LOX-1 signaling. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36999521 DOI: 10.1002/tox.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Atherosclerotic lesions play a critical role in leading cardiovascular diseases. Oxidized low-density lipoprotein (OxLDL) is a vital risk factor for atherosclerosis since it acts a crucial role in endothelial dysfunction and foam cell formation. Schisanhenol, a composition extracted from the fruit of Schisandra rubriflora, has been reported to have antioxidative effects on human LDL oxidation. This study investigates whether Schisanhenol protects against oxLDL-mediated endothelial damage by modulating the lectin-like oxLDL receptor-1 (LOX-1)-mediated inflammatory processes. Human umbilical vein endothelial cells (HUVECs) were pre-treated with 10 or 20 μM Schisanhenol for 2 h and then exposed to 150 μg/mL oxLDL. We revealed that Schisanhenol reduced oxLDL-enhanced LOX-1 expression. We also found that oxLDL down-regulated endothelial nitric oxide synthase (eNOS) as well as activated inducible NOS (iNOS), thereby enhancing the generation of nitric oxide (NO). Moreover, oxLDL elevated the expression levels of phosphorylated-p38MAPK, subsequently promoting NF-κB-modulated inflammatory responses. Pretreatment with Schisanhenol exerted significant cytoprotective function in all the above-mentioned detrimental events. Results from this present study reveal that Schisanhenol has a potential therapeutic effect on preventing oxLDL-induced endothelial injuries.
Collapse
Affiliation(s)
- Tsan-Hung Chiu
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Wen Ku
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Dung Yang
- Department of Rehabilitation, Asia University Hospital, Taichung, Taiwan
| | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsiu-I Chen
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
4
|
Rojas M, Prado Y, Tapia P, Carreño LJ, Cabello-Verrugio C, Simon F. Oxidized High-Density Lipoprotein Induces Endothelial Fibrosis Promoting Hyperpermeability, Hypotension, and Increased Mortality. Antioxidants (Basel) 2022; 11:2469. [PMID: 36552677 PMCID: PMC9774523 DOI: 10.3390/antiox11122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During systemic inflammation, reactive oxygen species (ROS) are generated in the bloodstream, producing large amounts of oxidized HDL (oxHDL). OxHDL loses the vascular protective features of native HDL, acquiring detrimental actions. Systemic inflammation promotes endothelial fibrosis, characterized by adhesion protein downregulation and fibrotic-specific gene upregulation, disrupting endothelial monolayer integrity. Severe systemic inflammatory conditions, as found in critically ill patients in the intensive care unit (ICU), exhibit endothelial hyperpermeability, hypotension, and organ hypoperfusion, promoting organ dysfunction and increased mortality. Because endothelial fibrosis disturbs the endothelium, it is proposed that it is the cellular and molecular origin of endothelial hyperpermeability and the subsequent deleterious consequences. However, whether oxHDL is involved in this process is unknown. The aim of this study was to investigate the fibrotic effect of oxHDL on the endothelium, to elucidate the underlying molecular and cellular mechanism, and to determine its effects on vascular permeability, blood pressure, and mortality. The results showed that oxHDL induces endothelial fibrosis through the LOX-1/NOX-2/ROS/NF-κB pathway, TGF-β secretion, and ALK-5/Smad activation. OxHDL-treated rats showed endothelial hyperpermeability, hypotension, and an enhanced risk of death and mortality, which was prevented using an ALK-5 inhibitor and antioxidant diet consumption. Additionally, the ICU patients showed fibrotic endothelial cells, and the resuscitation fluid volume administered correlated with the plasma oxHDL levels associated with an elevated risk of death and mortality. We conclude that oxHDL generates endothelial fibrosis, impacting blood pressure regulation and survival.
Collapse
Affiliation(s)
- Macarena Rojas
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, La Florida, Santiago 8242238, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
| |
Collapse
|
5
|
Short-Chain Fatty Acids Weaken Ox-LDL-Induced Cell Inflammatory Injury by Inhibiting the NLRP3/Caspase-1 Pathway and Affecting Cellular Metabolism in THP-1 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248801. [PMID: 36557935 PMCID: PMC9786193 DOI: 10.3390/molecules27248801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1β and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.
Collapse
|
6
|
Xu W, Qian L, Yuan X, Lu Y. MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. Clin Hemorheol Microcirc 2022; 81:241-253. [PMID: 35275525 DOI: 10.3233/ch-211232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have emerged as crucial players in the initiation and development of atherosclerosis (AS), and the low miR-223-3p level is observed in AS patients. However, the function and mechanism behind miR-223-3p in AS progression have not been fully elucidated. METHOD In the present study, THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL) were employed as the cell model of AS. The expression levels of miR-223-3p, NLR family pyrin domain containing 3 (NLRP3), caspase-1, pro-caspase-1, cleaved interleukin 18 (IL-18), cleaved IL-1β, and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB) analyses. The relationship between miR-223-3p and FOXO3 or NLRP3 was determined using a dual-luciferase reporter assay. The production of IL-1β, IL-18, IL-6, and TNF-α was examined by Enzyme-linked immunosorbent assay (ELISA). RESULTS MiR-223-3p was decreased in AS patients and ox-LDL-induced THP-1 cells, and its upregulation downregulated the abundance of NLRP3, caspase-1, cleaved IL-18, cleaved IL-1β, IL-1β, IL-6, and TNF-α in THP-1 cells treated with ox-LDL or not, and the depletion of miR-223-3p revealed an opposite phenomenon. NLPR3 and FOXO3 were identified as two authentic targets of miR-223-3p. Knockdown of NLRP3 or FOXO3 reversed the stimulatory effect of the miR-223-3p inhibitor on the inflammatory responses of THP-1 cells. CONCLUSIONS Our data indicate that miR-223-3p inhibited ox-LDL-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3 in THP-1 cells, which offered a prospective therapeutic target for AS therapy.
Collapse
Affiliation(s)
- Wei Xu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lei Qian
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Yuan
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yong Lu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
9
|
Cholesterol-Lowering Action of a Novel Nutraceutical Combination in Uremic Rats: Insights into the Molecular Mechanism in a Hepatoma Cell Line. Nutrients 2020; 12:nu12020436. [PMID: 32050453 PMCID: PMC7071245 DOI: 10.3390/nu12020436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Appropriate nutraceutical combinations may represent a valid approach to prevent vascular calcification associated with chronic kidney disease (CKD). In the present study, we tested the effect of a new nutraceutical combination named RenaTris®, containing MK-7, magnesium carbonate, and Sucrosomial® Iron, on vascular calcification in uremic rats. Rats were randomly divided into three groups, i.e. control (high-phosphate diet), uremic (high-phosphate diet containing 0.5% adenine), and supplemented uremic diet (0.5% adenine, MK-7, magnesium carbonate, and Sucrosomial® Iron). After six weeks, sera and vascular calcification were examined. The uremic diet increased creatinine and phosphate levels and induced extensive vascular calcification. The uremic condition also induced a mild hypercholesterolemic condition (+52% of total cholesterol; p < 0.05). The supplemented uremic diet did not reduce creatinine, phosphate levels, or vascular calcification, however, we observed a significant hypocholesterolemic effect (-18.9% in supplemental uremic vs. uremic diet; p < 0.05). Similar to simvastatin, incubation of cultured human hepatoma cells (Huh7) with MK-7 significantly reduced cholesterol biosynthesis (-38%) and induced 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and low-density lipoprotein receptor (LDLR) at both mRNA and protein levels. The effect of MK-7 on LDLR was counteracted by the co-incubation with squalene. Unlike simvastatin, MK-7 reduced PCSK9 in Huh7. These results indicated that the new nutraceutical combination significantly impacts cholesterol metabolism and its supplementation may help to control mild hypercholesterolemic conditions in CKD patients.
Collapse
|
10
|
Yan Y, Song D, Wu J, Wang J. Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Front Immunol 2020; 11:24. [PMID: 32082313 PMCID: PMC7003668 DOI: 10.3389/fimmu.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized as a chronic inflammatory response to cholesterol deposition in arteries. Low-density lipoprotein (LDL), especially the oxidized form (ox-LDL), plays a crucial role in the occurrence and development of atherosclerosis by inducing endothelial cell (EC) dysfunction, attracting monocyte-derived macrophages, and promoting chronic inflammation. However, the mechanisms linking cholesterol accumulation with inflammation in macrophage foam cells are poorly understood. Long non-coding RNAs (lncRNAs) are a group of non-protein-coding RNAs longer than 200 nucleotides and are found to regulate the progress of atherosclerosis. Recently, many lncRNAs interfering with cholesterol deposition or inflammation were identified, which might help elucidate their underlying molecular mechanism or be used as novel therapeutic targets. In this review, we summarize and highlight the role of lncRNAs linking cholesterol (mainly ox-LDL) accumulation with inflammation in macrophages during the process of atherosclerosis.
Collapse
Affiliation(s)
- Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Ding Y, Feng Y, Zhu W, Zou Y, Xie Y, Wang F, Liu CF, Zhang Y, Liu H. [Gly14]-Humanin Prevents Lipid Deposition and Endothelial Cell Apoptosis in a Lectin-like Oxidized Low-density Lipoprotein Receptor-1-Dependent Manner. Lipids 2019; 54:697-705. [PMID: 31574567 DOI: 10.1002/lipd.12195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023]
Abstract
Oxidized low-density lipoprotein (Ox-LDL) may induce apoptosis and dysfunction of vascular endothelial cells, contributing to the initiation and development of atherosclerosis and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays a central role in Ox-LDL uptake in the course of atherogenesis. Humanin (HN), a mitochondrial-derived peptide, was recently demonstrated to exert a protective role against endothelial dysfunction and Ox-LDL-induced progression of atherosclerosis. The HN analog HNGF6A (HNG) modulates cholesterol metabolism in macrophage RAW 264.7 cells. However, whether HNG affects Ox-LDL metabolism in endothelial cells is unknown. In this study, we investigated the effect of HNG on Ox-LDL accumulation in human umbilical vein endothelial cell (HUVEC) and its underlying mechanisms. HUVEC were preincubated with HNG for 1 h before addition of Ox-LDL. Total cholesterol content was measured by using a tissue total cholesterol assay kit and flow cytometry. Cell viability was measured by CCK8 assay. Protein content was examined by Western blot assays. Flow cytometry was used to identify apoptotic cells. Flow cytometry and tissue total cholesterol assays showed that HNG reduced Ox-LDL accumulation in HUVEC. In addition, HNG inhibited Ox-LDL-induced apoptosis of HUVEC. Western blot results showed that HNG reduced LOX-1 protein content. However, when LOX-1 was knocked down or inhibited, the effect of HNG in reducing Ox-LDL aggregation and apoptosis in HUVEC disappeared. Our study demonstrated that HNG reduces lipid aggregation and apoptosis in HUVEC in a LOX-1-dependent manner.
Collapse
Affiliation(s)
- Yu Ding
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yue Feng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Wawa Zhu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yutian Zou
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yanlin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Huihui Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
13
|
Kuang Y, Liu H, Guo S, Wang Y, Zhang H, Qiao Y. The antagonist of P2Y11 receptor NF157 ameliorates oxidized LDL-induced vascular endothelial inflammation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1839-1845. [PMID: 31066305 DOI: 10.1080/21691401.2019.1610412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atherosclerosis is the chronic inflammatory disease, and inflammation-elicited endothelial activation is an early event in the development of atherosclerosis. The P2Y11 receptor is a purinergic receptor and a member of the P2 family of G coupled protein which has been shown to modulate vascular function. Progress in the study of purine receptors has been tremendous and these receptors have become pharmacological targets for various diseases. In this study, we show that the P2Y11R antagonist NF157 can mitigate oxidized LDL (ox-LDL)-induced endothelial inflammation. Our study demonstrates that P2Y11R is expressed to a fair degree in human aortic endothelial cells and is induced by treatment with ox-LDL. Blockage of P2Y11R by its selective antagonist NF157 ameliorates ox-LDL-induced adhesion of THP-1 monocytes to endothelial cells. NF157 inhibits ox-LDL-induced expression of adhesion molecules including E-selectin and VCAM-1. NF157 also suppresses ox-LDL-associated ROS production and induction of the NADPH oxidase subunit NOX-4. Moreover, NF157 has an inhibitory effect on the production of major cytokines including IL-6 and TNF-α. Mechanistically, we show that NF157 mitigates ox-LDL-induced phosphorylation of MAPK kinase p38 and NF-κB activation. Our findings indicate that blockage of P2Y11R signalling by its antagonist NF157 may protect endothelial cells from ox-LDL-induced endothelial inflammation. Therefore, NF157 may have therapeutic implications in the modulation of atherosclerosis-associated inflammation.
Collapse
Affiliation(s)
- Yun Kuang
- a Department of Health Care , Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine , Shenzhen , China
| | - Hui Liu
- b Institute of Metabolic Diseases , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China
| | - Siyu Guo
- b Institute of Metabolic Diseases , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China
| | - Yufei Wang
- b Institute of Metabolic Diseases , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China
| | - Huijuan Zhang
- b Institute of Metabolic Diseases , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China
| | - Yanxiang Qiao
- b Institute of Metabolic Diseases , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China.,c Department of Internal Medicine , Baoan Central Hospital of Shenzhen , Shenzhen , China.,d Department of Emergency and Critical Care Medicine , the 5th Affiliated Hospital of Shenzhen University Health Science Center , Shenzhen , China
| |
Collapse
|
14
|
Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep 2019; 21:38. [DOI: 10.1007/s11883-019-0801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-κB pathway on endothelial cells. J Transl Med 2019; 99:421-437. [PMID: 30664710 DOI: 10.1038/s41374-018-0151-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases.
Collapse
|
16
|
Su Q, Sun Y, Ye Z, Yang H, Kong B, Li L. Pinocembrin protects endothelial cells from oxidized LDL-induced injury. Cytokine 2018; 111:475-480. [PMID: 29914794 DOI: 10.1016/j.cyto.2018.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a major risk factor for atherosclerosis and often causes injury to vascular endothelial cells. We found that pinocembrin, a natural antioxidant found in honey and certain herbs, protects human aortic endothelial cells (HAECs) from ox-LDL-induced injury. Pinocembrin suppresses the expression of pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1 and E-selectin) and cytokines (TNF-α, IL-1β, and IL-8), as well as ROS production induced by ox-LDL. Pinocembrin potently inhibits the attachment of monocytes to HAEC cells. Mechanistically, pinocembrin suppresses activation of the MAPK kinase p38 and NF-κB pathways in the context of ox-LDL. Our data indicate that pinocembrin is a promising versatile natural compound that can protect endothelial cells from injury.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuhan Sun
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziliang Ye
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huafeng Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Binghui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
17
|
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017; 107:S1537-1891(17)30171-4. [PMID: 29056472 DOI: 10.1016/j.vph.2017.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 is also expressed in macrophages, smooth muscle cells and platelets. Following internalization of oxLDL, LOX-1 initiates a vicious cycle from activation of pro-inflammatory signaling pathways, thus promoting an increased reactive oxygen species formation and secretion of pro-inflammatory cytokines. LOX-1 plays a pivotal role in the development of endothelial dysfunction, foam cell and advanced lesions formation as well as in myocardial ischemia. Furthermore, it is known that LOX-1 plays a pivotal role in mitochondrial DNA damage, vascular cell apoptosis, and autophagy. A large number of studies provide evidence of a LOX-1's role in endothelial dysfunction, hypertension, diabetes, and obesity. In addition, novel insights into LOX-1 ligands and the activated signaling pathways have been gained. Recent studies have shown an interaction of LOX-1 with microRNA's, thus providing novel tools to regulate LOX-1 function. Because LOX-1 is increased in atherosclerotic plaques and contributes to endothelial dysfunction, several compounds were tested in vivo and in vitro to modulate the LOX-1 expression in therapeutic approaches.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Yang Z, Ge H, Wang C, Li Z, Zhang Q, Wang J. Repeated positive acceleration exposure exacerbates endothelial dysfunction in high-fat-diet-induced hyperlipidemic rats. Arch Med Sci 2017; 13:937-946. [PMID: 28721161 PMCID: PMC5510504 DOI: 10.5114/aoms.2017.68144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/29/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION It remains unclear whether exposure to repeated positive acceleration (+Gz) can exacerbate endothelial dysfunction on the basis of hyperlipidemia. The aim of this study was to investigate the effect of repeated +Gz exposure on endothelial function in high-fat-diet-induced hyperlipidemic rats. MATERIAL AND METHODS Male Sprague-Dawley rats were randomly divided into control, repeat +Gz exposure, high-fat diet (HFD), and +Gz + HFD groups. The rats in the +Gz group were exposed to +Gz and the rats in the HFD group were fed a diet with 2% cholesterol. The rats in the +Gz + HFD group received both the +Gz exposure and HFD. Eight weeks later, the endothelium-dependent relaxation of the aorta was tested and the ultrastructure of the endothelial cells was observed using transmission electron microscopy. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of endothelial function-associated proteins. RESULTS Repeated +Gz exposure elevated the serum level of LDL-C in HFD rats. In the +Gz + HFD rats, the ACh-induced relaxation in the aorta rings was significantly attenuated and the endothelial cells of the aorta were dramatically damaged compared with HFD rats. Nitric oxide content and eNOS expression in the aortic tissue were markedly decreased and the oxidative stress was more serious in the +Gz + HFD rats compared with HFD rats. In addition, repeated +Gz exposure significantly increased serum ox-LDL level and LOX-1 expression in the aorta of HFD rats, thereby activating NF-κB p65 and upregulating the expression of interleukin 6, ICAM-1 and VAP-1. CONCLUSIONS Repeated +Gz exposure promotes endothelial dysfunction in HFD-induced hyperlipidemic rats.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Pharmacology, General Hospital of PLA Air Force, Beijing, China
| | - Hua Ge
- Aviation Physiological Laboratory, Institute of Aviation Medicine, PLA Air Force, Beijing, China
| | - Chunya Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhongdong Li
- Department of Pharmacology, General Hospital of PLA Air Force, Beijing, China
| | - Qingjun Zhang
- Department of Pharmacology, General Hospital of PLA Air Force, Beijing, China
| | - Jianchang Wang
- Center of Clinical Aviation Medicine, General Hospital of PLA Air Force, Beijing, China
| |
Collapse
|
19
|
Abstract
Beta-cyclodextrin (β-CD) has been applied as drug/food carriers or potential drugs for treating some diseases. Most recently, some evidence indicated that methyl-β-cyclodextrin (MβCD) and 2-hydroxypropyl-β-cyclodextrin (2-HPβCD), two major derivatives of β-CD, may inhibit atherogenesis, implying that cyclodextrins also can be potential drugs for treating atherosclerosis. It is well known that modification (e.g. oxidation) of low-density lipoprotein (LDL) is one of the most critical steps of atherogenesis. Lipoxygenase, an enzyme able to be expressed by atherosclerosis-related vascular cells, is generally regarded as a possible in vivo agent of LDL oxidation. In this study, the effects of MβCD on LDL oxidation induced by lipoxygenase were investigated by measuring the electrophoretic mobility, conjugated diene formation, malondialdehyde (MDA) production, and amino group blockage of LDL. We found that the lipids depleted from LDL by MβCD could be oxygenated more readily by lipoxygenase whereas the lipoxygenase-induced oxidation of the remaining lipid-depleted LDL decreased. The data imply that MβCD has an inhibitory effect on lipoxygenase-induced LDL oxidation and probably helps to inhibit atherogenesis.
Collapse
Affiliation(s)
- Meiying Ao
- College of Life Sciences, Nanchang University
| | | |
Collapse
|
20
|
Ran X, Zhao W, Li W, Shi J, Chen X. Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:347-55. [PMID: 27382351 PMCID: PMC4930903 DOI: 10.4196/kjpp.2016.20.4.347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/26/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha (TNF-α) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of TNF-α on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe CM-DCFH2-DA. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. TNF-α induced LOX-1 expression in a dose- and time-dependent manner in endothelial cells. TNF-α induced ROS formation, phosphorylation of NF-κB p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. NF-κB inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited TNF-α-induced LOX-1 expression. CPT and NAC suppressed TNF-α-induced LOX-1 expression and phosphorylation of NF-κB p65 and ERK in rat aorta. These data suggested that TNF-α induced LOX-1 expression via ROS activated NF-κB/ERK pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT.
Collapse
Affiliation(s)
- Xiaoli Ran
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou 563000, China
| | - Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau 999078, Macao, China
| | - Wenping Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou 563000, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau 999078, Macao, China
| |
Collapse
|
21
|
Xie W, Li L, Zhang M, Cheng HP, Gong D, Lv YC, Yao F, He PP, Ouyang XP, Lan G, Liu D, Zhao ZW, Tan YL, Zheng XL, Yin WD, Tang CK. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice. PLoS One 2016; 11:e0157085. [PMID: 27257686 PMCID: PMC4892477 DOI: 10.1371/journal.pone.0157085] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO) mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to reducing lipid accumulation and inflammatory response via downregulation of LPL gene expression, suggesting a potential strategy to the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Pathophysiology, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Laboratory of Clinical Anatomy, University of South China, Hengyang, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Hospital Dr NW, Calgary, Alberta, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
22
|
Yokoyama C, Aoyama T, Ido T, Kakino A, Shiraki T, Tanaka T, Nishigaki K, Hasegawa A, Fujita Y, Sawamura T, Minatoguchi S. Deletion of LOX-1 Protects against Heart Failure Induced by Doxorubicin. PLoS One 2016; 11:e0154994. [PMID: 27195769 PMCID: PMC4873018 DOI: 10.1371/journal.pone.0154994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/22/2016] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is one of the major factors in doxorubicin (DOX)-induced cardiomyopathy. Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1) plays an important role to regulate cardiac remodeling and oxidative stress after ischemia-reperfusion. Therefore, we examined whether or not LOX-1 contributes to the pathogenesis of DOX-induced cardiomyopathy. Cardiomyopathy was induced by a single intraperitoneal injection of DOX into wild-type (WT) mice and LOX-1 knockout (KO) mice. Echocardiography and catheter-based hemodynamic assessment apparently revealed preserved left ventricular (LV) fractional shortening (FS) and cavity size of LOX-1 KO mice compared with those of WT mice after DOX administration. Less production of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) was observed in LOX-1 KO mice than WT mice after DOX administration. Western blotting analysis also showed lower activation of nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in LOX-1 KO mice treated with DOX than WT mice treated with DOX. In fact, NF-κB-dependent gene expressions of LOX-1 and vascular cell adhesion molecule-1 (VCAM-1) were suppressed in LOX-1 KO mice treated with DOX compared with WT mice treated with DOX. Therefore, histological analyses showed attenuation of leukocyte infiltration and cardiac fibrosis in LOX-1 KO mice compared with WT mice. Meanwhile, extracellular signal-regulated kinase MAPK (ERK) inactivation and decreased expression of sarcomeric proteins and related transcription factor GATA-4 in WT mice treated with DOX administration were not seen in LOX-1 KO mice treated with DOX administration and WT and LOX-1 KO mice treated with vehicle. Decreased expression of sarcometric proteins resulted in smaller diameters of cardiomyocytes in WT mice than in LOX-1 KO mice after DOX treatment. The expression of LOX-1 in cardiomyocytes was much more abundant than that in endothelial cells, fibroblasts and inflammatory cells. Endothelial cells, fibroblasts and inflammatory cells treated with DOX showed no elevated LOX-1 expression compared with those treated with vehicle. However, cardiomyocytes treated with DOX showed much more expression of LOX-1 than those treated with vehicle. Immunohistochemistry study also showed that LOX-1 expression was strongly elevated in cardiomyocytes in the heart tissue of mice treated with DOX in vivo. We conclude that LOX-1 in cardiomyocytes plays the most important roles in the pathology of DOX-induced cardiomyopathy. LOX-1 deletion altered the LOX-1-related signaling pathway, which led to improvements in cardiac function, myocardial inflammation, fibrosis and degenerative changes after DOX treatment.
Collapse
Affiliation(s)
- Chiharu Yokoyama
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuma Aoyama
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Cardiovascular Center, Kizawa Memorial Hospital, Minokamo, Japan
- * E-mail:
| | - Takahiro Ido
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Cardiovascular Center, Kizawa Memorial Hospital, Minokamo, Japan
| | - Akemi Kakino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeru Shiraki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Nishigaki
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Aiko Hasegawa
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Fujita
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
23
|
Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, Turi GK, Fazzari MJ, Carsons SE, DeLeon J, Reiss AB. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med (Maywood) 2016; 241:1611-9. [PMID: 27190277 DOI: 10.1177/1535370216647181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/01/2016] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Numerous investigations by our group and others have indicated cardioprotective and anti-inflammatory properties of resveratrol. The present study explored potential atheroprotective actions of resveratrol on cholesterol efflux in cultured human macrophages exposed to plasma from systemic lupus erythematosus (SLE) patients. These results were confirmed in ApoE(-/-)Fas(-/-) double knockout mice, displaying a lupus profile with accelerated atherosclerosis. Resveratrol treatment attenuated atherosclerosis in these mice. THP-1 human macrophages were exposed to 10% pooled or individual plasma from patients who met diagnostic criteria for SLE. Expression of multiple proteins involved in reverse cholesterol transport (ABCA1, ABCG1, SR-B1, and cytochrome P450 27-hydroxylase) was assessed using QRT-PCR and Western blotting techniques. Ten-week-old ApoE(-/-)Fas(-/-) double knockout mice (n = 30) were randomly divided into two equal groups of 15, one of which received 0.01% resveratrol for 10 consecutive weeks. Atherosclerosis progression was evaluated in murine aortas. Bone marrow-derived macrophages (BMDM) were cultured and expression of cholesterol efflux proteins was analyzed in each group of mice. Our data indicate that inhibition of cholesterol efflux by lupus plasma in THP-1 human macrophages is rescued by resveratrol. Similarly, administration of resveratrol in a lupus-like murine model reduces plaque formation in vivo and augments cholesterol efflux in BMDM. This study presents evidence for a beneficial role of resveratrol in atherosclerosis in the specific setting of SLE. Therefore, resveratrol may merit investigation as an additional resource available to reduce lipid deposition and atherosclerosis in humans, especially in such vulnerable populations as lupus patients.
Collapse
Affiliation(s)
- Iryna Voloshyna
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Isaac Teboul
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Michael J Littlefield
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Nicolle M Siegart
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - George K Turi
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Melissa J Fazzari
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Steven E Carsons
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Joshua DeLeon
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| | - Allison B Reiss
- Department of Medicine and Winthrop Research Institute, Winthrop University Hospital, Mineola, NY 11501, USA
| |
Collapse
|
24
|
ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res 2015; 64:253-60. [PMID: 25721616 DOI: 10.1007/s00011-015-0805-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is a counter-regulator against ACE by converting angiotensin II (Ang-II) to Ang-(1-7), but the effect of ACE2 and Ang-(1-7) on endothelial cell function and atherosclerotic evolution is unknown. We hypothesized that ACE2 overexpression and Ang-(1-7) may protect endothelial cell function by counterregulation of angiotensin II signaling and inhibition of inflammatory response. METHODS We used a recombinant adenovirus vector to locally overexpress ACE2 gene (Ad-ACE2) in human endothelial cells in vitro and in apoE-deficient mice in vivo. The Ang II-induced MCP-1, VCAM-1 and E-selectin expression, endothelial cell migration and adhesion of human monocytic cells (U-937) to HUVECs by ACE2 gene transfer were evaluated in vitro. Accelerated atherosclerosis was studied in vivo, and atherosclerosis was induced in apoE-deficient mice which were divided randomly into four groups that received respectively a ACE2 gene transfer, Ad-ACE2, Ad-EGFP, Ad-ACE2 + A779, an Ang-(1-7) receptor antagonist, control group. After a gene transfer for 4 weeks, atherosclerotic pathology was evaluated. RESULTS ACE2 gene transfer not only promoted HUVECs migration, inhibited adhesion of monocyte to HUVECs and decreased Ang II-induced MCP-1, VCAM-1 and E-selectin protein production in vitro, but also decreased the level of MCP-1, VCAM-1 and interleukin 6 and inhibit atherosclerotic plaque evolution in vivo. Further, administration of A779 increased the level of MCP-1, VCAM-1 and interleukin 6 in vivo and led to further advancements in atherosclerotic extent. CONCLUSIONS ACE2 and Ang-(1-7) significantly inhibit early atherosclerotic lesion formation via protection of endothelial function and inhibition of inflammatory response.
Collapse
|
25
|
Li J, Chen S, Cai X, Wang H, Wang X, Wang W. TLR2 expression doesn't change in ox-LDL mediated inflammation in Human umbilical vein endothelial cells under high glucose culture. Int J Clin Exp Med 2015; 8:22004-10. [PMID: 26885173 PMCID: PMC4724019 DOI: pmid/26885173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/10/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Inflammatory responses induced by ox-LDL play important roles in atherogenesis, and could be promoted in diabetic patients. Toll-like receptor (TLR)2 is an innate inflammatory receptor, and is enhanced in human umbilical vein endothelial cells (HUVECs) under high glucose conditions. Ox-LDL-TLR2 pathway activation and further inflammation in monocytes are involved in the atherosclerosis formation. OBJECTIVE What role of TLR2 plays on ox-LDL-induced inflammation in HUVECs remains unclear, especially in high glucose conditions. The purpose of this study is to explore the effect and role of ox-LDL-TLR2 pathway on the inflammatory responses in HUVECs. METHODS 1 hour prior to the treatment, HUVECs were treated with or without neutralizing anti-TLR2 antibody. After that, HUVECs were treated with ox-LDL (20, or 40 μg/ml) or LPS (200 ng/ml) under normal and high glucose conditions. The expressions of ICAM-1 and TLR2 protein were analyzed by immunoblotting, and IL-6 and IL-8 were measured by ELISA. RESULTS Compared with those in normal glucose condition, IL-6 and IL-8 expression were increased in high glucose condition. The stimulation of ox-LDL and LPS both increased the expression of ICAM-1, IL-6 and IL-8, but did not change TLR2 protein expression in both normal and high glucose conditions. Additionally, the expression of ICAM-1, IL-6 and IL-8 was not changed when TLR2 was knocked out under these two conditions. CONCLUSION The inflammatory responses induced by Ox-LDL were not changed with or without TLR2 under both normal and high glucose conditions in HUVECs. Our study indicates TLR2 is not involved in the ox-LDL mediated endothelial injury under high glucose conditions, which is an important step of atherosclerosis formation in diabetes.
Collapse
Affiliation(s)
- Jilin Li
- Department of Interventional cardiology, First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| | - Shuying Chen
- Department of Interventional cardiology, First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| | - Xiangna Cai
- Department of Plastic Surgeon, First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| | - Huaiwen Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| | - Xin Wang
- Department of Interventional cardiology, First Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| | - Wei Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical CollegeShantou, Guangdong Province, China
| |
Collapse
|
26
|
Zhao W, Ma G, Chen X. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Vascul Pharmacol 2014; 63:162-72. [PMID: 25135647 DOI: 10.1016/j.vph.2014.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
Lectin-like receptor for oxidized low density lipoprotein (LOX-1) plays a key role in endothelial ox-LDL endocytosis, endothelial dysfunction and atherogenesis. In the present study, the effect of lipopolysaccharide (LPS) on LOX-1 expression and the underlying molecular pathways were investigated. Human umbilical vein endothelial cells (HUVECs) were treated with LPS and the protein expressions of LOX-1, TLR4, TLR2, MyD88, Nox4, Nox2, PI3K, p38MAPK, JNK, ERK, Nrf1, Nrf2 and p65 were examined by Western blotting. The intracellular reactive oxygen species (ROS) production was examined by flow cytometry with fluorescence probe DCFH2-DA. The role of TLR4, MyD88 and Nox4 were determined with specific siRNA. The endothelial ox-LDL uptake and the endothelial-monocyte adhesion were evaluated with DiI-ox-LDL and Hoechst 33342 respectively. The effect of LPS on LOX-1 expression in aorta tissue was also studied with male C57/BL6 mice by intraperitoneal injection of LPS. The results showed that LPS induced LOX-1 protein expression in a time- and concentration-dependent manner. The mRNA expression of LOX-1 was also upregulated. The protein expression of LOX-1 and phosphorylated p38MAPK, p65 was significantly enhanced by LPS both in vitro and in vivo. LPS induced LOX-1 expression was blocked by siRNA for TLR4, MyD88, and Nox4 and inhibitors for p38MAPK, NF-κB, cyclooxygenase-2, and NADPH oxidase. Both LPS induced ox-LDL uptake and endothelial-monocyte adhesion were significantly inhibited by anti-LOX-1 antibody. LPS dramatically induced LOX-1 protein expression in aorta tissues. In conclusion, our data suggested that LPS induces LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK/NF-κB pathway in endothelial cells, which provides new regulatory mechanisms for LOX-1 expression.
Collapse
Affiliation(s)
- Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guixin Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
27
|
Voloshyna I, Modayil S, Littlefield MJ, Belilos E, Belostocki K, Bonetti L, Rosenblum G, Carsons SE, Reiss AB. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med (Maywood) 2013; 238:1192-7. [PMID: 24000379 DOI: 10.1177/1535370213503262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Immunologic derangements in rheumatoid arthritis (RA) patients likely contribute to premature atherosclerotic cardiovascular disease (CVD). Traditional CVD risk factors do not reliably identify at-risk RA patients, probably because disease-associated mechanisms are not taken into account. The purpose of this study was to determine whether plasma from subjects with RA exhibits atheroma-promoting properties leading to disruption of cholesterol homeostasis in human monocytes/macrophages. Twenty-one healthy controls (HC) and 22 RA patients were enrolled in an IRB approved study at Winthrop University Hospital. Naïve THP-1 macrophages were exposed to plasma from each HC and RA patient. Following incubation, RNA and protein were isolated. QRT-PCR and Western blotting techniques were then used to measure expression of proteins responsible for cholesterol efflux (ATP binding cassette transporter (ABC)A1, ABCG1, 27-hydroxylase) and cholesterol uptake (CD36, ScR-A1, lectin oxidized low density lipoprotein receptor (LOX)-1, CXCL16). To confirm the pro-atherogenic effects of RA plasma on macrophages, foam cell formation was quantified. Results showed that RA plasma downregulates cholesterol efflux proteins and upregulates scavenger receptors CD36, LOX1 and CXCL16. These pro-atherogenic changes in gene expression in the presence of RA plasma are associated with augmented lipid accumulation and foam cell formation by THP-1 macrophages. RA plasma induces macrophage cholesterol overload. Demonstration of disrupted cholesterol homeostasis mediated by RA plasma provides further evidence of the involvement of the immune system in atherogenesis. Our data suggest that chronic exposure to RA plasma adversely affects the capacity of monocytes/macrophages in the arterial wall to metabolize cholesterol and maintain lipid homeostasis, thereby contributing to the development of premature atherosclerosis.
Collapse
Affiliation(s)
- Iryna Voloshyna
- Winthrop Research Institute and Division of Rheumatology, Allergy and Immunology, Department of Medicine, Winthrop-University Hospital, Mineola, NY 11501, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013; 2013:152786. [PMID: 23935243 PMCID: PMC3723318 DOI: 10.1155/2013/152786] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/16/2013] [Indexed: 01/07/2023] Open
Abstract
Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects.
Collapse
|
29
|
Huang CS, Lin AH, Liu CT, Tsai CW, Chang IS, Chen HW, Lii CK. Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation. Mol Nutr Food Res 2013; 57:1918-30. [PMID: 23836589 DOI: 10.1002/mnfr.201300063] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 12/30/2022]
Abstract
SCOPE Oxidative stress plays a pivotal role in the pathophysiology of cardiovascular diseases. Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms. In this study, we investigated the protection by three structurally related isothiocyanates, i.e., sulforaphane (SFN), benzyl isothiocyanate (BITC), and phenethyl isocyanate (PEITC), against oxLDL-induced leukocyte adhesion to vascular endothelium and the mechanism involved. METHODS AND RESULTS The protection against oxLDL-induced endothelial dysfunction by isothiocyanates was studied in human umbilical vein endothelial cells (HUVECs). oxLDL increased reactive oxygen species (ROS) production, stimulated nuclear factor-kappaB (NFκB) activation, and enhanced intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin expression in HUVECs, which led to promotion of monocyte adhesion to HUVECs. Treatment with SFN, BITC, and PEITC (0-10 μM) dose-dependently induced heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) catalytic and modifier subunit expression, intracellular glutathione content, and antioxidant response element (ARE)-luciferase reporter activity. SFN, BITC, and PEITC pretreatment reversed oxLDL-induced ROS production, NFκB nuclear translocation, κB-reporter activity, ICAM-1, VCAM-1, and E-selectin expression, and monocyte adhesion to endothelial cells. Both heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown attenuated the isothiocyanate inhibition of oxLDL-induced ROS production, κB-reporter activity, and adhesion molecule expression. CONCLUSION SFN, BITC, and PEITC protect against oxLDL-induced endothelial damage by upregulating Nrf2-dependent HO-1 and GCL expression, which leads to inhibition of NFκB activation and ICAM-1, VCAM-1, and E-selectin expression.
Collapse
Affiliation(s)
- Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Padilla J, Jenkins NT, Lee S, Zhang H, Cui J, Zuidema MY, Zhang C, Hill MA, Perfield JW, Ibdah JA, Booth FW, Davis JW, Laughlin MH, Rector RS. Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiol Genomics 2013; 45:434-46. [PMID: 23592636 DOI: 10.1152/physiolgenomics.00038.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We adopted a transcriptome-wide microarray analysis approach to determine the extent to which vascular gene expression is altered as a result of juvenile obesity and identify obesity-responsive mRNAs. We examined transcriptional profiles in the left anterior descending coronary artery (LAD), perivascular fat adjacent to the LAD, and descending thoracic aorta between obese (n = 5) and lean (n = 6) juvenile Ossabaw pigs (age = 22 wk). Obesity was experimentally induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 16 wk. We found that expression of 189 vascular cell genes in the LAD and expression of 165 genes in the thoracic aorta were altered with juvenile obesity (false discovery rate ≤ 10%) with an overlap of only 28 genes between both arteries. Notably, a number of genes found to be markedly upregulated in the LAD of obese pigs are implicated in atherosclerosis, including ACP5, LYZ, CXCL14, APOE, PLA2G7, LGALS3, SPP1, ITGB2, CYBB, and P2RY12. Furthermore, pathway analysis revealed the induction of proinflammatory and pro-oxidant pathways with obesity primarily in the LAD. Gene expression in the LAD perivascular fat was minimally altered with juvenile obesity. Together, we provide new evidence that obesity produces artery-specific changes in pretranslational regulation with a clear upregulation of proatherogenic genes in the LAD. Our data may offer potential viable drug targets and mechanistic insights regarding the molecular precursors involved in the origins of overnutrition and obesity-associated vascular disease. In particular, our results suggest that the oxidized LDL/LOX-1/NF-κB signaling axis may be involved in the early initiation of a juvenile obesity-induced proatherogenic coronary artery phenotype.
Collapse
Affiliation(s)
- Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci 2012; 70:2859-72. [PMID: 23124189 DOI: 10.1007/s00018-012-1194-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Pirillo A, Uboldi P, Ferri N, Corsini A, Kuhn H, Catapano AL. Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochem Biophys Res Commun 2012; 428:230-3. [PMID: 23073138 DOI: 10.1016/j.bbrc.2012.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023]
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is the main endothelial receptor for oxidized low density lipoprotein (OxLDL). LOX-1 is highly expressed in endothelial cells of atherosclerotic lesions, but also in macrophages and smooth muscle cells. LOX-1 expression is upregulated by several inflammatory cytokines (such as TNF-α), by oxidative stress, and by pathological conditions, such as dyslipidemia, hypertension, and diabetes. High density lipoprotein (HDL) possess several atheroprotective properties; however under pathological conditions associated with inflammation and oxidative stress, HDL become dysfunctional and exhibit pro-inflammatory properties. In vitro, HDL can be modified by 15-lipoxygenase, an enzyme overexpressed in the atherosclerotic lesions. Here we report that, after modification with 15-lipoxygenase, HDL(3) lose their ability to inhibit TNFα-induced LOX-1 expression in endothelial cells; in addition, 15LO-modified HDL(3) induce LOX-1 mRNA and protein expression and bind to LOX-1 with increased affinity compared to native HDL(3). Altogether these findings confirm that 15LO-modified HDL(3) possess a pro-atherogenic role.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Stancu CS, Toma L, Sima AV. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res 2012; 349:433-46. [DOI: 10.1007/s00441-012-1437-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/12/2012] [Indexed: 12/28/2022]
|
34
|
Reiss AB, Cronstein BN. Regulation of foam cells by adenosine. Arterioscler Thromb Vasc Biol 2012; 32:879-86. [PMID: 22423040 PMCID: PMC3306592 DOI: 10.1161/atvbaha.111.226878] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
Macrophages rely on reverse cholesterol transport mechanisms to rid themselves of excess cholesterol. By reducing accumulation of cholesterol in the artery wall, reverse cholesterol transport slows or prevents development of atherosclerosis. In stable macrophages, efflux mechanisms balance influx mechanisms, and accumulating lipids do not overwhelm the cell. Under atherogenic conditions, inflow of cholesterol exceeds outflow, and the cell is ultimately transformed into a foam cell, the prototypical cell in the atherosclerotic plaque. Adenosine is an endogenous purine nucleoside released from metabolically active cells by facilitated diffusion and generated extracellularly from adenine nucleotides. Under stress conditions, such as hypoxia, a depressed cellular energy state leads to an acute increase in the extracellular concentration of adenosine. Extracellular adenosine interacts with 1 or more of a family of G protein-coupled receptors (A(1), A(2A), A(2B), and A(3)) to modulate the function of nearly all cells and tissues. Modulation of adenosine signaling participates in regulation of reverse cholesterol transport. Of particular note for the development of atherosclerosis, activation of A(2A) receptors dramatically inhibits inflammation and protects against tissue injury. Potent antiatherosclerotic effects of A(2A) receptor stimulation include inhibition of macrophage foam cell transformation and upregulation of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP binding cassette transporter A1. Thus, A(2A) receptor agonists may correct or prevent the adverse effects of inflammatory processes on cellular cholesterol homeostasis. This review focuses on the importance of extracellular adenosine acting at specific receptors as a regulatory mechanism to control the formation of foam cells under conditions of lipid loading.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Winthrop Research Institute, Winthrop-University Hospital, 222 Station Plaza North, Suite 502A, Mineola, NY 11501, USA
| | - Bruce N. Cronstein
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, NBV16N-1, 550 First Avenue, New York, NY, 10016, USA
| |
Collapse
|
35
|
Predazzi IM, Norata GD, Vecchione L, Garlaschelli K, Amati F, Grigore L, Cutuli L, Pirillo A, Tramontana S, Romeo F, Novelli G, Catapano AL. Association between OLR1 K167N SNP and intima media thickness of the common carotid artery in the general population. PLoS One 2012; 7:e31086. [PMID: 22347434 PMCID: PMC3276570 DOI: 10.1371/journal.pone.0031086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/02/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The lectin-like oxidised LDL receptor-1 (OLR1) gene encodes a scavenger receptor implicated in the pathogenesis of atherosclerosis. Although functional roles have been suggested for two variants, epidemiological studies on OLR1 have been inconsistent. METHODS We tested the association between the non-synonymous substitution K167N (rs11053646) and intima media thickness of the common carotid artery (CCA-IMT) in 2,141 samples from the Progression of Lesions in the Intima of the Carotid (PLIC) study (a prospective population-based study). RESULTS Significantly increased IMT was observed in male carriers of the minor C (N) allele compared to GC and GG (KN and KK) genotype. Functional analysis on macrophages suggested a decreased association to Ox-LDL in NN carriers compared to KN and KK carriers which is also associated with a reduced OLR1 mRNA expression. Macrophages from NN carriers present also a specific inflammatory gene expression pattern compared to cells from KN and KK carriers. CONCLUSIONS These data suggest that the 167N variant of LOX-1 receptor affects the atherogenic process in the carotid artery prior to evidence of disease through an inflammatory process.
Collapse
Affiliation(s)
- Irene Marta Predazzi
- Department of Biopathology and Diagnostic Imaging, Section of Medical Genetics, School of Medicine, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|