1
|
Ma X, Shu Q, Ao W, Jia X, Zhou H, Liu T, Liang J, Lai C, Zhu X. Impact of non-cyanotic congenital heart disease on Children's brain studied by voxel-based morphometry: A case-control study. Pediatr Neonatol 2025:S1875-9572(25)00055-5. [PMID: 40118765 DOI: 10.1016/j.pedneo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Considerable research has shown brain injury during surgery for patients with cyanotic congenital heart disease (CHD), but the preoperative neurodevelopment and brain injury in children with non-cyanotic CHD are not well understood. The aim of this study is to investigate changes in global and local grey matter (GM) volumes of pediatric patients with non-cyanotic CHD before catheter-based procedure using voxel-based morphometry (VBM). METHODS One-to three-year-old toddlers with acyanotic CHD (n = 54) hospitalized for treatment were prospectively enrolled. Each toddler underwent a 3D T1-weighted brain Magnetic Resonance Imaging (MRI) scan before catheter-based procedure. Meanwhile, 3D T1-weighted brain MR images of age- and sex-matched healthy controls (n = 35) were retrospectively analyzed. The volume of GM and total intracranial volume (TIV) were assessed by VBM within the SPM 12 (Statistical Parametric Mapping software), and regional differences in GM volume were analyzed by two-sample t-test and familywise error (FWE) rate correction. RESULTS There was no difference in gross GM volume and TIV between the two groups (p > 0.05), but VBM analysis showed reduced structures of GM in middle frontal gyrus (both sides), inferior frontal gyrus, orbital gyrus, subcallosal gyrus, thalamus (both sides), medial globus pallidus (both sides) and culmen (both sides) of the non-cyanotic CHD group compared with the controls (p < 0.05, FWE correction). CONCLUSION Toddlers aged 1-3 years with acyanotic CHD suffer a decrease in local GM volume before catheter-based procedure, which tends to be distributed across the bilateral frontal lobe, thalamus, globus pallidus, and cerebellum.
Collapse
Affiliation(s)
- Xiaohui Ma
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, Zhejiang, China
| | - Qiang Shu
- Department of Cardio-Thoracic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, China
| | - Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuan Jia
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, Zhejiang, China
| | - Haichun Zhou
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, Zhejiang, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Liang
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, Zhejiang, China
| | - Can Lai
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. Hangzhou, Zhejiang, China
| | - Xiandi Zhu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Hu L, Wu K, Li H, Zhu M, Zhang Y, Fu M, Tang M, Lu F, Cai X, An J, Patel N, Lin Y, Zhang Z, Yang M, Mo X. Association between subcortical nuclei volume changes and cognition in preschool-aged children with tetralogy of Fallot after corrective surgery: a cross-sectional study. Ital J Pediatr 2024; 50:189. [PMID: 39300569 DOI: 10.1186/s13052-024-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neurocognitive disorders frequently occur in patients with cyanotic congenital heart disease (CCHD) because of the hemodynamic abnormalities induced by preoperative cardiac structural changes. We aimed to evaluate subcortical nuclei volume changes and cognition in postoperative tetralogy of Fallot (TOF) children, and analyze their relationship with preoperative cardiac structural changes. METHODS This case-control study involved thirty-six children with repaired TOF and twenty-nine healthy controls (HCs). We utilized three-dimensional (3D) T1-weighted high-resolution structural images alongside the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) to evaluate the cognitive differences between the TOF and HC group. RESULTS We observed notable differences in subcortical nuclei volume between the TOF and HC group, specifically in the left amygdala nucleus (LAM, TOF: 1292.60 ± 155.57; HC: 1436.27 ± 140.62, p < 0.001), left thalamus proper nucleus (LTHA, TOF: 6771.54 ± 666.03; HC: 7435.36 ± 532.84, p < 0.001), and right thalamus proper nucleus (RTHA, TOF: 6514.61 ± 715.23; HC: 7162.94 ± 554.60, p < 0.001). Furthermore, a diminished integrity of LAM ( β:-19.828, 95% CI: -36.462, -3.193), which showed an inverse relationship with the size of the preoperative ventricular septal defect (VSD), correlated with lower working memory indices in children with TOF. CONCLUSIONS Our findings indicate that subcortical nuclei structural injuries possibly potentially stemming from cardiac anatomical abnormalities, are associated with impaired working memory in preschool-aged children with TOF. The LAM in particular may serve as a potential biomarker for neurocognitive deficits in TOF, offering predictive value for future neurodevelopmental outcomes, and shedding light on the neurophysiological mechanisms of these cognitive impairments.
Collapse
Affiliation(s)
- Liang Hu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Kede Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Huijun Li
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Meijiao Zhu
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yaqi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Mingcui Fu
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Minghui Tang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Fan Lu
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xinyu Cai
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jia An
- Medical School of Nanjing University, Nanjing, 210093, China
| | - Nishant Patel
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Ye Lin
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhen Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Padiyar S, Friedman N, Pestana-Knight E, Franic L, Worley S, Aly H. Continuous Electroencephalogram (cEEG) Findings and Neurodevelopmental Outcomes in Neonates with Congenital Heart Disease (CHD) at 12-24 Months of Age. J Autism Dev Disord 2024:10.1007/s10803-024-06418-y. [PMID: 38819704 DOI: 10.1007/s10803-024-06418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study aims to assess the role of continuous EEG (cEEG) background patterns and duration of cross-clamp time and cardiopulmonary bypass (CPB) in children with congenital heart disease (CHD) undergoing cardiac surgery and its correlation with abnormal neurodevelopmental outcomes at 12-24 months on Bayley Scales of Infant and Toddler Development (BSID-III). METHODS This retrospective cohort study included infants with CHD and cEEG monitoring, who underwent surgery by 44 weeks gestational age. RESULTS 34 patients were included, who were operated at median age - 7 days. Longer duration of cross- camp time was associated with poor language composite scores (LCS) (p value = 0.036). A significant association existed between severity of encephalopathy in 24-hour post-operative period and poor LCS (p value = 0.026). CONCLUSION Majority of neonates with CHD have below average cognitive, language and motor composite scores on BSID-III. Longer duration of cross-clamp time and severity of encephalopathy during 24-hour post-operative EEG monitoring are associated with poor LCS.
Collapse
Affiliation(s)
- Swetha Padiyar
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave, M-31, Cleveland, OH, 44195, USA.
| | - Neil Friedman
- Department of Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | - Linda Franic
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Worley
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Ave, M-31, Cleveland, OH, 44195, USA
| |
Collapse
|
4
|
Provost S, Fourdain S, Vannasing P, Tremblay J, Roger K, Caron-Desrochers L, Hüsser A, Paquette N, Doussau A, Poirier N, Simard MN, Gallagher A. Language brain responses and neurodevelopmental outcome in preschoolers with congenital heart disease: A fNIRS study. Neuropsychologia 2024; 196:108843. [PMID: 38423173 DOI: 10.1016/j.neuropsychologia.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Neurodevelopmental disabilities affect up to 50% of survivors of congenital heart disease (CHD). Language difficulties are frequently identified during preschool period and can lead to academic, social, behavioral, and emotional difficulties. Structural brain alterations are associated with poorer neurodevelopmental outcomes in patients with CHD during infancy, childhood, and adolescence. However, evidence is lacking about the functional brain activity in children with CHD and its relationship with neurodevelopment. This study therefore aimed to characterize brain responses during a passive story-listening task in 3-year-old children with CHD, and to investigate the relationship between functional brain patterns of language processing and neurodevelopmental outcomes. To do so, we assessed hemodynamic concentration changes, using functional near-infrared spectroscopy (fNIRS), and neurodevelopmental outcomes, using the Wechsler Preschool and Primary Scale of Intelligence - 4th Edition (WPPSI-IV), in children with CHD (n = 19) and healthy controls (n = 23). Compared to their healthy peers, children with CHD had significantly lower scores on the Verbal comprehension index (VCI), the Vocabulary acquisition index (VAI), the General ability index (GAI), and the Information and the Picture Naming subtests of the WPPSI-IV. During the passive story-listening task, healthy controls showed significant hemodynamic brain responses in the temporal and the temporal posterior regions, with stronger activation in the temporal posterior than in the temporal regions. In contrast, children with CHD showed reduced activation in the temporal posterior regions compared to controls, with no difference of activation between regions. Reduced brain responses in the temporal posterior regions were also correlated with lower neurodevelopmental outcomes in both groups. This is the first study that reveals reduced brain functional responses in preschoolers with CHD during a receptive language task. It also suggests that the temporal posterior activation could be a potential brain marker of cognitive development. These findings provide support for the feasibility of identifying brain correlates of neurodevelopmental vulnerabilities in children with CHD.
Collapse
Affiliation(s)
- Sarah Provost
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Solène Fourdain
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Phetsamone Vannasing
- Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Julie Tremblay
- Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Kassandra Roger
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Laura Caron-Desrochers
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Alejandra Hüsser
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Natacha Paquette
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Amélie Doussau
- Clinique d'Investigation Neurocardiaque (CINC), Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Nancy Poirier
- Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada; Clinique d'Investigation Neurocardiaque (CINC), Sainte-Justine University Hospital Center, Montréal, QC, Canada; Department of Surgery, Division of Cardiac Surgery, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marie-Noëlle Simard
- Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada; School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Anne Gallagher
- Department of Psychology, Université de Montréal, Montréal, QC, Canada; Research Center, Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.
| |
Collapse
|
5
|
Neukomm A, Claessens NHP, Bonthrone AF, Stegeman R, Feldmann M, Nijman M, Jansen NJG, Nijman J, Groenendaal F, de Vries LS, Benders MJNL, Breur JMPJ, Haas F, Bekker MN, Logeswaran T, Reich B, Kottke R, Dave H, Simpson J, Pushparajah K, Kelly CJ, Arulkumaran S, Rutherford MA, Counsell SJ, Chew A, Knirsch W, Sprong MCA, van Schooneveld MM, Hagmann C, Latal B. Perioperative Brain Injury in Relation to Early Neurodevelopment Among Children with Severe Congenital Heart Disease: Results from a European Collaboration. J Pediatr 2024; 266:113838. [PMID: 37995930 DOI: 10.1016/j.jpeds.2023.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, β = -0.50). SES was independently associated with cognitive outcome (P < .001, β = 0.26), and LOS with motor outcome (P < .001, β = -0.35). CONCLUSION Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raymond Stegeman
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Feldmann
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Felix Haas
- Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thushiha Logeswaran
- Pediatric Heart Center, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bettina Reich
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - John Simpson
- Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Kuberan Pushparajah
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Maaike C A Sprong
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique M van Schooneveld
- Department of Pediatric Psychology, Neuropsychology Section, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Phillips K, Callaghan B, Rajagopalan V, Akram F, Newburger JW, Kasparian NA. Neuroimaging and Neurodevelopmental Outcomes Among Individuals With Complex Congenital Heart Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:2225-2245. [PMID: 38030353 PMCID: PMC11288134 DOI: 10.1016/j.jacc.2023.09.824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023]
Abstract
Although neuroimaging advances have deepened our understanding of brain health in individuals with congenital heart disease (CHD), it is less clear how neuroimaging findings relate to neurodevelopmental and mental health outcomes across the lifespan. We systematically synthesized and critically evaluated evidence on associations between neuroimaging and neurodevelopmental, neurocognitive, psychiatric, or behavioral outcomes among individuals with transposition of great arteries or single-ventricle CHD (Protocol CRD42021229617). Six databases were searched and 45 papers from 25 unique studies were identified. Structural brain injury was generally linked to poorer neurodevelopment in infancy. Brain volumes and microstructural and functional brain changes appear linked to neurocognitive outcomes, including deficits in attention, learning, memory, and executive function in children and adolescents. Fetal neuroimaging studies were limited. Four papers investigated psychiatric outcomes; none found associations with neuroimaging. Multicenter, longitudinal studies incorporating functional neuroimaging and mental health outcomes are much-needed to inform early neuroprotective and therapeutic strategies in CHD.
Collapse
Affiliation(s)
- Katelyn Phillips
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Bridget Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Vidya Rajagopalan
- Department of Radiology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Farah Akram
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadine A Kasparian
- Heart and Mind Wellbeing Center, Heart Institute and the Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
7
|
Soares C, Vieira RJ, Costa S, Moita R, Andrade M, Guimarães H. Neurodevelopment outcomes in the first 5 years of the life of children with transposition of the great arteries surgically corrected in the neonatal period: systematic review and meta-analysis. Cardiol Young 2023; 33:2471-2480. [PMID: 37965690 DOI: 10.1017/s104795112300375x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
OBJECTIVES In patients with transposition of the great arteries, surgical correction may achieve definitive treatment, so a thorough knowledge of the long-term outcomes, particularly neurodevelopment outcomes, is essential. Therefore, we conducted a systematic review and meta-analysis to study the neurodevelopment outcomes in the first 5 years of the life of children submitted to corrective surgery for transposition of the great arteries in the neonatal period. METHODS A total of 17 studies from 18 reports were included, assessing 809 individuals with surgically corrected transposition of the great arteries. The neurodevelopmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development (BSID) and the Wechsler Intelligence Scale for Children (WISC). RESULTS Mean Mental Development Index (MDI) and Psychomotor Development Index (PDI) were within the average values from 1 to 3 years of age, although the proportion of children scoring more than 1 standard deviation below the mean in PDI, MDI, motor, and language composite scores was significantly higher than in the general population. From 4 to 5 years, mean full-scale global intelligence quotient (IQ), verbal IQ, and performance IQ scores did not differ significantly from the general population. CONCLUSION This study revealed neurodevelopment scores within the normal range at 5 years of age in children submitted to corrective surgery for transposition of the great arteries in the neonatal period. However, these early outcomes may not adequately predict long-term outcomes. Further studies are needed to identify specific risk factors and early markers of later impairment to guide the establishment of early interventions.
Collapse
Affiliation(s)
| | - Rafael José Vieira
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of Porto University, Porto, Portugal
- Centre for Health Technology and Services Research, Health Research Network (CINTESIS@RISE), Faculty of Medicine of Porto University, Porto, Portugal
| | - Sandra Costa
- Faculty of Medicine of Porto University, Porto, Portugal
- Neonatology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Rita Moita
- Neonatology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Mariana Andrade
- Pediatrics Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | | |
Collapse
|
8
|
Dijkhuizen EI, de Munck S, de Jonge RCJ, Dulfer K, van Beynum IM, Hunfeld M, Rietman AB, Joosten KFM, van Haren NEM. Early brain magnetic resonance imaging findings and neurodevelopmental outcome in children with congenital heart disease: A systematic review. Dev Med Child Neurol 2023; 65:1557-1572. [PMID: 37035939 DOI: 10.1111/dmcn.15588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023]
Abstract
AIM To investigate the association between early brain magnetic resonance imaging (MRI) findings and neurodevelopmental outcome (NDO) in children with congenital heart disease (CHD). METHOD A search for studies was conducted in Embase, Medline, Web of Science, Cochrane Central, PsycINFO, and Google Scholar. Observational and interventional studies were included, in which patients with CHD underwent surgery before 2 months of age, a brain MRI scan in the first year of life, and neurodevelopmental assessment beyond the age of 1 year. RESULTS Eighteen studies were included. Thirteen found an association between either quantitative or qualitative brain metrics and NDO: 5 out of 7 studies showed decreased brain volume was significantly associated with worse NDO, as did 7 out of 10 studies on brain injury. Scanning protocols and neurodevelopmental tests varied strongly. INTERPRETATION Reduced brain volume and brain injury in patients with CHD can be associated with impaired NDO, yet standardized scanning protocols and neurodevelopmental assessment are needed to further unravel trajectories of impaired brain development and its effects on outcome.
Collapse
Affiliation(s)
- Emma I Dijkhuizen
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Sophie de Munck
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rogier C J de Jonge
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Karolijn Dulfer
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Ingrid M van Beynum
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Pediatric Cardiology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Maayke Hunfeld
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - André B Rietman
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Koen F M Joosten
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Sanz JH, Cox S, Donofrio MT, Ishibashi N, McQuillen P, Peyvandi S, Schlatterer S. Trajectories of neurodevelopment and opportunities for intervention across the lifespan in congenital heart disease. Child Neuropsychol 2023; 29:1128-1154. [PMID: 36752083 PMCID: PMC10406974 DOI: 10.1080/09297049.2023.2173162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Children with congenital heart disease (CHD) are at increased risk for neurodevelopmental challenges across the lifespan. These are associated with neurological changes and potential acquired brain injury, which occur across a developmental trajectory and which are influenced by an array of medical, sociodemographic, environmental, and personal factors. These alterations to brain development lead to an array of adverse neurodevelopmental outcomes, which impact a characteristic set of skills over the course of development. The current paper reviews existing knowledge of aberrant brain development and brain injury alongside associated neurodevelopmental challenges across the lifespan. These provide a framework for discussion of emerging and potential interventions to improve neurodevelopmental outcomes at each developmental stage.
Collapse
Affiliation(s)
- Jacqueline H Sanz
- Division of Neuropsychology, Children's National Hospital, Washington, D.C
- Departments of Psychiatry and Behavioral Sciences & Pediatrics at The George Washington University School of Medicine
| | - Stephany Cox
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Mary T Donofrio
- Division of Cardiology, Children's National Health System, Washington, D.C
- Department of Pediatrics at The George Washington University School of Medicine
| | - Nobuyuki Ishibashi
- Department of Pediatrics at The George Washington University School of Medicine
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington D.C
| | - Patrick McQuillen
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Shabnam Peyvandi
- Department of Pediatrics, Division of Developmental Medicine, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Sarah Schlatterer
- Department of Pediatrics at The George Washington University School of Medicine
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, D.C
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, D.C
| |
Collapse
|
10
|
Long DA, Gibbons KS, Stocker C, Ranger M, Alphonso N, Le Marsney R, Dow B, Schults JA, Graydon C, Shehabi Y, Schibler A. Perioperative dexmedetomidine compared to midazolam in children undergoing open-heart surgery: A pilot randomised controlled trial. CRIT CARE RESUSC 2023; 25:33-42. [PMID: 37876986 PMCID: PMC10581262 DOI: 10.1016/j.ccrj.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective There is a need for evidence on the best sedative agents in children undergoing open heart surgery for congenital heart disease. This study aimed to evaluate the feasibility and safety of dexmedetomidine in this group compared with midazolam. Design Double blinded, pilot randomized controlled trial. Setting Cardiac operating theatre and paediatric intensive care unit in Brisbane, Australia. Participants Infants (≤12 months of age) undergoing their first surgical repair of a congenital heart defect. Interventions Dexmedetomidine (up to 1.0mcg/kg/hr) versus midazolam (up to 80mcg/kg/hr), commenced in the cardiac operating theatre prior to surgery. Main outcome measures The primary outcome was the time spent in light sedation (Sedation Behavior Scale [SBS] -1 to +1); Co-primary feasibility outcome was recruitment, retention and protocol adherence. Secondary outcomes were use of supplemental sedatives, ventilator free days, delirium, vasoactive drug support, and adverse events. Neurodevelopment and health-related quality of life (HRQoL) were assessed at 12 months post-surgery. Results Sixty-six participants were recruited. The number of SBS scores in the light sedation range were greater in the dexmedetomidine group at 24 hours, 48 hours, and overall study duration (0-14 days) versus the midazolam group (24hr: 76/170 [45%] vs 60/178 [34%], aOR 4.14 [95% CI 0.48, 35.92]; 48hr: 154/298 [52%] vs 122/314 [39%], aOR 6.95 [95% CI 0.77, 63.13]; 0-14 days: 597/831 [72%] vs 527/939 [56%], aOR 3.93 [95% CI 0.62, 25.03]). Feasibility was established with no withdrawals or loss to follow-up at 14 days and minimal protocol deviations. There were no differences between the groups relating to clinical, safety, neurodevelopment or HRQoL outcomes. Conclusions The use of dexmedetomidine was associated with more time spent in light sedation when compared with midazolam. The feasibility of conducting a blinded RCT of midazolam and dexmedetomidine in children undergoing open heart surgery was also established. The findings justify further investigation in a larger trial. Clinical trial registration ACTRN12615001304527.
Collapse
Affiliation(s)
- Debbie A. Long
- School of Nursing, Centre for Healthcare Transformation, Queensland University of Technology, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Australia
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
| | - Kristen S. Gibbons
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
| | - Christian Stocker
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Australia
| | - Michael Ranger
- Department of Anaesthesia and Pain Management, Queensland Children's Hospital, Australia
| | - Nelson Alphonso
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
- Department of Cardiac Surgery, Queensland Children's Hospital, Australia
| | - Renate Le Marsney
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
| | - Belinda Dow
- School of Nursing, Centre for Healthcare Transformation, Queensland University of Technology, Australia
| | - Jessica A. Schults
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Australia
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
- School of Nursing, Midwifery and Social Work, The University of Queensland, Australia
| | - Cameron Graydon
- Department of Anaesthesia and Pain Management, Queensland Children's Hospital, Australia
| | - Yahya Shehabi
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Andreas Schibler
- Wesley Medical Research Institute, Australia
- Critical Care Research Group, St. Andrew's War Memorial Hospital, Australia
| |
Collapse
|
11
|
Salaün JP, Chagnot A, Cachia A, Poirel N, Datin-Dorrière V, Dujarrier C, Lemarchand E, Rolland M, Delalande L, Gressens P, Guillois B, Houdé O, Levard D, Gakuba C, Moyon M, Naveau M, Orliac F, Orliaguet G, Hanouz JL, Agin V, Borst G, Vivien D. Consequences of General Anesthesia in Infancy on Behavior and Brain Structure. Anesth Analg 2023; 136:240-250. [PMID: 36638508 DOI: 10.1213/ane.0000000000006233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND One in 7 children will need general anesthesia (GA) before the age of 3. Brain toxicity of anesthetics is controversial. Our objective was to clarify whether exposure of GA to the developing brain could lead to lasting behavioral and structural brain changes. METHODS A first study was performed in mice. The behaviors (fear conditioning, Y-maze, and actimetry) and brain anatomy (high-resolution magnetic resonance imaging) of 6- to 8-week-old Swiss mice exposed or not exposed to GA from 4 to 10 days old were evaluated. A second study was a complementary analysis from the preexisting APprentissages EXécutifs et cerveau chez les enfants d'âge scolaire (APEX) cohort to assess the replicability of our data in humans. The behaviors (behavior rating inventory of executive function, emotional control, and working memory score, Backward Digit Span, and Raven 36) and brain anatomy (high-resolution magnetic resonance imaging) were compared in 102 children 9 to 10 years of age exposed or not exposed to a single GA (surgery) during infancy. RESULTS The animal study revealed chronic exacerbated fear behavior in the adult mice (95% confidence interval [CI], 4-80; P = .03) exposed to postnatal GA; this was associated with an 11% (95% CI, 7.5-14.5) reduction of the periaqueductal gray matter (P = .046). The study in humans suggested lower emotional control (95% CI, 0.33-9.10; P = .06) and a 6.1% (95% CI, 4.3-7.8) reduction in the posterior part of the right inferior frontal gyrus (P = .019) in the children who had been exposed to a single GA procedure. CONCLUSIONS The preclinical and clinical findings of these independent studies suggest lasting effects of early life exposure to anesthetics on later emotional control behaviors and brain structures.
Collapse
Affiliation(s)
- Jean-Philippe Salaün
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | - Audrey Chagnot
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Nicolas Poirel
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France.,GIP Cyceron, Caen, France
| | - Valérie Datin-Dorrière
- Université de Paris, LaPsyDé, CNRS, Paris, France.,GIP Cyceron, Caen, France.,Department of Neonatology, CHU Caen, Caen University Hospital, Caen, France
| | - Cléo Dujarrier
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Eloïse Lemarchand
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Marine Rolland
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | | | | | | | - Olivier Houdé
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France.,GIP Cyceron, Caen, France
| | - Damien Levard
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Clément Gakuba
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France
| | - Marine Moyon
- Université de Paris, LaPsyDé, CNRS, Paris, France
| | - Mikael Naveau
- CNRS, GIP Cyceron, Normandie Université, Caen, France
| | - François Orliac
- Université de Paris, LaPsyDé, CNRS, Paris, France.,GIP Cyceron, Caen, France
| | - Gilles Orliaguet
- Department of Pediatric Anesthesia and Intensive Care, Necker-Enfants Malades University Hospital, AP-HP, Centre - Université de Paris, France, Université de Paris, Paris, France
| | - Jean-Luc Hanouz
- Department of Anesthesiology and Critical Care Medicine, CHU Caen, Caen University Hospital, Caen, France.,Caen Normandy University, Unicaen, Caen, France
| | - Véronique Agin
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Grégoire Borst
- Université de Paris, LaPsyDé, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Denis Vivien
- From the Normandie Universite UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie, Physiopathology and Imaging of Neurological Disorders, Caen, France.,Department of Clinical Research, CHU Caen, Caen University Hospital, Caen, France
| |
Collapse
|
12
|
Lenoir M, Beretti T, Testud B, Resseguier N, Gauthier K, Fouilloux V, Gran C, Paoli F, El-Louali F, Aldebert P, Blanc J, Soulatges C, Al-dybiat S, Carles G, Wanert C, Rozalen W, Lebel S, Arnaud S, Santelli D, Allary C, Peyre M, Grandvuillemin I, Desroberts C, Alaoui MB, Boubred F, Michel F, Ovaert C, Milh M, François C, Desnous B. Impact of cardiac surgical timing on the neurodevelopmental outcomes of newborns with Complex congenital heart disease (CHD). Front Pediatr 2023; 11:1003585. [PMID: 37033180 PMCID: PMC10077148 DOI: 10.3389/fped.2023.1003585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/23/2023] [Indexed: 04/11/2023] Open
Abstract
Background More than half of infants with complex congenital heart disease (CHD) will have a neurodevelopmental disorder of multifactorial causes. The preoperative period represents a time-window during which neonates with complex CHD are in a state of hypoxia and hemodynamic instability, which fosters the emergence of brain injuries and, thus, affects early brain networks and neurodevelopmental outcomes. Currently, there is no consensus regarding the optimal age for cardiac surgery in terms of neurodevelopmental outcomes, and its definition is a real challenge. Our aim is to determine the relationship between cardiac surgical timing and long-term neurodevelopmental outcomes for various types of complex CHD. Methods We hypothesize that earlier surgical timing could represent a neuroprotective strategy that reduces perioperative white matter injuries (WMIs) and postoperative morbidity, leading to improved neurodevelopmental outcomes in infants with complex CHD. Firstly, our prospective study will allow us to determine the correlation between age at the time of surgery (days of life) and neurodevelopmental outcomes at 24 months. We will then analyze the correlation between age at surgery and (i) the incidence of WMIs (through pre- and postoperative MRIs), (ii) postoperative morbidity, and (iii) the duration of the hospital stay. Implications and Dissemination This research protocol was registered in the Clinical Trial Registry (National Clinical Trial: NCT04733378). This project aims to help launch the first Neurocardiac Investigation Clinic in Marseille - AP-HM - to propose an overall personalized monitoring and treatment program for patients operated on for complex CHD.
Collapse
Affiliation(s)
- Marien Lenoir
- Division of Paediatric Cardiac Surgery, APHM La Timone, Marseille, France
| | - Thibault Beretti
- Département de Pédiatrie, Division de Neurologie, Hôpital de La Timone, Marseille, France
| | - Benoit Testud
- Department of Neuroradiology, APHM La Timone, Marseille, France
- CEMEREM, APHM La Timone, Marseille, France
| | - Noémie Resseguier
- Aix-Marseille University, Support Unit for Clinical Research and Economic Evaluation, AP - HM, Marseille, France
| | - Kim Gauthier
- Department of Paediatric Neurology, APHM La Timone, Marseille, France
| | - Virginie Fouilloux
- Division of Paediatric Cardiac Surgery, APHM La Timone, Marseille, France
| | - Célia Gran
- Division of Paediatric Cardiac Surgery, APHM La Timone, Marseille, France
| | - Florent Paoli
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Fedoua El-Louali
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Philippe Aldebert
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Julie Blanc
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Camille Soulatges
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Sarab Al-dybiat
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Guillaume Carles
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Chloe Wanert
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - William Rozalen
- Department of Paediatric Neurology, APHM La Timone, Marseille, France
| | - Stéphane Lebel
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Sophie Arnaud
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Dominique Santelli
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Chloé Allary
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Marianne Peyre
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | | | | | - Myriem Belghiti Alaoui
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Farid Boubred
- Department of Neonatology, APHM La Conception, Marseille, France
| | - Fabrice Michel
- Department of Paediatric Anesthesia and Intensive Care Unit, APHM La Timone, Marseille, France
| | - Caroline Ovaert
- Department of Paediatric Cardiology, APHM La Timone, Marseille, France
| | - Mathieu Milh
- Department of Paediatric Neurology, APHM La Timone, Marseille, France
| | | | - Béatrice Desnous
- Département de Pédiatrie, Division de Neurologie, Hôpital de La Timone, Marseille, France
- INSERM U1106 Institut de Neurosciences des Systèmes, Marseille, France
- Correspondence: Béatrice Desnous
| |
Collapse
|
13
|
Lee FT, Sun L, Freud L, Seed M. A guide to prenatal counseling regarding neurodevelopment in congenital heart disease. Prenat Diagn 2022; 43:661-673. [PMID: 36575573 DOI: 10.1002/pd.6292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Advances in cardiac surgical techniques taking place over the past 50 years have resulted in the vast majority of children born with congenital cardiac malformations now surviving into adulthood. As the focus shifts from survival to the functional outcomes of our patients, it is increasingly being recognized that a significant proportion of patients undergoing infant cardiac repair experience adverse neurodevelopmental (ND) outcomes. The etiology of abnormal brain development in the setting of congenital heart disease is poorly understood, complex, and likely multifactorial. Furthermore, the efficacy of therapies available for the learning disabilities, attention deficit, and hyperactivity disorders and other ND deficits complicating congenital heart disease is currently uncertain. This situation presents a challenge for prenatal counseling as current antenatal testing does not usually provide prognostic information regarding the likely ND trajectories of individual patients. However, we believe it is important for parents to be informed about potential issues with child development when a new diagnosis of congenital heart disease is disclosed. Parents deserve a comprehensive and thoughtful approach to this subject, which conveys the uncertainties involved in predicting the severity of any developmental disorders encountered, while emphasizing the improvements in outcomes that have already been achieved in infants with congenital heart disease. A balanced approach to counseling should also discuss what local arrangements are in place for ND follow-up. This review presents an up-to-date overview of ND outcomes in patients with congenital heart disease, providing possible approaches to communicating this information to parents during prenatal counseling in a sensitive and accurate manner.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay Freud
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Neukomm A, Ehrler M, Feldmann M, Chaouch A, Knirsch W, Hagmann C, Jakab A, Latal B. Perioperative Course and Socioeconomic Status Predict Long-Term Neurodevelopment Better Than Perioperative Conventional Neuroimaging in Children with Congenital Heart Disease. J Pediatr 2022; 251:140-148.e3. [PMID: 35948191 DOI: 10.1016/j.jpeds.2022.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE The objective of the study was to compare the use of neonatal conventional brain magnetic resonance imaging (MRI) with that of clinical factors and socioeconomic status (SES) to predict long-term neurodevelopment in children with severe congenital heart disease (CHD). STUDY DESIGN In this prospective cohort study, perioperative MRIs were acquired in 57 term-born infants with CHD undergoing cardiopulmonary bypass surgery during their first year of life. Total brain volume (TBV) was measured using an automated method. Brain injury severity (BIS) was assessed by an established scoring system. The neurodevelopmental outcome was assessed at 6 years using standardized test batteries. A multiple linear regression model was used for cognitive and motor outcomes with postoperative TBV, perioperative BIS, CHD complexity, length of hospital stay, and SES as covariates. RESULTS CHD diagnoses included univentricular heart defect (n = 15), transposition of the great arteries (n = 33), and acyanotic CHD (n = 9). Perioperative moderate-to-severe brain injury was detected in 15 (26%) patients. The total IQ was similar to test norms (P = .11), whereas the total motor score (P < .001) was lower. Neither postoperative TBV nor perioperative BIS predicted the total IQ, but SES (P < .001) and longer hospital stay (P = .004) did. No factor predicted the motor outcome. CONCLUSION Although the predictive value of neonatal conventional MRIs for long-term neurodevelopment is low, duration of hospital stay and SES better predict the outcome in this CHD sample. These findings should be considered in initiating early therapeutic support.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Melanie Ehrler
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Maria Feldmann
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Aziz Chaouch
- Division of Biostatistics, Center of Primary Care and Public Health (Unisanté) Lausanne, Lausanne, Switzerland
| | - Walter Knirsch
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland; Pediatric Cardiology, Department of Surgery, Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Neonatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andras Jakab
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Overview of Cardiopulmonary Bypass Techniques and the Incidence of Postoperative Complications in Pediatric Patients Undergoing Complex Pulmonary Artery Reconstruction. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2022; 54:330-337. [PMID: 36742023 PMCID: PMC9891469 DOI: 10.1182/ject-2200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/25/2022] [Indexed: 02/07/2023]
Abstract
Cardiopulmonary bypass (CPB) is routinely used for performing congenital heart operations. While most congenital heart operations can be performed with bypass times under 2 hours, complex pulmonary artery reconstructions require longer periods of CPB to facilitate the surgical repair. This article is intended to summarize the surgical and perfusion techniques utilized in patients undergoing complex pulmonary artery reconstructions at our institution. The initial portion of this manuscript provides an in-depth description of the surgical techniques employed for pulmonary artery reconstructions. This information is important in order to understand why prolonged CPB is a necessary requirement. The manuscript then provides a detailed description of the perfusion techniques and the modifications to the CPB circuit. Finally, the manuscript provides a summary of data from a clinical study evaluating the application of these techniques in 100 consecutive children undergoing complex pulmonary artery reconstruction. The data from this study demonstrated that there was a poor correlation between duration of CPB and both the number of postoperative complications and hospital length of stay. Major adverse cardiac events occurred in 11 (11%) patients with one hospital mortality. These results suggest that prolonged CPB does not predispose to adverse outcomes in this select population of patients.
Collapse
|
16
|
Ortinau CM, Smyser CD, Arthur L, Gordon EE, Heydarian HC, Wolovits J, Nedrelow J, Marino BS, Levy VY. Optimizing Neurodevelopmental Outcomes in Neonates With Congenital Heart Disease. Pediatrics 2022; 150:e2022056415L. [PMID: 36317967 PMCID: PMC10435013 DOI: 10.1542/peds.2022-056415l] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Neurodevelopmental impairment is a common and important long-term morbidity among infants with congenital heart disease (CHD). More than half of those with complex CHD will demonstrate some form of neurodevelopmental, neurocognitive, and/or psychosocial dysfunction requiring specialized care and impacting long-term quality of life. Preventing brain injury and treating long-term neurologic sequelae in this high-risk clinical population is imperative for improving neurodevelopmental and psychosocial outcomes. Thus, cardiac neurodevelopmental care is now at the forefront of clinical and research efforts. Initial research primarily focused on neurocritical care and operative strategies to mitigate brain injury. As the field has evolved, investigations have shifted to understanding the prenatal, genetic, and environmental contributions to impaired neurodevelopment. This article summarizes the recent literature detailing the brain abnormalities affecting neurodevelopment in children with CHD, the impact of genetics on neurodevelopmental outcomes, and the best practices for neonatal neurocritical care, focusing on developmental care and parental support as new areas of importance. A framework is also provided for the infrastructure and resources needed to support CHD families across the continuum of care settings.
Collapse
Affiliation(s)
- Cynthia M. Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Lindsay Arthur
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin E. Gordon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haleh C. Heydarian
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Cardiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Joshua Wolovits
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan Nedrelow
- Department of Neonatology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Bradley S. Marino
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Divisions of Cardiology and Critical Care Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Victor Y. Levy
- Department of Pediatrics, Stanford University School of Medicine, Lucile Packard Children’s Hospital, Palo Alto, California
| |
Collapse
|
17
|
Chen H, Yan Y, Li C, Zheng X, Wang G, Jin Z, Shi G, He X, Tong X, Chen H, Zhu Z. Inattention and hyperactivity in children and adolescents with repaired D-transposition of the great arteries: Prevalence, perioperative risk factors, and clinical outcomes. Front Cardiovasc Med 2022; 9:937311. [PMID: 36204574 PMCID: PMC9530033 DOI: 10.3389/fcvm.2022.937311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe present study objectives were to determine the prevalence of attention-deficit/hyperactivity disorder symptoms (ADHD-like symptoms) in children and adolescent with d-transposition of great artery (D-TGA) after arterial switch operation (ASO) and examine associated risk factors and adverse personal, family dysfunctions.MethodsThis cohort study included 103 patients with D-TGA who underwent ASO in early infancy at Shanghai Children’s Medical Center between 2011 and 2016 and then follow-up. Data analysis was conducted from September 2020 to April 2022. A standardized Swanson, Nolan, and Pelham IV (SNAP-IV) questionnaire is used to evaluate inattention and hyperactivity symptoms. Demographic, preoperative, intraoperative, and postoperative factor were collected. Univariate and multivariable regression analyses were performed with odds ratios (OR) and 95% confidence intervals (CIs).ResultsPrevalence of ADHD-like symptoms was 27.18% (28/103). Attention-deficit (18/28, 64.29%) symptom was the predominant subphenotype. After underwent TGA surgery, 39% of patients with ADHD-like symptoms receive remedial special academic services. There is none had repeated grade. Univariate analysis showed that, positive inotropic drug score (P = 0.03) and delayed sternal closure (P = 0.02) were risk factors of ADHD-like symptoms; increased preoperative oxygen saturation (SpO2) (P = 0.01) and surgical height (P = 0.01) and TGA subtype (VSD) (P = 0.02) were protective factor of ADHD-like symptoms. Multivariable analysis showed that delayed sternal closure (DSC) (OR, 1.50; 95% CI, 1.02–2.18) is a risk factor for the occurrence of ADHD-like symptom while increased preoperative oxygen saturation [odds ratio (OR), 0.95; 95% confidence interval (CI), 0.92–0.99] is a protective factor of ADHD-like symptom.ConclusionThe children and adolescents with D-TGA after ASO were at high risk of ADHD-like symptoms. Preoperative hypoxic status and postoperative DSC became predominant risk factors. Modification of the risk factors may be helpful to relieve ADHD-like symptoms for these patients.
Collapse
Affiliation(s)
- Hongtong Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Yan
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Guanghai Wang
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijuan Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhongqun Zhu,
| |
Collapse
|
18
|
Reighard C, Junaid S, Jackson WM, Arif A, Waddington H, Whitehouse AJO, Ing C. Anesthetic Exposure During Childhood and Neurodevelopmental Outcomes: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2217427. [PMID: 35708687 PMCID: PMC9204549 DOI: 10.1001/jamanetworkopen.2022.17427] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Importance Clinical studies of neurodevelopmental outcomes after anesthetic exposure have evaluated a range of outcomes with mixed results. Objective To examine via meta-analyses the associations between exposure to general anesthesia and domain-specific neurodevelopmental outcomes in children. Data Sources PubMed/MEDLINE, Embase, CINAHL, Web of Science and the Cochrane Library were searched from inception to August 31, 2021. Study Selection Inclusion criteria were exposures to procedures requiring general anesthesia at younger than 18 years and evaluation of long-term neurodevelopmental function after exposure. Studies lacking unexposed controls or focused on children with major underlying comorbidities were excluded. Data Extraction and Synthesis Extracted variables included effect size; hazard, risk, or odds ratio; number of exposures; procedure type; major comorbidities; age of exposure and assessment; presence of unexposed controls; and study design. Studies were independently reviewed by 2 coders, and review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were pooled using a random-effects model. Main Outcomes and Measures The main outcomes were standardized mean differences (SMD) for scores in the neurodevelopmental domains of academics, behavioral problems, cognition, executive function, general development, language, motor function, nonverbal reasoning, social cognition, and hazard and risk of neurodevelopmental disorder diagnoses. Results A total of 31 studies contributed data for meta-analysis. For each of the assessed neurodevelopmental domains, the numbers of children evaluated ranged from 571 to 63 315 exposed and 802 to 311 610 unexposed. Children with any exposure (single or multiple) had significantly worse behavioral problems scores, indicating more behavioral problems (SMD, -0.10; 95% CI, -0.18 to -0.02; P = .02), and worse scores in academics (SMD, -0.07; 95% CI -0.12 to -0.01; P = .02), cognition (SMD, -0.03; 95% CI, -0.05 to 0.00; P = .03), executive function (SMD, -0.20; 95% CI, -0.32 to -0.09; P < .001), general development (SMD, -0.08; 95% CI, -0.13 to -0.02; P = .01), language (SMD, -0.08; 95% CI, -0.14 to -0.02; P = .01), motor function (SMD, -0.11; 95% CI, -0.21 to -0.02; P = .02), and nonverbal reasoning (SMD, -0.15; 95% CI, -0.27 to -0.02; P = .02). Higher incidences of neurodevelopmental disorder diagnoses were also reported (hazard ratio, 1.19; 95% CI, 1.09 to 1.30; P < .001; risk ratio, 1.81; 95% CI, 1.25 to 2.61; P = .002). Conclusions and Relevance These findings support the hypothesis that associations between anesthetic exposure during childhood and subsequent neurodevelopmental deficits differ based on neurodevelopmental domain.
Collapse
Affiliation(s)
- Charles Reighard
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Shaqif Junaid
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - William M. Jackson
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ayesha Arif
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Hannah Waddington
- Faculty of Education, Victoria University of Wellington, Wellington, New Zealand
| | | | - Caleb Ing
- Department of Anesthesiology and Epidemiology, Columbia University Vagelos College of Physicians and Surgeons and Mailman School of Public Health, New York, New York
| |
Collapse
|
19
|
Sethi N, Carpenter JL, Donofrio MT. Impact of perinatal management on neurodevelopmental outcomes in congenital heart disease. Semin Perinatol 2022; 46:151582. [PMID: 35418321 DOI: 10.1016/j.semperi.2022.151582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With advancements in cardiopulmonary bypass technique and perioperative care, there has been a progressive decline in mortality associated with neonatal surgical correction of congenital heart disease (CHD). Thus, there is now increased focus on improving neurodevelopmental outcomes in CHD survivors. While the cause of these neurodevelopmental impairments is multifactorial, there is increasing evidence that structural and functional cerebral abnormalities are present before cardiac corrective repair. This suggests that in addition to patient specific risk factors, underlying cardiac physiology and clinical hemodynamics are critical to brain health and development. Prenatal diagnosis of CHD and subsequent optimization of perinatal care may therefore be important modifiable factors for long-term neurodevelopmental outcome. This article reviews the impact that prenatal diagnosis of CHD has on perinatal care and the preoperative clinical status of a neonate, as well as the potential influence this may have on lessening the degree of cerebral injury and long-term neurodevelopmental impairments.
Collapse
Affiliation(s)
- Neeta Sethi
- Duke Children's Pediatric and Congenital Heart Center, Duke University Medical Center, Durham, NC, USA
| | - Jessica L Carpenter
- Division of Pediatric Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Mary T Donofrio
- Division of Cardiology, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
20
|
Dextro-Transposition of Great Arteries and Neurodevelopmental Outcomes: A Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040502. [PMID: 35455546 PMCID: PMC9027469 DOI: 10.3390/children9040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
Abstract
Background: Arterial switch operation (ASO) is the gold-standard surgical approach for dextro-transposition of the great arteries (D-TGA). It is performed during the neonatal period and has almost diminished the previously high mortality rate (from 90% if left untreated to <0.5%). Despite the impressively high survival rates, the surgical procedure itself—along with the chronic post-operative complications and the perinatal impaired cerebral oxygen delivery—introduces multiple and cumulative risk factors for neurodevelopmental impairment. Method: This study is a review of English articles, using PUBMED and applying the following search terms, “transposition of the great arteries”, “neurodevelopment”, “autism”, “cerebral palsy”, and “attention-deficit hyperactivity disorder”. Data were extracted by two authors. Results: Even though general IQ is mainly found within the normal range, D-TGA children and adolescents display reduced performance in the assignments of executive functions, fine motor functions, attention, working memory, visual−spatial skills, and higher-order language skills. Moreover, D-TGA survivors may eventually struggle with inferior academic achievements and psychiatric disorders such as depression, anxiety, and ADHD. Conclusions: The existing literature concerning the neurodevelopment of D-TGA patients suggests impairment occurring during their lifespan. These findings underline the importance of close developmental surveillance so that D-TGA patients can better reach their full potential.
Collapse
|
21
|
Altered brain structure in preschool-aged children with tetralogy of Fallot. Pediatr Res 2022; 93:1321-1327. [PMID: 35194163 DOI: 10.1038/s41390-022-01987-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neurodevelopmental abnormalities are prevalent in children with tetralogy of Fallot. Our aim was to investigate the structural brain alterations of preschool-aged children with tetralogy of Fallot and its correlation with neurodevelopmental outcome. METHODS T1-weighted structural images were obtained from 25 children with tetralogy of Fallot who had undergone cardiopulmonary bypass surgery and from 24 normal controls. Cortical morphological indices including gray matter volume, cortical thickness, sulcal depth, gyrification, and cortical surface complexity were compared between the two groups. Neurodevelopmental assessments of the children with tetralogy of Fallot were performed with the Wechsler Preschool and Primary Scale of Intelligence. RESULTS Cortical morphological differences between groups were distributed throughout the right caudal middle frontal gyrus, right fusiform gyrus, right lateral occipital gyrus, right precuneus, and left inferior parietal lobule. Among children with tetralogy of Fallot, altered cortical structures were correlated with the visual spatial index, working memory index, and perioperative variables. CONCLUSION Our results suggested that abnormal cortical structure in preschool-aged children with tetralogy of Fallot may be the persistent consequence of delayed cortical development in fetuses and cortical morphology can be used as an early potential biomarker to capture regional brain abnormalities that are relevant to neurodevelopmental outcomes. IMPACT Altered cortical structures in preschool-aged children with ToF were correlated with both neurodevelopmental outcomes and clinical risk factors. Cortical morphology can be used as an effective tool to evaluate neuroanatomical changes and detect underlying neural mechanisms in ToF patients. Abnormal cortical structure may be the continuous consequence of delayed fetal brain development in children with ToF.
Collapse
|
22
|
Han B, Yang JK, Ling AY, Ma M, Kipps AK, Shin AY, Beshish AG. Early Functional Status After Surgery for Congenital Heart Disease: A Single-Center Retrospective Study. Pediatr Crit Care Med 2022; 23:109-117. [PMID: 34593740 DOI: 10.1097/pcc.0000000000002838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study is to investigate the change in functional status in infants, children, and adolescents undergoing congenital heart surgery using the Functional Status Scale. DESIGN A single-center retrospective study. SETTING A 26-bed cardiac ICU in a free-standing university-affiliated tertiary children's hospital. PATIENTS All patients 0-18 years who underwent congenital heart surgery from January 1, 2014, to December 31, 2017. INTERVENTIONS None. MEASUREMENTS AND MIN RESULTS The primary outcome variable was change in Functional Status Scale scores from admission to discharge. Additionally, two binary outcomes were derived from the primary outcome: new morbidity (change in Functional Status Scale ≥ 3) and unfavorable functional outcome (change in Functional Status Scale ≥ 5); their association with risk factors was assessed using modified Poisson regression. Out of 1,398 eligible surgical encounters, 65 (4.6%) and 15 (1.0%) had evidence of new morbidity and unfavorable functional outcomes, respectively. Higher Surgeons Society of Thoracic and the European Association for Cardio-Thoracic Surgery score, single-ventricle physiology, and longer cardiopulmonary bypass time were associated with new morbidity. Longer hospital length of stay was associated with both new morbidity and unfavorable outcome. CONCLUSIONS This study demonstrates the novel application of the Functional Status Scale on patients undergoing congenital heart surgery. New morbidity was noted in 4.6%, whereas unfavorable outcome in 1%. There was a small change in the total Functional Status Scale score that was largely attributed to changes in the feeding domain. Higher Society of Thoracic and the European Association for Cardio-Thoracic Surgery score, single-ventricle physiology, and longer cardiopulmonary bypass times were associated with new morbidity, whereas longer hospital length of stay was associated with both new morbidity and unfavorable outcome. Further studies with larger sample size will need to be done to confirm our findings and to better ascertain the utility of Functional Status Scale on this patient population.
Collapse
Affiliation(s)
- Brian Han
- Department of Pediatrics, Division of Cardiology, Lucile Packard Children's Hospital Stanford, Stanford University Medical Center, Palo Alto, CA
| | - Jeffrey K Yang
- Department of Pediatrics, Lucile Packard Children's Hospital Stanford, Stanford University Medical Center, Palo Alto, CA
| | - Albee Y Ling
- Department of Medicine, Quantitative Sciences Unit, Stanford University School of Medicine, Palo Alto, CA
| | - Michael Ma
- Department of Cardiothoracic Surgery, Lucile Packard Children's Hospital Stanford, Stanford University Medical Center, Palo Alto, CA
| | - Alaina K Kipps
- Department of Pediatrics, Division of Cardiology, Lucile Packard Children's Hospital Stanford, Stanford University Medical Center, Palo Alto, CA
| | - Andrew Y Shin
- Department of Pediatrics, Division of Cardiology, Lucile Packard Children's Hospital Stanford, Stanford University Medical Center, Palo Alto, CA
| | - Asaad G Beshish
- Department of Pediatrics, Division of Cardiology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
23
|
OUP accepted manuscript. Eur J Cardiothorac Surg 2022; 62:6563077. [DOI: 10.1093/ejcts/ezac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/12/2022] Open
|
24
|
Puia-Dumitrescu M, Sullivan LN, Tanaka D, Fisher K, Pittman R, Kumar KR, Malcolm WF, Gustafson KE, Lodge AJ, Goldberg RN, Hornik CP. Survival, Morbidities, and Developmental Outcomes among Low Birth Weight Infants with Congenital Heart Defects. Am J Perinatol 2021; 38:1366-1372. [PMID: 32485756 DOI: 10.1055/s-0040-1712964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Prematurity and low birth weight (LBW) are risk factors for increased morbidity and mortality in infants with congenital heart defects (CHDs). We sought to describe survival, inhospital morbidities, and 2-year neurodevelopmental follow-up in LBW infants with CHD. STUDY DESIGN We included infants with birth weight (BW) <2,500 g diagnosed with CHD (except isolated patent ductus arteriosus) admitted January 2013 to March 2016 to a single level-IV academic neonatal intensive care unit. We reported CHD prevalence by BW and gestational age; selected in-hospital morbidities and mortality by infant BW, CHD type, and surgical intervention; and developmental outcomes by Bayley's scales of infant and toddler development, third edition (BSID-III) scores at age 2 years. RESULTS Among 420 infants with CHD, 28 (7%) underwent cardiac surgery. Median (25th and 75th percentiles) gestational age was 30 (range: 27-33) weeks and BW was 1,258 (range: 870-1,853) g. There were 134 of 420 (32%) extremely LBW (<1,000 g) infants, 82 of 420 (20%) were small for gestational age, and 51 of 420 (12%) multiples. Most common diagnosis: atrial septal defect (260/420, 62%), followed by congenital anomaly of the pulmonary valve (75/420, 18%). Most common surgical procedure: pulmonary artery banding (5/28, 18%), followed by the tetralogy of Fallot corrective repair (4/28, 14%). Survival to discharge was 88% overall and lower among extremely LBW (<1,000 g, 81%) infants and infants undergoing surgery (79%). Comorbidities were common (35%); retinopathy of prematurity and bronchopulmonary dysplasia were most prevalent. BSID-III scores were available on 148 of 176 (84%); any scores <85 were noted in 73 of 148 (49%), with language being most commonly affected. CONCLUSION Among LBW infants with congenital heart disease, hospital mortality varied by BW and cardiac diagnosis. KEY POINTS · In low birth weight infants with congenital heart disease, survival varied by birth weight and cardiac diagnosis.. · Overall survival was higher than previously reported.. · There were fewer morbidities than previously reported.. · Bayley's scale-III scores at 2 years of age were <85 for nearly half..
Collapse
Affiliation(s)
| | - Laura N Sullivan
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David Tanaka
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Kimberley Fisher
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Rick Pittman
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Karan R Kumar
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - William F Malcolm
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Kathryn E Gustafson
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Andrew J Lodge
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ronald N Goldberg
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Christoph P Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina.,Division of Quantitative Sciences, Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
25
|
Jonas K, Jakutis V, Sudikienė R, Lebetkevičius V, Baliulis G, Tarutis V. Early and Late Outcomes after Arterial Switch Operation: A 40-Year Journey in a Single Low Case Volume Center. MEDICINA-LITHUANIA 2021; 57:medicina57090906. [PMID: 34577829 PMCID: PMC8469545 DOI: 10.3390/medicina57090906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: The results of the arterial switch operation in large congenital heart centers are excellent, and the results in small and medium centers are improving. The objective of this article is to share our experience utilizing the international knowledge transfer program to improve early and late arterial switch operation outcomes in our center. Materials and Methods: A retrospective analysis of patients who underwent the arterial switch operation in Vilnius University Santaros Clinics Cardiothoracic Surgery Center between 1977–2020 was performed. Results: A total of 127 consecutive arterial switch operations were performed in our center. Surgical mortality during the entire study period was 24.6%. Surgical mortality prior to the program, during the program, and after the program was 88.24%, 41.7%, and 5.81%, respectively (p < 0.0001). The surgical mortality of patients operated on during the last 10 years was 4%. The overall survival estimate for the 97 surviving patients was 96.9%, 94.9%, 93.8%, 93.8%, 93.8%, 93.8% at 1, 3, 5, 10, 15, and 20 years, respectively. Risk factors for early mortality included longer aortic cross-clamp time and operation prior to the knowledge transfer program. The only significant risk factor for late reintervention was concomitant aortic arch obstruction treated at the time of the arterial switch. Conclusions: The surgical treatment of transposition of the great arteries by means of an arterial switch with good results can be possible in low-to-medium volume congenital heart surgery centers. International knowledge transfer programs between high-expertise high-volume congenital heart centers and low-to-medium volume congenital heart centers may help to shorten the learning curve and improve early and late outcomes after an arterial switch. The risk factors for surgical mortality and intervention-free survival in low-volume surgical centers are similar to those in high-volume centers. Late arterial switch-related complications are similar to those among different-sized congenital heart centers.
Collapse
Affiliation(s)
- Karolis Jonas
- Center of Cardiothoracic Surgery, Clinic of Cardiovascular Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Santariskiu St. 2, LT-08661 Vilnius, Lithuania; (R.S.); (V.L.); (V.T.)
- Correspondence:
| | - Virginijus Jakutis
- Clinic of Anesthesiology and Intensive Care, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Santariskiu St. 2, LT-08661 Vilnius, Lithuania;
| | - Rita Sudikienė
- Center of Cardiothoracic Surgery, Clinic of Cardiovascular Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Santariskiu St. 2, LT-08661 Vilnius, Lithuania; (R.S.); (V.L.); (V.T.)
| | - Virgilijus Lebetkevičius
- Center of Cardiothoracic Surgery, Clinic of Cardiovascular Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Santariskiu St. 2, LT-08661 Vilnius, Lithuania; (R.S.); (V.L.); (V.T.)
| | - Giedrius Baliulis
- Department of Cardiac Surgery, University Hospital Southampton NHS Foundation Trust, Trenona Road, Southampton SO16 6YD, UK;
| | - Virgilijus Tarutis
- Center of Cardiothoracic Surgery, Clinic of Cardiovascular Diseases, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Santariskiu St. 2, LT-08661 Vilnius, Lithuania; (R.S.); (V.L.); (V.T.)
| |
Collapse
|
26
|
Boos V, Bührer C, Photiadis J, Berger F. Hypothermia for cardiogenic encephalopathy in neonates with dextro-transposition of the great arteries. Interact Cardiovasc Thorac Surg 2021; 32:130-136. [PMID: 33221903 DOI: 10.1093/icvts/ivaa235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Neonates with dextro-transposition of the great arteries (d-TGA) may experience rapid haemodynamic deterioration and profound hypoxaemia after birth. We report on d-TGA patients with severe acidosis, encephalopathy and their treatment with systemic hypothermia. METHODS This study is a single-centre retrospective cohort analysis of newborns with d-TGA. RESULTS Ninety-five patients (gestational age ≥35 weeks) with d-TGA and intended arterial switch operation were included. Ten infants (10.5%) with umbilical arterial blood pH > 7.10 experienced profound acidosis (pH < 7.00) within the first 2 h of life. Six of these patients displayed signs of encephalopathy and received therapeutic hypothermia. Apgar scores at 5 min independently predicted the development of neonatal encephalopathy during postnatal transition (unit Odds Ratio 0.17, 95% confidence interval 0.06-0.49, P = 0.001). Infants treated with hypothermia had a more severe preoperative course and required more often mechanical ventilation (100% vs 35%, P = 0.003), treatment with inhaled nitric oxide (50% vs 2.4%, P = 0.002) and inotropic support (67% vs 3.5%, P < 0.001), as compared to non-acidotic controls. The median age at cardiac surgery was 12 (range 6-14) days in cooled infants and 8 (4-59) days in controls (P = 0.088). Postoperative morbidity and total duration of hospitalization were not increased in infants receiving preoperative hypothermia. Mortality in newborns with severe preoperative acidosis was zero. CONCLUSIONS Newborn infants with d-TGA have a substantial risk for profound acidosis during the first hours of life. Systemic hypothermia for encephalopathic patients may delay corrective surgery without compromising perioperative outcomes.
Collapse
Affiliation(s)
- Vinzenz Boos
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Photiadis
- Department of Surgery for Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,German Center for Cardiovascular Research, Congenital Heart Diseases, Berlin, Germany
| |
Collapse
|
27
|
We should reframe the discussion/debate about neonatal repair of tetralogy of Fallot. J Thorac Cardiovasc Surg 2021; 161:1421-1425. [DOI: 10.1016/j.jtcvs.2020.05.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/18/2022]
|
28
|
Huisenga D, La Bastide‐Van Gemert S, Van Bergen A, Sweeney J, Hadders‐Algra M. Developmental outcomes after early surgery for complex congenital heart disease: a systematic review and meta-analysis. Dev Med Child Neurol 2021; 63:29-46. [PMID: 32149404 PMCID: PMC7754445 DOI: 10.1111/dmcn.14512] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 01/25/2023]
Abstract
AIM (1) To systematically review the literature on developmental outcomes from infancy to adolescence of children with complex congenital heart disease (CHD) who underwent early surgery; (2) to run a meta-regression analysis on the Bayley Scales of Infant Development, Second Edition Mental Developmental Index and Psychomotor Developmental Index (PDI) of infants up to 24 months and IQs of preschool-aged children to adolescents; (3) to assess associations between perioperative risk factors and outcomes. METHOD We searched pertinent literature (January 1990 to January 2019) in PubMed, Embase, CINAHL, and PsycINFO. Selection criteria included infants with complex CHD who had primary surgery within the first 9 weeks of life. Methodological quality, including risk of bias and internal validity, were assessed. RESULTS In total, 185 papers met the inclusion criteria; the 100 with high to moderate methodological quality were analysed in detail. Substantial heterogeneity in the group with CHD and in methodology existed. The outcome of infants with single-ventricle CHD was inferior to those with two-ventricle CHD (respectively: average scores for PDI 77 and 88; intelligence scores 92 and 98). Perioperative risk factors were inconsistently associated with developmental outcomes. INTERPRETATION The literature on children undergoing surgery in early infancy suggests that infants with a single ventricle are at highest risk of adverse developmental outcomes.
Collapse
Affiliation(s)
- Darlene Huisenga
- Department of Pediatric Rehabilitation and DevelopmentAdvocate Children’s HospitalOak LawnILUSA,University of GroningenUniversity Medical Center GroningenDepartment of PaediatricsDivision of Developmental NeurologyGroningenthe Netherlands
| | - Sacha La Bastide‐Van Gemert
- University of GroningenUniversity Medical Center GroningenDepartment of EpidemiologyGroningenthe Netherlands
| | - Andrew Van Bergen
- Department of Pediatric Rehabilitation and DevelopmentAdvocate Children’s HospitalOak LawnILUSA,Advocate Children’s Heart Institute Division of Pediatric Cardiac Critical CareAdvocate Children’s HospitalOak LawnILUSA
| | - Jane Sweeney
- Pediatric Science Doctoral ProgramRocky Mountain University of Health ProfessionsProvoUTUSA
| | - Mijna Hadders‐Algra
- University of GroningenUniversity Medical Center GroningenDepartment of PaediatricsDivision of Developmental NeurologyGroningenthe Netherlands
| |
Collapse
|
29
|
Barkhuizen M, Abella R, Vles JSH, Zimmermann LJI, Gazzolo D, Gavilanes AWD. Antenatal and Perioperative Mechanisms of Global Neurological Injury in Congenital Heart Disease. Pediatr Cardiol 2021; 42:1-18. [PMID: 33373013 PMCID: PMC7864813 DOI: 10.1007/s00246-020-02440-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Congenital heart defects (CHD) is one of the most common types of birth defects. Thanks to advances in surgical techniques and intensive care, the majority of children with severe forms of CHD survive into adulthood. However, this increase in survival comes with a cost. CHD survivors have neurological functioning at the bottom of the normal range. A large spectrum of central nervous system dysmaturation leads to the deficits seen in critical CHD. The heart develops early during gestation, and CHD has a profound effect on fetal brain development for the remainder of gestation. Term infants with critical CHD are born with an immature brain, which is highly susceptible to hypoxic-ischemic injuries. Perioperative blood flow disturbances due to the CHD and the use of cardiopulmonary bypass or circulatory arrest during surgery cause additional neurological injuries. Innate patient factors, such as genetic syndromes and preterm birth, and postoperative complications play a larger role in neurological injury than perioperative factors. Strategies to reduce the disability burden in critical CHD survivors are urgently needed.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Raul Abella
- Department of Pediatric Cardiac Surgery, University of Barcelona, Vall d'Hebron, Spain
| | - J S Hans Vles
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diego Gazzolo
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Fetal, Maternal and Neonatal Health, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio W D Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Guayaquil, Guayaquil, Ecuador.
- Department of Pediatrics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Mainwaring RD, Patrick WL, Dixit M, Rao A, Palmon M, Margetson T, Lamberti JJ, Hanley FL. Prevalence of Complications Following Unifocalization and Pulmonary Artery Reconstruction Procedures. World J Pediatr Congenit Heart Surg 2020; 11:704-711. [DOI: 10.1177/2150135120945688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Unifocalization and pulmonary artery reconstructions have been developed to treat complex disorders of pulmonary artery development. These procedures require extremely long periods of cardiopulmonary bypass (CPB) to facilitate surgical repair. The objective of this study was to document the prevalence of complications in patients undergoing unifocalization or pulmonary artery reconstructions associated with prolonged periods of CPB. Methods: This was a retrospective review of 100 consecutive patients who underwent unifocalization (n = 66) or pulmonary artery reconstructions (n = 34) with CPB times in excess of five hours. Thirty-eight of these operations were primary procedures, whereas 62 were reoperations. Results: The median age at surgery was 15 months, median duration of CPB was 473 minutes, median number of postoperative complications was 5, and the median length of hospital stay was 24 days. The most frequently encountered complications were low cardiac output (43%), open sternum (40%), reintubation (24%), arrhythmia (17%), and bronchoscopy (17%). There was a correlation between the total number of complications and overall length of hospital stay ( R 2 = 0.64). Major adverse cardiac events (MACE) occurred in 11 patients with one hospital mortality. Patients who experienced MACE had a median length of stay that was 35 days longer (56 vs 21 days) than patients who did not experience MACE. Conclusions: The data demonstrate that complications were relatively frequent in this cohort of patients and had a linear association with hospital length of stay. Major adverse cardiac events were encountered at a modest prevalence but had a profound impact on measures of outcome.
Collapse
Affiliation(s)
- Richard D. Mainwaring
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - William L. Patrick
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihir Dixit
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Akhil Rao
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Michal Palmon
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Tristan Margetson
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - John J. Lamberti
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank L. Hanley
- Division of Pediatric Cardiac Surgery, Lucile Packard Children’s Hospital Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
31
|
Hoskote A, Wray J, Banks V, Brown K, Lakhanpaul M. A referral pathway for potentially abnormal neurodevelopment in children with heart disease in the United Kingdom: a Delphi consensus. BMJ Paediatr Open 2020; 4:e000587. [PMID: 32399503 PMCID: PMC7204815 DOI: 10.1136/bmjpo-2019-000587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Children with congenital heart disease have complex medical and neurodevelopmental needs. We aimed to develop a multi-professional consensus-based referral pathway applicable to action the results of the brief developmental assessment (BDA), a validated early recognition tool, that categorises the neurodevelopmental status as green (appropriate for age), amber (equivocal) or red (delayed) in children aged between 4 months and 5 years. METHODS A Delphi consensus survey detailing two scenarios-a child categorised as delayed (red) and another as equivocal (amber) on administration of the BDA at the time of discharge from the tertiary centre-was sent to 80 expert professionals from primary, secondary and tertiary care seeking agreement on next steps and referral pathways. An iterative process was proposed with a pre-defined rule of 75% for consensus. RESULTS The survey was completed by 77 Delphi panel experts in Round 1, 73 in Round 2 and 70 in Round 3. Consensus was achieved (1) for the child with amber or red BDA, the child should be under the care of a paediatrician with expertise in cardiology (PEC) (or general paediatrician if no PEC) based at their local hospital, (2) for the child with red BDA, the PEC should initiate referral to community services at first assessment, (3) for child with amber BDA, a re-assessment by the health visitor should occur within 1-2 months, with referral to community services and notification to the PEC if on-going concerns. CONCLUSIONS The Delphi process enabled a consensus to be reached between health professionals on referral pathways for specialist neurodevelopmental assessment/treatment for children with heart disease, in response to amber or red BDA results. The agreed referral pathway, if implemented, could underpin a national guideline to address and intervene on the neurodevelopmental difficulties in children with heart disease.
Collapse
Affiliation(s)
- Aparna Hoskote
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jo Wray
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Victoria Banks
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Katherine Brown
- Heart and Lung Directorate, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Monica Lakhanpaul
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Whittington Health NHS Trust, London, UK
| |
Collapse
|
32
|
Walkden GJ, Pickering AE, Gill H. Assessing Long-term Neurodevelopmental Outcome Following General Anesthesia in Early Childhood: Challenges and Opportunities. Anesth Analg 2019; 128:681-694. [PMID: 30883414 PMCID: PMC6436726 DOI: 10.1213/ane.0000000000004052] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurodegeneration has been reported in young animals after exposure to all commonly used general anesthetic agents. The brain may be particularly vulnerable to anesthetic toxicity during peak synaptogenesis (in gestation and infancy). Human studies of long-term neurodevelopmental outcome following general anesthesia in early childhood report contradictory findings. This review assesses the strengths and deficiencies in human research methodologies to inform future studies. We identified 76 studies, published between 1990 and 2017, of long-term neurodevelopmental outcome following early childhood or in utero general anesthesia exposure: 49 retrospective, 9 ambidirectional, 17 prospective cohort studies, and 1 randomized controlled trial. Forty-nine studies were explicitly concerned with anesthetic-induced neurotoxicity. Full texts were appraised for methodological challenges and possible solutions. Major challenges identified included delineating effects of anesthesia from surgery, defining the timing and duration of exposure, selection of a surgical cohort and intervention, addressing multiple confounding life course factors, detecting modest neurotoxic effects with small sample sizes (median, 131 children; interquartile range, 50–372), selection of sensitive neurodevelopmental outcomes at appropriate ages for different developmental domains, insufficient length of follow-up (median age, 6 years; interquartile range, 2–12 years), and sample attrition. We discuss potential solutions to these challenges. Further adequately powered, multicenter, prospective randomized controlled trials of anesthetic-induced neurotoxicity in children are required. However, we believe that the inherent methodological challenges of studying anesthetic-induced neurotoxicity necessitate the parallel use of well-designed observational cohort studies.
Collapse
Affiliation(s)
- Graham J Walkden
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Anthony E Pickering
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Hannah Gill
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Bristol Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, Bristol Royal Infirmary, Bristol, United Kingdom.,Department of Paediatric Anaesthesia, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
33
|
Fang A, Allen KY, Marino BS, Brady KM. Neurologic outcomes after heart surgery. Paediatr Anaesth 2019; 29:1086-1093. [PMID: 31532867 DOI: 10.1111/pan.13744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Amy Fang
- Anesthesia, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Kiona Y Allen
- Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| | - Bradley S Marino
- Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| | - Ken M Brady
- Anesthesia, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Kelly CJ, Arulkumaran S, Tristão Pereira C, Cordero-Grande L, Hughes EJ, Teixeira RPAG, Steinweg JK, Victor S, Pushparajah K, Hajnal JV, Simpson J, Edwards AD, Rutherford MA, Counsell SJ. Neuroimaging findings in newborns with congenital heart disease prior to surgery: an observational study. Arch Dis Child 2019; 104:1042-1048. [PMID: 31243012 PMCID: PMC6801127 DOI: 10.1136/archdischild-2018-314822] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Neurodevelopmental impairment has become the most important comorbidity in infants with congenital heart disease (CHD). We aimed to (1) investigate the burden of brain lesions in infants with CHD prior to surgery and (2) explore clinical factors associated with injury. STUDY DESIGN Prospective observational study. SETTING Single centre UK tertiary neonatal intensive care unit. PATIENTS 70 newborn infants with critical or serious CHD underwent brain MRI prior to surgery. MAIN OUTCOME MEASURES Prevalence of cerebral injury including arterial ischaemic strokes (AIS), white matter injury (WMI) and intracranial haemorrhage. RESULTS Brain lesions were observed in 39% of subjects (95% CI 28% to 50%). WMI was identified in 33% (95% CI 23% to 45%), subdural haemorrhage without mass effect in 33% (95% CI 23% to 45%), cerebellar haemorrhage in 9% (95% CI 4% to 18%) and AIS in 4% (95% CI 1.5% to 12%). WMI was distributed widely throughout the brain, particularly involving the frontal white matter, optic radiations and corona radiata. WMI exhibited restricted diffusion in 48% of cases. AIS was only observed in infants with transposition of the great arteries (TGA) who had previously undergone balloon atrial septostomy (BAS). AIS was identified in 23% (95% CI 8% to 50%) of infants with TGA who underwent BAS, compared with 0% (95% CI 0% to 20%) who did not. CONCLUSIONS Cerebral injury in newborns with CHD prior to surgery is common.
Collapse
Affiliation(s)
- Christopher J Kelly
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Catarina Tristão Pereira
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Johannes K Steinweg
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK,Paediatric Cardiology Department, Evelina London Children’s Healthcare, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - John Simpson
- Congenital Heart Disease, Evelina London Children’s Hospital, London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
35
|
Zaleski KL, Kussman BD. Near-Infrared Spectroscopy in Pediatric Congenital Heart Disease. J Cardiothorac Vasc Anesth 2019; 34:489-500. [PMID: 31582201 DOI: 10.1053/j.jvca.2019.08.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Near-infrared spectroscopy (NIRS) is widely used to monitor tissue oxygenation in the pediatric cardiac surgical population. Clinicians who use NIRS must understand the underlying measurement principles in order to interpret and use this monitoring modality appropriately. The aims of this narrative review are to provide a brief overview of NIRS technology, discuss the normative and critical values of cerebral and somatic tissue oxygen saturation and the interpretation of these values, present the clinical studies (and their limitations) of NIRS as a perioperative monitoring modality in the pediatric congenital heart disease population, and introduce the emerging and future applications of NIRS.
Collapse
Affiliation(s)
- Katherine L Zaleski
- Department of Anesthesiology, Perioperative, and Critical Care Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital, Boston, MA.
| | - Barry D Kussman
- Department of Anesthesiology, Perioperative, and Critical Care Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital, Boston, MA
| |
Collapse
|
36
|
Solodiuk JC, Jennings RW, Bajic D. Evaluation of Postnatal Sedation in Full-Term Infants. Brain Sci 2019; 9:E114. [PMID: 31108894 PMCID: PMC6562619 DOI: 10.3390/brainsci9050114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Prolonged sedation in infants leads to a high incidence of physical dependence. We inquired: (1) "How long does it take to develop physical dependence to sedation in previously naïve full-term infants without known history of neurologic impairment?" and (2) "What is the relationship between length of sedation to length of weaning and hospital stay?". The retrospective study included full-term patients over a period of one year that were <1 year of age and received opioids and benzodiazepines >72 hours. Quantification of fentanyl, morphine, and midazolam were compared among three time periods: <5 days, 5-30 days, and >30 days using t-test or one-way analysis of variance. Identified full-term infants were categorized into surgical (14/44) or medical (10/44) groups, while those with neurological involvement (20/44) were excluded. Physical dependence in full-term infants occurred following sedation ≥5 days. Infants with surgical disease received escalating doses of morphine and midazolam when administered >30 days. A positive association between length of sedation and weaning period was found for both respiratory (p < 0.01) and surgical disease (p = 0.012) groups, while length of sedation is related to hospital stay for the respiratory (p < 0.01) but not the surgical disease group (p = 0.1). Future pharmacological directions should lead to standardized sedation protocols and evaluate patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Jean Carmela Solodiuk
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Russell William Jennings
- Esophageal Advance Treatment Center, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Bojan M. Recent achievements and future developments in neonatal cardiopulmonary bypass. Paediatr Anaesth 2019; 29:414-425. [PMID: 30714261 DOI: 10.1111/pan.13597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
A primary goal of improving neonatal cardiopulmonary bypass has been making the circuit smaller and reduce the blood contacting surfaces. As bypass circuit size has decreased, bloodless surgery has become possible even in neonates. Since transfusion guidelines are difficult to construct based on existing literature, these technical advances should be taken advantage of in conjunction with an individualized transfusion scheme, based on monitoring of oxygen availability to the tissues. For the majority of neonatal heart operations, several centers have shifted toward normothermic bypass even for complex neonatal surgeries, in order to avoid the adverse effects of hypothermia. Deep hypothermic circulatory arrest is no longer a necessity but an option, and selective antegrade cerebral perfusion has become common practice; however, technical uncertainties with regard to this technique have to be addressed, based on reliable neurologic monitoring. Maintenance of patient-specific heparin concentrations during bypass is another key goal, since neonates have lower baseline antithrombin concentrations and, therefore, a higher risk for inadequate thrombin inhibition and postoperative bleeding. Due to the immaturity of their hemostatic system, the standard coagulation tests alone are inappropriate to guide hemostatic therapy in neonates. The use of indirect heparin concentration assays and global viscoelastic assays in the operating room is likely to represent the optimal strategy, and requires validation in neonates. Monitoring of global and regional indexes of oxygen availability and consumption on bypass have become possible; however, their use in neonates still has outstanding technical issues which should be addressed and hence needs further validation. Due to the immaturity of the neonatal myocardium, single-shot cold cardioplegia solutions are thought to confer the best myocardial protection; their superiority when compared to more conventional modalities, however, remains to be demonstrated.
Collapse
Affiliation(s)
- Mirela Bojan
- Congenital Cardiac Unit, Department of Anesthesiology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| |
Collapse
|
38
|
Goldstone AB, Baiocchi M, Wypij D, Stopp C, Andropoulos DB, Atallah J, Atz AM, Beca J, Donofrio MT, Duncan K, Ghanayem NS, Goldberg CS, Hövels-Gürich H, Ichida F, Jacobs JP, Justo R, Latal B, Li JS, Mahle WT, McQuillen PS, Menon SC, Pike NA, Pizarro C, Shekerdemian LS, Synnes A, Williams IA, Bellinger DC, Newburger J, Gaynor JW. The Bayley-III scale may underestimate neurodevelopmental disability after cardiac surgery in infants. Eur J Cardiothorac Surg 2019; 57:63-71. [DOI: 10.1093/ejcts/ezz123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
OBJECTIVES
Neurodevelopmental disability is the most common complication among congenital heart surgery survivors. The Bayley scales are standardized instruments to assess neurodevelopment. The most recent edition (Bayley Scales of Infant and Toddler Development 3rd Edition, Bayley-III) yields better-than-expected scores in typically developing and high-risk infants than the second edition (Bayley Scales of Infant Development 2nd Edition, BSID-II). We compared BSID-II and Bayley-III scores in infants undergoing cardiac surgery.
METHODS
We evaluated 2198 infants who underwent operations with cardiopulmonary bypass between 1996 and 2009 at 26 institutions. We used propensity score matching to limit confounding by indication in a subset of patients (n = 705).
RESULTS
Overall, unadjusted Bayley-III motor scores were higher than BSID-II Psychomotor Development Index scores (90.7 ± 17.2 vs 77.6 ± 18.8, P < 0.001), and unadjusted Bayley-III composite cognitive and language scores were higher than BSID-II Mental Development Index scores (92.0 ± 15.4 vs 88.2 ± 16.7, P < 0.001). In the propensity-matched analysis, Bayley-III motor scores were higher than BSID-II Psychomotor Development Index scores [absolute difference 14.1, 95% confidence interval (CI) 11.7–17.6; P < 0.001] and the Bayley-III classified fewer children as having severe [odds ratio (OR) 0.24; 95% CI 0.14–0.42] or mild-to-moderate impairment (OR 0.21; 95% CI 0.14–0.32). The composite of Bayley-III cognitive and language scores was higher than BSID-II Mental Development Index scores (absolute difference 4.0, 95% CI 1.4–6.7; P = 0.003), but there was no difference between Bayley editions in the proportion of children classified as having severe cognitive and language impairment.
CONCLUSIONS
The Bayley-III yielded higher scores than the BSID-II and classified fewer children as severely impaired. The systematic bias towards higher scores with the Bayley-III precludes valid comparisons between early and contemporary cardiac surgery cohorts.
Collapse
Affiliation(s)
- Andrew B Goldstone
- Department of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | - Joseph Atallah
- Stollery Children’s Hospital, Western Canadian Complex Pediatric Therapies Follow-up Program, Edmonton, AB, Canada
| | - Andrew M Atz
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - John Beca
- Starship Children’s Hospital, Auckland, New Zealand
| | | | - Kim Duncan
- Children’s Hospital and Medical Center, Omaha, NE, USA
| | - Nancy S Ghanayem
- Medical College of Wisconsin, Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| | | | | | | | - Jeffrey P Jacobs
- Johns Hopkins All Children’s Heart Institute, St. Petersburg, FL, USA
| | | | - Beatrice Latal
- University Children’s Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Shaji C Menon
- Primary Children’s Medical Center, Salt Lake City, UT, USA
| | - Nancy A Pike
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | - Anne Synnes
- University of British Columbia, Vancouver, BC, Canada
| | - Ismée A Williams
- New York-Presbyterian Morgan Stanley Children’s Hospital of New York, New York, NY, USA
| | | | | | - J William Gaynor
- Department of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
39
|
Nasr VG, Bergersen LT, Lin HM, Benni PB, Bernier RS, Anderson ME, Kussman BD. Validation of a Second-Generation Near-Infrared Spectroscopy Monitor in Children With Congenital Heart Disease. Anesth Analg 2019; 128:661-668. [DOI: 10.1213/ane.0000000000002796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Claessens NHP, Jansen NJG, Breur JMPJ, Algra SO, Stegeman R, Alderliesten T, van Loon K, de Vries LS, Haas F, Benders MJNL, Lemmers PMA. Postoperative cerebral oxygenation was not associated with new brain injury in infants with congenital heart disease. J Thorac Cardiovasc Surg 2019; 158:867-877.e1. [PMID: 30982585 DOI: 10.1016/j.jtcvs.2019.02.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/10/2019] [Accepted: 02/24/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate postoperative indices of cerebral oxygenation and autoregulation in infants with critical congenital heart disease in relation to new postoperative ischemic brain injury. METHODS This prospective, clinical cohort included 77 infants with transposition of the great arteries (N = 19), left ventricular outflow tract obstruction (N = 30), and single ventricle physiology (N = 28) undergoing surgery at 30 days or less of life. Postoperative near-infrared spectroscopy and physiologic monitoring were applied to extract mean arterial blood pressure, regional cerebral oxygen saturation, fractional tissue oxygen extraction, and regional cerebral oxygen saturation mean arterial blood pressure correlation coefficient (≥0.5 considered sign of impaired cerebral autoregulation). New postoperative ischemic injury was defined as moderate-severe white matter injury or focal infarction on magnetic resonance imaging. Low cardiac output syndrome was measured as lactate greater than 4 mmol/L with pH less than 7.30. RESULTS After surgery, regional cerebral oxygen saturation was decreased in all congenital heart disease groups with a notable increase in regional cerebral oxygen saturation between 6 and 12 hours after surgery, on average with a factor of 1.4 (range, 1.1-2.4). Both single ventricle physiology and postoperative low cardiac output syndrome were associated with lower regional cerebral oxygen saturation and increased time with correlation coefficient of 0.5 or greater. New postoperative ischemic injury was seen in 39 patients (53%) and equally distributed across congenital heart disease groups. Postoperative regional cerebral oxygen saturation, fractional tissue oxygen extraction, and correlation coefficient were not independently associated with new postoperative white matter injury or focal infarction (mixed-model analysis, all F > 0.12). CONCLUSIONS Postoperative indices of cerebral oxygenation and cerebral autoregulation are not independent predictors of new ischemic brain injury in infants with critical congenital heart disease. Further exploration of the complex interplay among low regional cerebral oxygen saturation, low cardiac output syndrome, and heart defect is required to identify potential biomarkers enabling early intervention for ischemic brain injury.
Collapse
Affiliation(s)
- Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Selma O Algra
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond Stegeman
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kim van Loon
- Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Felix Haas
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M A Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Liamlahi R, Latal B. Neurodevelopmental outcome of children with congenital heart disease. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:329-345. [PMID: 31324319 DOI: 10.1016/b978-0-444-64029-1.00016-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital heart disease (CHD) constitutes the most common congenital malformation, with moderate or severe CHD occurring in around 6 in 1000 live births. Due to advances in medical care, survival rates have increased significantly. Thus, the majority of children with CHD survive until adolescence and adulthood. Children with CHD requiring cardiopulmonary bypass surgery are at risk for neurodevelopmental impairments in various domains, including mild impairments in cognitive and neuromotor functions, difficulties with social interaction, inattention, emotional symptoms, and impaired executive function. The prevalence for these impairments ranges from 20% to 60% depending on age and domain ("high prevalence-low severity"). Domains are often affected simultaneously, leading to school problems with the need for learning support and special interventions. The etiology of neurodevelopmental impairments is complex, consisting of a combination of delayed intrauterine brain development and newly occurring perioperative brain injuries. Mechanisms include altered intrauterine hemodynamic flow as well as neonatal hypoxia and reduced cerebral blood flow. The surgical procedure and postoperative phase add to this cascade of factors interfering with normal brain development. Early identification of children at high risk through structured follow-up programs is mandated to provide individually tailored early interventions and counseling to improve developmental health.
Collapse
Affiliation(s)
- Rabia Liamlahi
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Clausen N, Kähler S, Hansen T. Systematic review of the neurocognitive outcomes used in studies of paediatric anaesthesia neurotoxicity. Br J Anaesth 2018; 120:1255-1273. [DOI: 10.1016/j.bja.2017.11.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
|
43
|
Peyvandi S, Latal B, Miller SP, McQuillen PS. The neonatal brain in critical congenital heart disease: Insights and future directions. Neuroimage 2018; 185:776-782. [PMID: 29787864 DOI: 10.1016/j.neuroimage.2018.05.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Division of Pediatric Cardiology, University of California San Francisco Benioff Children's Hospital, USA.
| | - Beatrice Latal
- University Children's Hospital Zurich, Child Development Center and Children's Research Center, Zurich, Switzerland
| | - Steven P Miller
- University of Toronto, Hospital for Sick Children, Department of Neurology, Canada
| | - Patrick S McQuillen
- Division of Critical Care, University of California San Francisco Benioff Children's Hospital, USA
| |
Collapse
|
44
|
Peyvandi S, Chau V, Guo T, Xu D, Glass HC, Synnes A, Poskitt K, Barkovich AJ, Miller SP, McQuillen PS. Neonatal Brain Injury and Timing of Neurodevelopmental Assessment in Patients With Congenital Heart Disease. J Am Coll Cardiol 2018; 71:1986-1996. [PMID: 29724352 PMCID: PMC5940013 DOI: 10.1016/j.jacc.2018.02.068] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Brain injury (BI) is reported in 60% of newborns with critical congenital heart disease as white matter injury (WMI) or stroke. Neurodevelopmental (ND) impairments are reported in these patients. The relationship between neonatal BI and ND outcome has not been established. OBJECTIVES This study sought to determine the association between peri-operative BI and ND outcomes in infants with single ventricle physiology (SVP) and d-transposition of the great arteries (d-TGA). METHODS Term newborns with d-TGA and SVP had pre-operative and post-operative brain magnetic resonance imaging and ND outcomes assessed at 12 and 30 months with the Bayley Scales of Infant Development-II. BI was categorized by the brain injury severity score and WMI was quantified by volumetric analysis. RESULTS A total of 104 infants had follow-up at 12 months and 70 had follow-up at 30 months. At 12 months, only clinical variables were associated with ND outcome. At 30 months, subjects with moderate-to-severe WMI had significantly lower Psychomotor Development Index (PDI) scores (13 points lower) as compared with those with none or minimal WMI for d-TGA and SVP (p = 0.03 and p = 0.05, respectively) after adjusting for various factors. Quantitative WMI volume was likewise associated. Stroke was not associated with outcome. The Bland-Altman limits of agreement for PDI scores at 12 and 30 months were wide (-40.3 to 31.2) across the range of mean PDI values. CONCLUSIONS Increasing burden of WMI is associated with worse motor outcomes at 30 months for infants with critical congenital heart disease, whereas no adverse association was seen between small strokes and outcome. These results support the utility of neonatal brain magnetic resonance imaging in this population to aid in predicting later outcomes and the importance of ND follow-up beyond 1 year of age.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics, Division of Cardiology, Benioff Children's Hospital, University of California-San Francisco, San Francisco, California
| | - Vann Chau
- Department of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ting Guo
- Neurosciences and Mental Health, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Duan Xu
- Department of Radiology, University of California-San Francisco, San Francisco, California
| | - Hannah C Glass
- Department of Neurology, Benioff Children's Hospital, University of California-San Francisco, San Francisco, California; Department of Pediatrics, Benioff Children's Hospital, University of California-San Francisco, San Francisco, California; Department of Epidemiology & Biostatistics, Benioff Children's Hospital, University of California-San Francisco, San Francisco, California
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenneth Poskitt
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - A James Barkovich
- Department of Radiology, University of California-San Francisco, San Francisco, California
| | - Steven P Miller
- Department of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick S McQuillen
- Department of Pediatrics, Division of Critical Care, Benioff Children's Hospital, University of California-San Francisco, San Francisco, California.
| |
Collapse
|
45
|
Verrall CE, Walker K, Loughran-Fowlds A, Prelog K, Goetti R, Troedson C, Ayer J, Egan J, Halliday R, Orr Y, Sholler GF, Badawi N, Winlaw DS. Contemporary incidence of stroke (focal infarct and/or haemorrhage) determined by neuroimaging and neurodevelopmental disability at 12 months of age in neonates undergoing cardiac surgery utilizing cardiopulmonary bypass†. Interact Cardiovasc Thorac Surg 2017; 26:644-650. [DOI: 10.1093/icvts/ivx375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Charlotte E Verrall
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
| | - Karen Walker
- Grace Centre for Newborn Care, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Cerebral Palsy Alliance, Sydney, Australia
| | - Alison Loughran-Fowlds
- Grace Centre for Newborn Care, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Kristina Prelog
- Department of Medical Imaging, The Children’s Hospital at Westmead, Sydney, Australia
| | - Robert Goetti
- Department of Medical Imaging, The Children’s Hospital at Westmead, Sydney, Australia
| | | | - Julian Ayer
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jonathan Egan
- Sydney Medical School, University of Sydney, Sydney, Australia
- Paediatric Intensive Care Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - Robert Halliday
- Grace Centre for Newborn Care, The Children’s Hospital at Westmead, Sydney, Australia
| | - Yishay Orr
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Gary F Sholler
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Nadia Badawi
- Grace Centre for Newborn Care, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Cerebral Palsy Alliance, Sydney, Australia
| | - David S Winlaw
- Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Are Anesthesia and Surgery during Infancy Associated with Decreased White Matter Integrity and Volume during Childhood? Anesthesiology 2017; 127:788-799. [DOI: 10.1097/aln.0000000000001808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Anesthetics have neurotoxic effects in neonatal animals. Relevant human evidence is limited. We sought such evidence in a structural neuroimaging study.
Methods
Two groups of children underwent structural magnetic resonance imaging: patients who, during infancy, had one of four operations commonly performed in otherwise healthy children and comparable, nonexposed control subjects. Total and regional brain tissue composition and volume, as well as regional indicators of white matter integrity (fractional anisotropy and mean diffusivity), were analyzed.
Results
Analyses included 17 patients, without potential confounding central nervous system problems or risk factors, who had general anesthesia and surgery during infancy and 17 control subjects (age ranges, 12.3 to 15.2 yr and 12.6 to 15.1 yr, respectively). Whole brain white matter volume, as a percentage of total intracranial volume, was lower for the exposed than the nonexposed group, 37.3 ± 0.4% and 38.9 ± 0.4% (least squares mean ± SE), respectively, a difference of 1.5 percentage points (95% CI, 0.3 to 2.8; P = 0.016). Corresponding decreases were statistically significant for parietal and occipital lobes, infratentorium, and brainstem separately. White matter integrity was lower for the exposed than the nonexposed group in superior cerebellar peduncle, cerebral peduncle, external capsule, cingulum (cingulate gyrus), and fornix (cres) and/or stria terminalis. The groups did not differ in total intracranial, gray matter, and cerebrospinal fluid volumes.
Conclusions
Children who had anesthesia and surgery during infancy showed broadly distributed, decreased white matter integrity and volume. Although the findings may be related to anesthesia and surgery during infancy, other explanations are possible.
Collapse
|
47
|
Resheidat A, Quinonez ZA, Mossad EB, Wise-Faberowski L, Mittnacht AJC. Selected 2016 Highlights in Congenital Cardiac Anesthesia. J Cardiothorac Vasc Anesth 2017; 31:1927-1933. [PMID: 29074129 DOI: 10.1053/j.jvca.2017.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ashraf Resheidat
- Division of Cardiovascular Anesthesia, Department of Anesthesia, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Zoel A Quinonez
- Division of Cardiovascular Anesthesia, Department of Anesthesia, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Emad B Mossad
- Division of Cardiovascular Anesthesia, Department of Anesthesia, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Lisa Wise-Faberowski
- Division of Pediatric Cardiac Anesthesia, Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Alexander J C Mittnacht
- Department of Anesthesiology, Perioperative and Pain Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
48
|
Fraser CD. The Neonatal Arterial Switch Operation: Technical Pearls. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2017; 20:38-42. [PMID: 28007063 DOI: 10.1053/j.pcsu.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/11/2022]
Abstract
The neonatal arterial switch operation has become the standard of care for transposition of the great arteries, including transposition with intact ventricular septum, transposition with ventricular septal defect with or without aortic arch hypoplasia, and double outlet right ventricle with subpulmonary ventricular septal defect (Taussig-Bing anomaly). While technically demanding, the operation is enormously gratifying and exciting for the congenital heart surgeon. In the current era, outcomes and expectations for the neonatal arterial switch operation are extremely high with many centers, including our own, reporting 30-day or hospital survivorship approaching 100%. Long-term results are also outstanding, although these patients do require lifelong follow-up and have the potential for need of remedial surgical intervention.
Collapse
Affiliation(s)
- Charles D Fraser
- Surgeon-in-Chief, Division of Congenital Heart Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
49
|
Mebius MJ, Kooi EMW, Bilardo CM, Bos AF. Brain Injury and Neurodevelopmental Outcome in Congenital Heart Disease: A Systematic Review. Pediatrics 2017; 140:peds.2016-4055. [PMID: 28607205 DOI: 10.1542/peds.2016-4055] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
CONTEXT Brain injury during prenatal and preoperative postnatal life might play a major role in neurodevelopmental impairment in infants with congenital heart disease (CHD) who require corrective or palliative surgery during infancy. A systematic review of cerebral findings during this period in relation to neurodevelopmental outcome (NDO), however, is lacking. OBJECTIVE To assess the association between prenatal and postnatal preoperative cerebral findings and NDO in infants with CHD who require corrective or palliative surgery during infancy. DATA SOURCES PubMed, Embase, reference lists. STUDY SELECTION We conducted 3 different searches for English literature between 2000 and 2016; 1 for prenatal cerebral findings, 1 for postnatal preoperative cerebral findings, and 1 for the association between brain injury and NDO. DATA EXTRACTION Two reviewers independently screened sources and extracted data on cerebral findings and neurodevelopmental outcome. Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS Abnormal cerebral findings are common during the prenatal and postnatal preoperative periods. Prenatally, a delay of cerebral development was most common; postnatally, white matter injury, periventricular leukomalacia, and stroke were frequently observed. Abnormal Doppler measurements, brain immaturity, cerebral oxygenation, and abnormal EEG or amplitude-integrated EEG were all associated with NDO. LIMITATIONS Observational studies, different types of CHD with different pathophysiological effects, and different reference values. CONCLUSIONS Prenatal and postnatal preoperative abnormal cerebral findings might play an important role in neurodevelopmental impairment in infants with CHD. Increased awareness of the vulnerability of the young developing brain of an infant with CHD among caregivers is essential.
Collapse
Affiliation(s)
- Mirthe J Mebius
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| | - Elisabeth M W Kooi
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| | - Catherina M Bilardo
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, Netherlands; and
| |
Collapse
|
50
|
Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, Wypij D, Cheng HH, Newburger JW, Kaza AK, Franceschini MA, Kussman BD, Grant PE. Non-invasive Assessment of Cerebral Blood Flow and Oxygen Metabolism in Neonates during Hypothermic Cardiopulmonary Bypass: Feasibility and Clinical Implications. Sci Rep 2017; 7:44117. [PMID: 28276534 PMCID: PMC5343476 DOI: 10.1038/srep44117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO2) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management.
Collapse
Affiliation(s)
- Silvina L Ferradal
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative &Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher G Ha
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Yi
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Stopp
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry H Cheng
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aditya K Kaza
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Barry D Kussman
- Department of Anesthesiology, Perioperative &Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging &Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|