1
|
Surles L, Janin A, Molitor C, Chatron N, Moret M, Nony S, Dumont S, Marmontel O, Simonet T, Sassolas A, Moulin P, Di Filippo M. Mobile Element Insertion in the APOB Exon 3 Coding Sequence: A New Challenge in Hypobetalipoproteinemia Diagnosis. Clin Genet 2025; 107:359-363. [PMID: 39586577 DOI: 10.1111/cge.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Mobile elements (ME) can transpose by copy-and-paste mechanisms. A heterozygous insertion in APOB exon 3 coding sequence was suspected in a patient with hypobetalipoproteinemia (HBL), by gel electrophoresis of the PCR products. An insertion of a 85 bp fragment flanked by a polyA stretch and a target replication site duplication was identified as a ME insertion (MEI) from the AluYa5 subfamily, NM_000384.3(APOB):c.135_136ins(160). Then, the DNA was reanalyzed using our NGS custom panel. Routine analysis did not reveal any causative variant, but manual inspection of the alignments and MELT enabled us to detect this MEI from NGS data. A functional study revealed that this MEI introduces a stop codon p.(Phe46Alafs*2) and additionally leads to p.(Lys41Serfs*2) due to an exon skipping. This is the first report of a MEI into APOB, as a cause of HBL. Furthermore, our study highlights the value of including MEI-callers in routine pipelines to improve primary dyslipidemia diagnosis.
Collapse
Affiliation(s)
- Laurie Surles
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
| | - Alexandre Janin
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, Lyon, France
| | - Corentin Molitor
- Plateforme NGS-HCL, Cellule Bioinformatique, Hospices Civils de Lyon, Bron, France
| | - Nicolas Chatron
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, Lyon, France
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Myriam Moret
- Hospices Civils de Lyon, Fédération d'endocrinologie, Maladies métaboliques, diabète et Nutrition, Hôpital Louis Pradel, Bron, France
| | - Séverine Nony
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
| | - Sabrina Dumont
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
| | - Oriane Marmontel
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
- CarMen Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Thomas Simonet
- Plateforme NGS-HCL, Cellule Bioinformatique, Hospices Civils de Lyon, Bron, France
| | - Agnès Sassolas
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
- CarMen Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Philippe Moulin
- Hospices Civils de Lyon, Fédération d'endocrinologie, Maladies métaboliques, diabète et Nutrition, Hôpital Louis Pradel, Bron, France
- CarMen Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Mathilde Di Filippo
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, Bron, France
- CarMen Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
2
|
Valmiki S, Bredefeld C, Hussain MM. A novel mutation, Ile344Asn, in microsomal triglyceride transfer protein abolishes binding to protein disulfide isomerase. J Lipid Res 2025; 66:100725. [PMID: 39672332 PMCID: PMC11745965 DOI: 10.1016/j.jlr.2024.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024] Open
Abstract
Microsomal triglyceride transfer protein (MTP) plays crucial roles in the assembly and secretion of apolipoprotein B-containing lipoproteins and loss of function MTP variants are associated with abetalipoproteinemia, a disease characterized by the absence of these lipoproteins. MTP is a heterodimeric protein of two subunits, MTP and protein disulfide isomerase (PDI). In this study, we report a proband with abetalipoproteinemia who was monitored annually for 10 years in her third decade and had very low plasma lipids and undetectable apoB-containing lipoproteins. Genetic testing revealed biallelic variants in the MTTP gene. She has a well-documented nonsense mutation Gly865∗ that does not interact with the PDI subunit. She also has a novel missense MTP mutation, Ile344Asn. We show that this mutation abrogates lipid transfer activity in MTP and does not support apolipoprotein B secretion. This residue is present in the central α-helical domain of MTP and the substitution of Ile with Asn at this position disrupts interactions between MTP and PDI subunits. Ile344 is away from the known MTP:PDI interacting sites identified in the crystal structure of MTP suggesting that MTP:PDI interactions are more dynamic than previously envisioned. Identification of more missense mutations will enhance our understanding of the structure-function of MTP and the role of critical residues in these interactions between the two subunits. This knowledge may guide us in developing novel treatment modalities to reduce plasma lipids and atherosclerosis.
Collapse
Affiliation(s)
- Swati Valmiki
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Cindy Bredefeld
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA; Department of Medicine, NYU Grossman Long Island School of Medicine, Garden City, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
3
|
Sasaki K, Tada H, Komatsu T, Terada H, Endo Y, Ikewaki K, Uehara Y. A New Case of Abetalipoproteinemia Caused by Novel Compound Heterozygote Mutations in the MTTP Gene without Fat or Vitamin Malabsorption. J Atheroscler Thromb 2024; 31:1634-1640. [PMID: 38749717 PMCID: PMC11537785 DOI: 10.5551/jat.64730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 11/06/2024] Open
Abstract
Abetalipoproteinemia (ABL) is a rare disease characterized by extremely low apolipoprotein B (apoB)-containing lipoprotein levels, dietary fat, and fat-soluble vitamin malabsorption, leading to gastrointestinal, neuromuscular, and ophthalmological symptoms. We herein report a case of ABL with novel compound heterozygous mutations in the microsomal triglyceride transfer protein gene (c.1686_1687del [p.Ser563TyrfsTer10] and c.1862T>C [p.Ile621Thr]), identified via panel sequencing. Although the patient had extremely reduced low-density lipoprotein cholesterol levels and a fatty liver, he did not exhibit other typical complications. Furthermore, unlike typical ABL, this patient had a preserved apoB-48 secretion and increased concentrations of high-density lipoprotein cholesterol, which may account for the normal serum fat-soluble vitamin levels.
Collapse
Affiliation(s)
- Kei Sasaki
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of Internal Medicine, Self-Defense Forces Fukuoka Hospital, Kasuga, Japan
| | - Hayato Tada
- Department of Cardiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tomohiro Komatsu
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hisato Terada
- Department of Internal Medicine, Self-Defense Forces Fukuoka Hospital, Kasuga, Japan
| | - Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshinari Uehara
- Center for Preventive, Anti-aging and Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
4
|
Strøm TB, Asprusten E, Laerdahl JK, Øygard I, Hussain MM, Bogsrud MP, Leren TP. Missense mutation Q384K in the APOB gene affecting the large lipid transfer module of apoB reduces the secretion of apoB-100 in the liver without reducing the secretion of apoB-48 in the intestine. J Clin Lipidol 2023; 17:800-807. [PMID: 37718180 DOI: 10.1016/j.jacl.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Molecular genetic testing of patients with hypobetalipoproteinemia may identify a genetic cause that can form the basis for starting proper therapy. Identifying a genetic cause may also provide novel data on the structure-function relationship of the mutant protein. OBJECTIVE To identify a genetic cause of hypobetalipoproteinemia in a patient with levels of low density lipoprotein cholesterol at the detection limit of 0.1 mmol/l. METHODS DNA sequencing of the translated exons with flanking intron sequences of the genes adenosine triphosphate-binding cassette transporter 1, angiopoietin-like protein 3, apolipoprotein B, apolipoprotein A1, lecithin-cholesterol acyltransferase, microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9. RESULTS The patient was homozygous for mutation Q384K (c.1150C>A) in the apolipoprotein B gene, and this mutation segregated with hypobetalipoproteinemia in the family. Residue Gln384 is located in the large lipid transfer module of apoB that has been suggested to be important for lipidation of apolipoprotein B through interaction with microsomal triglyceride transfer protein. Based on measurements of serum levels of triglycerides and apolipoprotein B-48 after an oral fat load, we conclude that the patient was able to synthesize apolipoprotein B-48 in the intestine in a seemingly normal fashion. CONCLUSION Our data indicate that mutation Q384K severely reduces the secretion of apolipoprotein B-100 in the liver without reducing the secretion of apolipoprotein B-48 in the intestine. Possible mechanisms for the different effects of this and other missense mutations affecting the large lipid transfer module on the two forms of apoB are discussed.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren).
| | - Emil Asprusten
- Lipid Clinic, Oslo University Hospital, Oslo, Norway (Dr Asprusten)
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway (Dr Laerdahl); ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway (Dr Laerdahl)
| | - Irene Øygard
- Fagernes Medical Center, Fagernes, Norway (Dr Øygard)
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA (Dr. Hussain)
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| |
Collapse
|
5
|
Traber MG, Head B. Vitamin E: How much is enough, too much and why! Free Radic Biol Med 2021; 177:212-225. [PMID: 34699937 DOI: 10.1016/j.freeradbiomed.2021.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, USA.
| | - Brian Head
- Linus Pauling Institute, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Takahashi M, Okazaki H, Ohashi K, Ogura M, Ishibashi S, Okazaki S, Hirayama S, Hori M, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Abetalipoproteinemia. J Atheroscler Thromb 2021; 28:1009-1019. [PMID: 33994405 PMCID: PMC8560840 DOI: 10.5551/jat.rv17056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abetalipoproteinemia (ABL) is a rare autosomal recessive disorder caused by biallelic pathogenic mutations in the
MTTP
gene. Deficiency of microsomal triglyceride transfer protein (MTTP) abrogates the assembly of apolipoprotein (apo) B-containing lipoprotein in the intestine and liver, resulting in malabsorption of fat and fat-soluble vitamins and severe hypolipidemia. Patients with ABL typically manifest steatorrhea, vomiting, and failure to thrive in infancy. The deficiency of fat-soluble vitamins progressively develops into a variety of symptoms later in life, including hematological (acanthocytosis, anemia, bleeding tendency, etc.), neuromuscular (spinocerebellar ataxia, peripheral neuropathy, myopathy, etc.), and ophthalmological symptoms (e.g., retinitis pigmentosa). If left untreated, the disease can be debilitating and even lethal by the third decade of life due to the development of severe complications, such as blindness, neuromyopathy, and respiratory failure. High dose vitamin supplementation is the mainstay for treatment and may prevent, delay, or alleviate the complications and improve the prognosis, enabling some patients to live to the eighth decade of life. However, it cannot fully prevent or restore impaired function. Novel therapeutic modalities that improve quality of life and prognosis are awaited. The aim of this review is to 1) summarize the pathogenesis, clinical signs and symptoms, diagnosis, and management of ABL, and 2) propose diagnostic criteria that define eligibility to receive financial support from the Japanese government for patients with ABL as a rare and intractable disease. In addition, our diagnostic criteria and the entry criterion of low-density lipoprotein cholesterol (LDL-C) <15 mg/dL and apoB <15 mg/dL can be useful in universal or opportunistic screening for the disease. Registry research on ABL is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University
| | - Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ken Ohashi
- Department of General Internal Medicine, National Cancer Center Hospital
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Sachiko Okazaki
- Division for Health Service Promotion, The University of Tokyo
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | | |
Collapse
|
7
|
Takahashi M, Ozaki N, Nagashima S, Wakabayashi T, Iwamoto S, Ishibashi S. Normal plasma apoB48 despite the virtual absence of apoB100 in a compound heterozygote with novel mutations in the MTTP gene. J Clin Lipidol 2021; 15:569-573. [PMID: 34052173 DOI: 10.1016/j.jacl.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
"Normotriglyceridemic abetalipoproteinemia (ABL)" was originally described as a clinical entity distinct from either ABL or hypobetalipoproteinemia. Subsequent studies identified mutations in APOB gene which encoded truncated apoB longer than apoB48. Therefore, "Normotriglyceridemic ABL" can be a subtype of homozygous familial hypobetalipoproteinemia 1. Here, we report an atypical female case of ABL who was initially diagnosed with "normotriglyceridemic ABL", because she had normal plasma apoB48 despite the virtual absence of apoB100 and low plasma TG level. Next generation sequencing revealed that she was a compound heterozygote of two novel MTTP mutations: nonsense (p.Q272X) and missense (p.G709R). We speculate that p.G709R might confer residual triglyceride transfer activity of MTTP preferentially in the intestinal epithelium to the hepatocytes, allowing production of apoB48. Together, "normotriglyceridemic ABL" may be a heterogenous disorder which is caused by specific mutations in either APOB or MTTP gene.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - Nobuaki Ozaki
- Division of Endocrinology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya 453-8511, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
8
|
Rodríguez Gutiérrez PG, González García JR, Castillo De León YA, Zárate Guerrero JR, Magaña Torres MT. A novel p.Gly417Valfs*12 mutation in the MTTP gene causing abetalipoproteinemia: Presentation of the first patient in Mexico and analysis of the previously reported cases. J Clin Lab Anal 2021; 35:e23672. [PMID: 33258201 PMCID: PMC7957982 DOI: 10.1002/jcla.23672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Our aims were to describe the first Mexican patient with abetalipoproteinemia and to perform a comparative analysis of biochemical, clinical, and genetic characteristics of 100 cases reported in the literature. METHODS We performed biochemical and molecular screenings in a Mexican girl with extremely low lipid levels and in her family. Further, we integrated and evaluated the characteristics of the cases with abetalipoproteinemia described in the literature. RESULTS Our patient is a six-year-old girl who presented vomiting, chronic diarrhea, failure to thrive, malabsorption, acanthocytosis, anemia, transaminases elevation, and extremely low lipid levels. MTTP gene sequencing revealed homozygosity for a novel mutation p.Gly417Valfs*12 (G deletion c.1250). With the analysis of the reported cases, 60 clinical features (14 classical and 46 non-classical) were observed, being the most common acanthocytosis (57.5%), malabsorption (43.7%), and diarrhea (42.5%); 48.8% of the patients presented only classic clinical features, while the remaining 51.2% developed secondary effects due to a fat-soluble vitamin deficiency. An odds ratio analysis disclosed that patients diagnosed after 10 years of age have an increased risk for presenting clinical complications (OR = 18.0; 95% CI 6.0-54.1, p < 0.0001). A great diversity of mutations in MTTP has been observed (n = 76, being the most common p.G865X and p.N139_E140) and some of them with possible residual activity. CONCLUSION The first Mexican patient with abetalipoproteinemia presents a novel MTTP mutation p.Gly417Valfs*12. Three factors that could modulate the phenotype in abetalipoproteinemia were identified: age at diagnosis, treatment, and the causal mutation.
Collapse
Affiliation(s)
- Perla Graciela Rodríguez Gutiérrez
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
- Doctorado en Genética HumanaCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| | - Juan Ramón González García
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| | | | | | - María Teresa Magaña Torres
- División de GenéticaCentro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMéxico
| |
Collapse
|
9
|
Marmontel O, Rollat-Farnier PA, Wozny AS, Charrière S, Vanhoye X, Simonet T, Chatron N, Collin-Chavagnac D, Nony S, Dumont S, Mahl M, Jacobs C, Janin A, Caussy C, Poinsot P, Tauveron I, Bardel C, Millat G, Peretti N, Moulin P, Marçais C, Di Filippo M. Development of a new expanded next-generation sequencing panel for genetic diseases involved in dyslipidemia. Clin Genet 2020; 98:589-594. [PMID: 33111339 DOI: 10.1111/cge.13832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to provide an efficient tool: reliable, able to increase the molecular diagnosis performance, to facilitate the detection of copy number variants (CNV), to assess genetic risk scores (wGRS) and to offer the opportunity to explore candidate genes. Custom SeqCap EZ libraries, NextSeq500 sequencing and a homemade pipeline enable the analysis of 311 dyslipidemia-related genes. In the training group (48 DNA from patients with a well-established molecular diagnosis), this next-generation sequencing (NGS) workflow showed an analytical sensitivity >99% (n = 532 variants) without any false negative including a partial deletion of one exon. In the prospective group, from 25 DNA from patients without prior molecular analyses, 18 rare variants were identified in the first intention panel genes, allowing the diagnosis of monogenic dyslipidemia in 11 patients. In six other patients, the analysis of minor genes and wGRS determination provided a hypothesis to explain the dyslipidemia. Remaining data from the whole NGS workflow identified four patients with potentially deleterious variants. This NGS process gives a major opportunity to accede to an enhanced understanding of the genetic of dyslipidemia by simultaneous assessment of multiple genetic determinants.
Collapse
Affiliation(s)
- Oriane Marmontel
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France.,Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| | | | - Anne-Sophie Wozny
- Service de Biochimie et Biologie Moléculaire Sud, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sybil Charrière
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.,Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | - Xavier Vanhoye
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Thomas Simonet
- Cellule BioInformatique, Hospices Civils de Lyon, Bron Cedex, France
| | | | - Delphine Collin-Chavagnac
- Service de Biochimie et Biologie Moléculaire Sud, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Séverine Nony
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Sabrina Dumont
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Muriel Mahl
- Service de Biochimie et Biologie Moléculaire Sud, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Jacobs
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Alexandre Janin
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Cyrielle Caussy
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.,Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Pierre Poinsot
- Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | - Igor Tauveron
- Service d'endocrinologie, CHU G. Montpied, Clermont-Ferrand, France
| | - Claire Bardel
- Cellule BioInformatique, Hospices Civils de Lyon, Bron Cedex, France
| | - Gilles Millat
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France
| | - Noël Peretti
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.,Service de Gastroentérologie Hépatologie et Nutrition Pédiatrique, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | - Philippe Moulin
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.,Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | - Christophe Marçais
- Service de Biochimie et Biologie Moléculaire Sud, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Mathilde Di Filippo
- Service de Biochimie et Biologie moléculaire Grand Est, Laboratoire de Biologie Médicale Multi-sites, Hospices Civils de Lyon, Bron Cedex, France.,Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| |
Collapse
|
10
|
Wilson MH, Rajan S, Danoff A, White RJ, Hensley MR, Quinlivan VH, Recacha R, Thierer JH, Tan FJ, Busch-Nentwich EM, Ruddock L, Hussain MM, Farber SA. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 2020; 16:e1008941. [PMID: 32760060 PMCID: PMC7444587 DOI: 10.1371/journal.pgen.1008941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/18/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.
Collapse
Affiliation(s)
- Meredith H. Wilson
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Sujith Rajan
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Aidan Danoff
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Monica R. Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Vanessa H. Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - James H. Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frederick J. Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Mahmood Hussain
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Traber MG, Leonard SW, Ebenuwa I, Violet PC, Wang Y, Niyyati M, Padayatty S, Tu H, Courville A, Bernstein S, Choi J, Shamburek R, Smith S, Head B, Bobe G, Ramakrishnan R, Levine M. Vitamin E absorption and kinetics in healthy women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase crossover design. Am J Clin Nutr 2019; 110:1148-1167. [PMID: 31495886 PMCID: PMC6821549 DOI: 10.1093/ajcn/nqz172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Determining the human vitamin E [α-tocopherol (α-T)] requirement is difficult, and novel approaches to assess α-T absorption and trafficking are needed. OBJECTIVE We hypothesized that the dual-isotope technique, using 2 deuterium-labeled [intravenous (IV) d6- and oral d3-] α-T, would be effective in determining α-T fractional absorption. Further, defined liquid meal (DLM) fat or fasting would modulate α-T fractional absorption and lipoprotein transport. METHODS A 3-phase cr ossover design was used. At 0 h, participants received IV d6-α-T and consumed d3-α-T with a 600-kcal DLM (40% or 0% fat) followed by controlled meals or by the 0% fat DLM, a 12-h fast, and then controlled meals. Blood samples and fecal samples were collected at intervals and analyzed by LC-MS. Pharmacokinetic parameters were calculated from plasma tracer concentrations and enrichments. Fractional absorption was calculated from d3- to d6-α-T areas under the curve, from a novel mathematical model, and from the balance method (oral d3-α-T minus fecal d3-α-T excreted). RESULTS Estimated α-T fractional absorption during the 40% fat intervention was 55% ± 3% (mean ± SEM; n = 10), which was 9% less than during the 0% fat intervention (64% ± 3%, n = 10; P < 0.02). Fasting had no apparent effect (56% ± 3%, n = 7), except it slowed plasma oral d3-α-T appearance. Both balance data and model outcomes confirmed that the DLM fat did not potentiate d3-α-T absorption. During the IV emulsion clearance, HDL rapidly acquired d6-α-T (21 ± 2 nmol/L plasma per minute). During the first 8 h postdosing, triglyceride-rich lipoproteins (TRLs) were preferentially d3-α-T enriched relative to LDL or HDL, showing the TRL precursor role. CONCLUSIONS Quantitatively, α-T absorption is not limited by fat absence or by fasting. However, α-T leaves the intestine by a process that is prolonged during fasting and potentiated by eating, suggesting that α-T absorption is highly dependent on chylomicron assembly processes. This trial was registered at clinicaltrials.gov as NCT00862433.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA,School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA,Address correspondence to MGT (e-mail: )
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Wang
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Padayatty
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber Courville
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Shanna Bernstein
- Clinical Center Nutrition Department, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Robert Shamburek
- Cardiovascular Branch, Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheila Smith
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|