1
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Buijink MR, van Weeghel M, Harms A, Murli DS, Meijer JH, Hankemeier T, Michel S, Kervezee L. Loss of temporal coherence in the circadian metabolome across multiple tissues during ageing in mice. Eur J Neurosci 2024; 60:3843-3857. [PMID: 38802069 DOI: 10.1111/ejn.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.
Collapse
Affiliation(s)
- M Renate Buijink
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel van Weeghel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Devika S Murli
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Mortimer T, Zinna VM, Atalay M, Laudanna C, Deryagin O, Posas G, Smith JG, García-Lara E, Vaca-Dempere M, Monteiro de Assis LV, Heyde I, Koronowski KB, Petrus P, Greco CM, Forrow S, Oster H, Sassone-Corsi P, Welz PS, Muñoz-Cánoves P, Benitah SA. The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis. Cell Stem Cell 2024; 31:834-849.e4. [PMID: 38701785 DOI: 10.1016/j.stem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Muge Atalay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Oleg Deryagin
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | - Guillem Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jacob G Smith
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Elisa García-Lara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | | | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine (H7), Karolinska Institute, 141 86 Stockholm, Sweden
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcinni 4, Pieve Emanuele, 20090 Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Hospital del Mar Research Institute, Cancer Research Programme, 08003 Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Altos Labs Inc, San Diego Institute of Science, San Diego, CA 92121, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
4
|
Avila A, Zhang SL. A circadian clock regulates the blood-brain barrier across phylogeny. VITAMINS AND HORMONES 2024; 126:241-287. [PMID: 39029975 DOI: 10.1016/bs.vh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
As the central regulatory system of an organism, the brain is responsible for overseeing a wide variety of physiological processes essential for an organism's survival. To maintain the environment necessary for neurons to function, the brain requires highly selective uptake and elimination of specific molecules through the blood-brain barrier (BBB). As an organism's activities vary throughout the day, how does the BBB adapt to meet the changing needs of the brain? A mechanism is through temporal regulation of BBB permeability via its circadian clock, which will be the focal point of this chapter. To comprehend the circadian clock's role within the BBB, we will first examine the anatomy of the BBB and the transport mechanisms enabling it to fulfill its role as a restrictive barrier. Next, we will define the circadian clock, and the discussion will encompass an introduction to circadian rhythms, the Transcription-Translation Feedback Loop (TTFL) as the mechanistic basis of circadian timekeeping, and the organization of tissue clocks found in organisms. Then, we will cover the role of the circadian rhythms in regulating the cellular mechanisms and functions of the BBB. We discuss the implications of this regulation in influencing sleep behavior, the progression of neurodegenerative diseases, and finally drug delivery for treatment of neurological diseases.
Collapse
Affiliation(s)
- Ashley Avila
- Cell Biology Department, Emory University, Atlanta, GA, United States
| | - Shirley L Zhang
- Cell Biology Department, Emory University, Atlanta, GA, United States.
| |
Collapse
|
5
|
Moreno-Cortés ML, Meza-Alvarado JE, García-Mena J, Hernández-Rodríguez A. Chronodisruption and Gut Microbiota: Triggering Glycemic Imbalance in People with Type 2 Diabetes. Nutrients 2024; 16:616. [PMID: 38474745 PMCID: PMC10934040 DOI: 10.3390/nu16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
The desynchronization of physiological and behavioral mechanisms influences the gut microbiota and eating behavior in mammals, as shown in both rodents and humans, leading to the development of pathologies such as Type 2 diabetes (T2D), obesity, and metabolic syndrome. Recent studies propose resynchronization as a key input controlling metabolic cycles and contributing to reducing the risk of suffering some chronic diseases such as diabetes, obesity, or metabolic syndrome. In this analytical review, we present an overview of how desynchronization and its implications for the gut microbiome make people vulnerable to intestinal dysbiosis and consequent chronic diseases. In particular, we explore the eubiosis-dysbiosis phenomenon and, finally, propose some topics aimed at addressing chronotherapy as a key strategy in the prevention of chronic diseases.
Collapse
Affiliation(s)
- María Luisa Moreno-Cortés
- Laboratorio de Biomedicina, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX 07360, Mexico;
| | - Azucena Hernández-Rodríguez
- Laboratorio de Biomedicina, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
- Facultad de Bioanálisis, Universidad Veracruzana, Xalapa 91010, Veracruz, Mexico
| |
Collapse
|
6
|
Thomas C, Kingshott RN, Allott KM, Tang JCY, Dunn R, Fraser WD, Thorley J, Virgilio N, Prawitt J, Hogervorst E, Škarabot J, Clifford T. Collagen peptide supplementation before bedtime reduces sleep fragmentation and improves cognitive function in physically active males with sleep complaints. Eur J Nutr 2024; 63:323-335. [PMID: 37874350 PMCID: PMC10799148 DOI: 10.1007/s00394-023-03267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE The primary aim of this study was to examine whether a glycine-rich collagen peptides (CP) supplement could enhance sleep quality in physically active men with self-reported sleep complaints. METHODS In a randomized, crossover design, 13 athletic males (age: 24 ± 4 years; training volume; 7 ± 3 h·wk1) with sleep complaints (Athens Insomnia Scale, 9 ± 2) consumed CP (15 g·day1) or a placebo control (CON) 1 h before bedtime for 7 nights. Sleep quality was measured with subjective sleep diaries and actigraphy for 7 nights; polysomnographic sleep and core temperature were recorded on night 7. Cognition, inflammation, and endocrine function were measured on night 7 and the following morning. Subjective sleepiness and fatigue were measured on all 7 nights. The intervention trials were separated by ≥ 7 days and preceded by a 7-night familiarisation trial. RESULTS Polysomnography showed less awakenings with CP than CON (21.3 ± 9.7 vs. 29.3 ± 13.8 counts, respectively; P = 0.028). The 7-day average for subjective awakenings were less with CP vs. CON (1.3 ± 1.5 vs. 1.9 ± 0.6 counts, respectively; P = 0.023). The proportion of correct responses on the baseline Stroop cognitive test were higher with CP than CON (1.00 ± 0.00 vs. 0.97 ± 0.05 AU, respectively; P = 0.009) the morning after night 7. There were no trial differences in core temperature, endocrine function, inflammation, subjective sleepiness, fatigue and sleep quality, or other measures of cognitive function or sleep (P > 0.05). CONCLUSION CP supplementation did not influence sleep quantity, latency, or efficiency, but reduced awakenings and improved cognitive function in physically active males with sleep complaints.
Collapse
Affiliation(s)
- Craig Thomas
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ruth N Kingshott
- Sheffield Children's NHS Foundation Trust, The Sleep House, Sheffield, UK
| | - Kirsty M Allott
- Sheffield Children's NHS Foundation Trust, The Sleep House, Sheffield, UK
| | - Jonathan C Y Tang
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital Norfolk, Norwich, UK
- Clinical Biochemistry, Departments of Laboratory Medicine and Departments of Diabetes and Endocrinology Norfolk, Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Rachel Dunn
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital Norfolk, Norwich, UK
- Clinical Biochemistry, Departments of Laboratory Medicine and Departments of Diabetes and Endocrinology Norfolk, Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - William D Fraser
- Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital Norfolk, Norwich, UK
- Clinical Biochemistry, Departments of Laboratory Medicine and Departments of Diabetes and Endocrinology Norfolk, Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Josh Thorley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | | | | | - Eef Hogervorst
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
7
|
Méndez N, Corvalan F, Halabi D, Ehrenfeld P, Maldonado R, Vergara K, Seron-Ferre M, Torres-Farfan C. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res 2023; 75:e12908. [PMID: 37650128 DOI: 10.1111/jpi.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.
Collapse
Affiliation(s)
- Natalia Méndez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Maldonado
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago de Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
9
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Jeanne R, Piton T, Minjoz S, Bassan N, Le Chenechal M, Semblat A, Hot P, Kibleur A, Pellissier S. Gut-Brain Coupling and Multilevel Physiological Response to Biofeedback Relaxation After a Stressful Task Under Virtual Reality Immersion: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:109-125. [PMID: 36336770 DOI: 10.1007/s10484-022-09566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Human physiological reactions to the environment are coordinated by the interactions between brain and viscera. In particular, the brain, heart, and gastrointestinal tract coordinate with each other to provide physiological equilibrium by involving the central, autonomic, and enteric nervous systems. Recent studies have demonstrated an electrophysiological coupling between the gastrointestinal tract and the brain (gut-brain axis) under resting-state conditions. As the gut-brain axis plays a key role in individual stress regulation, we aimed to examine modulation of gut-brain coupling through the use of an overwhelming and a relaxing module as a first step toward modeling of the underlying mechanisms. This study was performed in 12 participants who, under a virtual reality environment, performed a 9-min cognitive stressful task followed by a 9-min period of relaxation. Brain activity was captured by electroencephalography, autonomic activities by photoplethysmography, and electrodermal and gastric activities by electrogastrography. Results showed that compared with the stressful task, relaxation induced a significant decrease in both tonic and phasic sympathetic activity, with an increase in brain alpha power and a decrease in delta power. The intensity of gut-brain coupling, as assessed by the modulation index of the phase-amplitude coupling between the normogastric slow waves and the brain alpha waves, decreased under the relaxation relative to the stress condition. These results highlight the modulatory effect of biofeedback relaxation on gut-brain coupling and suggest noninvasive multilevel electrophysiology as a promising way to investigate the mechanisms underlying gut-brain coupling in physiological and pathological situations.
Collapse
Affiliation(s)
- Rudy Jeanne
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France.
- LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France.
| | - Timothy Piton
- Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Open Mind Innovation, 75008, Paris, France
| | - Séphora Minjoz
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France
- LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France
| | | | | | | | - Pascal Hot
- LPNC, Université Grenoble Alpes, Université Savoie Mont Blanc, 73000, Chambéry, France
- Institut Universitaire de France, Paris, France
| | | | - Sonia Pellissier
- LIP/PC2S, Université Savoie Mont Blanc, Université Grenoble Alpes, 73000, Chambéry, France
| |
Collapse
|
11
|
Guzmán-Ruiz MA, Guerrero-Vargas NN, Lagunes-Cruz A, González-González S, García-Aviles JE, Hurtado-Alvarado G, Mendez-Hernández R, Chavarría-Krauser A, Morin JP, Arriaga-Avila V, Buijs RM, Guevara-Guzmán R. Circadian modulation of microglial physiological processes and immune responses. Glia 2023; 71:155-167. [PMID: 35971989 PMCID: PMC10087862 DOI: 10.1002/glia.24261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022]
Abstract
Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Alejandra Lagunes-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Enrique García-Aviles
- Área de Neurociencias, Departamento de Biología de la Reproducción, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, México City, Mexico
| | | | - Rebeca Mendez-Hernández
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anahí Chavarría-Krauser
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Virginia Arriaga-Avila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ruud M Buijs
- Instituto Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
12
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Neba Ambe GNN, Breda C, Bhambra AS, Arroo RRJ. Effect of the Citrus Flavone Nobiletin on Circadian Rhythms and Metabolic Syndrome. Molecules 2022; 27:molecules27227727. [PMID: 36431828 PMCID: PMC9695244 DOI: 10.3390/molecules27227727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The importance of the circadian clock in maintaining human health is now widely acknowledged. Dysregulated and dampened clocks may be a common cause of age-related diseases and metabolic syndrome Thus, circadian clocks should be considered as therapeutic targets to mitigate disease symptoms. This review highlights a number of dietary compounds that positively affect the maintenance of the circadian clock. Notably the polymethoxyflavone nobiletin has shown some encouraging results in pre-clinical experiments. Although many more experiments are needed to fully elucidate its exact mechanism of action, it is a promising candidate with potential as a chronotherapeutic agent.
Collapse
Affiliation(s)
- Gael N. N. Neba Ambe
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Carlo Breda
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Avninder Singh Bhambra
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
14
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
15
|
Ramirez-Plascencia OD, Saderi N, Cárdenas Romero S, Flores Sandoval O, Báez-Ruiz A, Martínez Barajas H, Salgado-Delgado R. Temporal dysregulation of hypothalamic integrative and metabolic nuclei in rats fed during the rest phase. Chronobiol Int 2022; 39:374-385. [PMID: 34906015 DOI: 10.1080/07420528.2021.2002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Temporal coordination of organisms according to the daytime allows a better performance of physiological processes. However, modern lifestyle habits, such as food intake during the rest phase, promote internal desynchronization and compromise homeostasis and health. The hypothalamic suprachiasmatic nucleus (SCN) synchronizes body physiology and behavior with the environmental light-dark cycle by transmitting time information to several integrative hypothalamic nuclei, such as the paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH) and median preoptic area (MnPO). The SCN receives metabolic information mainly via Neuropeptide Y (NPY) inputs from the intergeniculate nucleus of the thalamus (IGL). Nowadays, there is no evidence of the response of the PVN, DMH and MnPO when the animals are subjected to internal desynchronization by restricting food access to the rest phase of the day. To explore this issue, we compared the circadian activity of the SCN, PVN, DMH and MnPO. In addition, we analyzed the daily activity of the satiety centers of the brainstem, the nucleus of the tractus solitarius (NTS) and area postrema (AP), which send metabolic information to the SCN, directly or via the thalamic intergeniculate leaflet (IGL). For that, male Wistar rats were assigned to three meal protocols: fed during the rest phase (Day Fed); fed during the active phase (Night Fed); free access to food (ad libitum). After 21 d, the daily activity patterns of these nuclei were analyzed by c-Fos immunohistochemistry, as well as NPY immunohistochemistry, in the SCN. The results show that eating during the rest period produces a phase advance in the activity of the SCN, changes the daily activity pattern in the MnPO, NTS and AP and flattens the c-Fos rhythm in the PVN and DMH. Altogether, these results validate previous observations of circadian dysregulation that occurs within the central nervous system when meals are consumed during the rest phase, a behavior that is involved in the metabolic alterations described in the literature.
Collapse
Affiliation(s)
- Oscar D Ramirez-Plascencia
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Omar Flores Sandoval
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | |
Collapse
|
16
|
Imbernon M, Dehouck B, Prevot V. Glycemic control: Tanycytes march to the beat of the suprachiasmatic drummer. Curr Biol 2022; 32:R173-R176. [DOI: 10.1016/j.cub.2022.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Rodríguez-Cortés B, Hurtado-Alvarado G, Martínez-Gómez R, León-Mercado LA, Prager-Khoutorsky M, Buijs RM. Suprachiasmatic nucleus-mediated glucose entry into the arcuate nucleus determines the daily rhythm in blood glycemia. Curr Biol 2022; 32:796-805.e4. [PMID: 35030330 DOI: 10.1016/j.cub.2021.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Glycemia is maintained within very narrow boundaries with less than 5% variation at a given time of the day. However, over the circadian cycle, glycemia changes with almost 50% difference. How the suprachiasmatic nucleus, the biological clock, maintains these day-night variations with such tiny disparities remains obscure. We show that via vasopressin release at the beginning of the sleep phase, the suprachiasmatic nucleus increases the glucose transporter GLUT1 in tanycytes. Hereby GLUT1 promotes glucose entrance into the arcuate nucleus, thereby lowering peripheral glycemia. Conversely, blocking vasopressin activity or the GLUT1 transporter at the daily trough of glycemia increases circulating glucose levels usually seen at the peak of the rhythm. Thus, biological clock-controlled mechanisms promoting glucose entry into the arcuate nucleus explain why peripheral blood glucose is low before sleep onset.
Collapse
Affiliation(s)
- Betty Rodríguez-Cortés
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, Mexico City 04510, Mexico
| | - Gabriela Hurtado-Alvarado
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, Mexico City 04510, Mexico
| | - Ricardo Martínez-Gómez
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, Mexico City 04510, Mexico
| | - Luis A León-Mercado
- Department of Internal Medicine, Center for Hypothalamic Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Masha Prager-Khoutorsky
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6, Canada
| | - Ruud M Buijs
- Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mario de la Cueva Circuit, Mexico City 04510, Mexico.
| |
Collapse
|
18
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
19
|
Abstract
Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| | - Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Vellei M, Chinazzo G, Zitting KM, Hubbard J. Human thermal perception and time of day: A review. Temperature (Austin) 2021; 8:320-341. [PMID: 34901316 PMCID: PMC8654484 DOI: 10.1080/23328940.2021.1976004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/01/2022] Open
Abstract
The circadian clock regulates diurnal variations in autonomic thermoregulatory processes such as core body temperature in humans. Thus, we might expect that similar daily fluctuations also characterize human thermal perception, the ultimate role of which is to drive thermoregulatory behaviors. In this paper, we explore this question by reviewing experimental and observational thermal comfort investigations which include the "time of day" variable. We found only 21 studies considering this factor, and not always as their primary analysis. Due to the paucity of studies and the lack of a specific focus on time-of-day effects, the results are difficult to compare and appear on the whole contradictory. However, we observe a tendency for individuals to prefer higher ambient temperatures in the early evening as compared to the rest of the day, a result in line with the physiological decrease of the core body temperature over the evening. By drawing from literature on the physiology of thermoregulation and circadian rhythms, we outline some potential explanations for the inconsistencies observed in the findings, including a potential major bias due to the intensity and spectrum of the selected light conditions, and provide recommendations for conducting future target studies in highly-controlled laboratory conditions. Such studies are strongly encouraged as confirmed variations of human thermal perceptions over the day would have enormous impact on building operations, thus on energy consumption and occupant comfort. List of abbreviations: TSV: Thermal Sensation Vote; TCV: Thermal Comfort Vote; Tpref: Preferred Temperature; TA: Indoor Air Temperature; RH: Indoor Relative Humidity; Tskin: Skin Temperature; Tty: Tympanic Temperature; Tre: Rectal Temperature; Toral: Oral Temperature.
Collapse
Affiliation(s)
- Marika Vellei
- Laboratory of Engineering Sciences for the Environment (LaSIE) (Umr Cnrs 7356), La Rochelle University, La Rochelle, France
| | - Giorgia Chinazzo
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Ma, USA
| | - Jeffrey Hubbard
- Laboratory of Integrated Performance in Design (Lipid), School of Architecture, Civil and Environmental Engineering (Enac), École Polytechnique Fédérale De Lausanne (Epfl), Lausanne, Switzerland
| |
Collapse
|
21
|
Lee Y. Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med 2021; 53:1529-1538. [PMID: 34615982 PMCID: PMC8568965 DOI: 10.1038/s12276-021-00681-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Circadian clocks are ubiquitous timing mechanisms that generate approximately 24-h rhythms in cellular and bodily functions across nearly all living species. These internal clock systems enable living organisms to anticipate and respond to daily changes in their environment in a timely manner, optimizing temporal physiology and behaviors. Dysregulation of circadian rhythms by genetic and environmental risk factors increases susceptibility to multiple diseases, particularly cancers. A growing number of studies have revealed dynamic crosstalk between circadian clocks and cancer pathways, providing mechanistic insights into the therapeutic utility of circadian rhythms in cancer treatment. This review will discuss the roles of circadian rhythms in cancer pathogenesis, highlighting the recent advances in chronotherapeutic approaches for improved cancer treatment.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
22
|
Abstract
The objective of chronotherapy is to optimize medical treatments taking into account the body's circadian rhythms. Chronotherapy is referred to and practiced in two different ways: (1) to alter the sleep-wake rhythms of patients to improve the sequels of several pathologies; (2) to take into account the circadian rhythms of patients to improve therapeutics. Even minor dysfunction of the biological clock can greatly affect sleep/wake physiology causing excessive diurnal somnolence, increase in sleep onset latency, phase delays or advances in sleep onset, frequent night awakenings, reduced sleep efficiency, delayed and shortened rapid eye movement sleep, or increased periodic leg movements. Chronotherapy aims to restore the proper circadian pattern of the sleep-wake cycle, through adequate sleep hygiene, timed light exposure, and the use of chronobiotic medications, such as melatonin, that affect the output phase of circadian rhythms, thus controlling the clock. Concerning the second use of chronotherapy, therapeutic outcomes as diverse as the survival after open-heart surgery or the efficacy and tolerance to chemotherapy vary according to the time of day. However, humans are heterogeneous concerning the timing of their internal clocks. Not only different chronotypes exist but also the endogenous human circadian period (τ) is not a stable trait as it depends on many internal and external factors. If any scheduled therapeutic intervention is going to be optimized, a tool is needed for simple diagnostic and objectively measurement of an individual's internal time at any given time. Methodologic advances like the use of single-sample gene expression and metabolomics are discussed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Buijs RM, Soto Tinoco EC, Hurtado Alvarado G, Escobar C. The circadian system: From clocks to physiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:233-247. [PMID: 34225965 DOI: 10.1016/b978-0-12-819975-6.00013-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival. In fasting, the body temperature drops to a lower level only at the beginning of the sleep phase. Stressful conditions raise blood pressure relatively more during the active period than during the rest phase. Extensive, mostly reciprocal SCN interactions, with hypothalamic networks, induce these physiological adjustments by hormonal and autonomic control of the body's organs. More importantly, in addition to SCN's hormonal and autonomic influences, SCN induced behavior, such as rhythmic food intake, induces the oscillation of many genes in all tissues, including the so-called clock genes, which have an essential role as a transcriptional driving force for numerous cellular processes. Consequently, the light-dark cycle, the rhythm of the SCN, and the resulting rhythm in behavior need to be perfectly synchronized, especially where it involves synchronizing food intake with the activity phase. If these rhythms are not synchronous for extended periods of times, such as during shift work, light exposure at night, or frequent night eating, disease may develop. As such, our circadian system is a perfect illustration of how hypothalamic-driven processes depend on and interact with each other and need to be in seamless synchrony with the body's physiology.
Collapse
Affiliation(s)
- Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Eva C Soto Tinoco
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Gabriela Hurtado Alvarado
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carolina Escobar
- Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
24
|
Buijs RM, Hurtado-Alvarado G, Soto-Tinoco E. Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase. J Neuroendocrinol 2021; 33:e12998. [PMID: 34189788 DOI: 10.1111/jne.12998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle. This is contrasted with VP production and release from the bed nucleus of the stria terminalis and the medial amygdala, which is influenced by gonadal hormones, as well as with VP originating from the PVN and SON, which is released in the neural lobe and central targets. The release of VP from the SCN signals the near arrival of the resting phase in rodents and prepares their physiology accordingly by down-modulating corticosterone secretion, the reproductive cycle and locomotor activity. All these circadian variables are regulated within very narrow boundaries at a specific time of the day, where day-to-day variation is less than 5% at any particular hour. However, the circadian peak values can be at least ten times higher than the circadian trough values, indicating the need for an elaborate feedback system to inform the SCN and other participating nuclei about the actual levels reached during the circadian cycle. In short, the interplay between SCN circadian output and peripheral feedback to the SCN is essential for the adequate organisation of all circadian rhythms in physiology and behaviour.
Collapse
Affiliation(s)
- Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gabriela Hurtado-Alvarado
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Eva Soto-Tinoco
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
25
|
Sleep-wake cycle disturbances and NeuN-altered expression in adult rats after cannabidiol treatments during adolescence. Psychopharmacology (Berl) 2021; 238:1437-1447. [PMID: 33635384 DOI: 10.1007/s00213-021-05769-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE The medical uses of cannabidiol (CBD), a constituent of the Cannabis sativa, have accelerated the legal and social acceptance for CBD-based medications but has also given the momentum for questioning whether the long-term use of CBD during the early years of life may induce adverse neurobiological effects in adulthood, including sleep disturbances. Given the critical window for neuroplasticity and neuro-functional changes that occur during stages of adolescence, we hypothesized that CBD might influence the sleep-wake cycle in adult rats after their exposure to CBD during the adolescence. OBJECTIVES Here, we investigated the effects upon behavior and neural activity in adulthood after long-term administrations of CBD in juvenile rats. METHODS We pre-treated juvenile rats with CBD (5 or 30 mg/Kg, daily) from post-natal day (PND) 30 and during 2 weeks. Following the treatments, the sleep-wake cycle and NeuN expression was analyzed at PND 80. RESULTS We found that systemic injections of CBD (5 or 30 mg/Kg, i.p.) given to adolescent rats (post-natal day 30) for 14 days increased in adulthood the wakefulness and decreased rapid eye movement sleep during the lights-on period whereas across the lights-off period, wakefulness was diminished and slow wave sleep was enhanced. In addition, we found that adult animals that received CBD during the adolescence displayed disruptions in sleep rebound period after total sleep deprivation. Finally, we determined how the chronic administrations of CBD during the adolescence affected in the adulthood the NeuN expression in the suprachiasmatic nucleus, a sleep-related brain region. CONCLUSIONS Our findings are relevant for interpreting results of adult rats that were chronically exposed to CBD during the adolescence and provide new insights into how CBD may impact the sleep-wake cycle and neuronal activity during developmental stages.
Collapse
|
26
|
Stoynev AG, Ikonomov OC, Stoynev NA. Suprachiasmatic hypothalamic nuclei (SCN) in regulation of homeostasis: a role beyond circadian control? BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1920125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander G. Stoynev
- Department of Pathophysiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, USA
| | - Nikolay A. Stoynev
- Department of Physiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| |
Collapse
|
27
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
28
|
Díaz NM, Lang RA, Van Gelder RN, Buhr ED. Wounding Induces Facultative Opn5-Dependent Circadian Photoreception in the Murine Cornea. Invest Ophthalmol Vis Sci 2021; 61:37. [PMID: 32543667 PMCID: PMC7415322 DOI: 10.1167/iovs.61.6.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Autonomous molecular circadian clocks are present in the majority of mammalian tissues. These clocks are synchronized to phases appropriate for their physiologic role by internal systemic cues, external environmental cues, or both. The circadian clocks of the in vivo mouse cornea synchronize to the phase of the brain's master clock primarily through systemic cues, but ex vivo corneal clocks entrain to environmental light cycles. We evaluated the underlying mechanisms of this difference. Methods Molecular circadian clocks of mouse corneas were evaluated in vivo and ex vivo for response to environmental light. The presence of opsins and effect of genetic deletion of opsins were evaluated for influence on circadian photoresponses. Opn5-expressing cells were identified using Opn5Cre;Ai14 mice and RT-PCR, and they were characterized using immunocytochemistry. Results Molecular circadian clocks of the cornea remain in phase with behavioral circadian locomotor rhythms in vivo but are photoentrainable in tissue culture. After full-thickness incision or epithelial debridement, expression of the opsin photopigment Opn5 is induced in the cornea in a subset of preexisting epithelial cells adjacent to the wound site. This induction coincides with conferral of direct, short-wavelength light sensitivity to the circadian clocks throughout the cornea. Conclusions Corneal circadian rhythms become photosensitive after wounding. Opn5 gene function (but not Opn3 or Opn4 function) is necessary for induced photosensitivity. These results demonstrate that opsin-dependent direct light sensitivity can be facultatively induced in the murine cornea.
Collapse
|
29
|
Abstract
For the majority of hypertensive patients, the etiology of their disease is unknown. The hypothalamus is a central structure of the brain which provides an adaptive, integrative, autonomic, and neuroendocrine response to any fluctuations in physiological conditions of the external or internal environment. Hypothalamic insufficiency leads to severe metabolic and functional disorders, including persistent increase in blood pressure. Here, we discuss alterations in the neurochemical organization of the paraventricular and suprachiasmatic nucleus in the hypothalamus of patients who suffered from essential hypertension and died suddenly due to acute coronary failure. The changes observed are hypothesized to contribute to the pathogenesis of disease.
Collapse
Affiliation(s)
- Valeri D Goncharuk
- A.L. Myasnikov Research Institute of Clinical Cardiology, Russian Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
The importance of 24-h metabolism in obesity-related metabolic disorders: opportunities for timed interventions. Int J Obes (Lond) 2020; 45:479-490. [PMID: 33235354 DOI: 10.1038/s41366-020-00719-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
Various metabolic processes in the body oscillate throughout the natural day, driven by a biological clock. Circadian rhythms are also influenced by time cues from the environment (light exposure) and behaviour (eating and exercise). Recent evidence from diurnal- and circadian-rhythm studies indicates rhythmicity in various circulating metabolites, insulin secretion and -sensitivity and energy expenditure in metabolically healthy adults. These rhythms have been shown to be disturbed in adults with obesity-related metabolic disturbances. Moreover, eating and being (in)active at a time that the body is not prepared for it, as in night-shift work, is related to poor metabolic outcomes. These findings indicate the relevance of 24-h metabolism in obesity-related metabolic alterations and have also led to novel strategies, such as timing of food intake and exercise, to reinforce the circadian rhythm and thereby improving metabolic health. This review aims to deepen the understanding of the influence of the circadian system on metabolic processes and obesity-related metabolic disturbances and to discuss novel time-based strategies that may be helpful in combating metabolic disease.
Collapse
|
31
|
Ni RJ, Tian Y, Dai XY, Zhao LS, Wei JX, Zhou JN, Ma XH, Li T. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zool Res 2020; 41:258-272. [PMID: 32212430 PMCID: PMC7231478 DOI: 10.24272/j.issn.2095-8137.2020.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Adult male tree shrews vigorously defend against intruding male conspecifics. However, the characteristics of social behavior have not been entirely explored in these males. In this study, male wild-type tree shrews (Tupaia belangeri chinensis) and C57BL/6J mice were first allowed to familiarize themselves with an open-field apparatus. The tree shrews exhibited a short duration of movement (moving) in the novel environment, whereas the mice exhibited a long duration of movement. In the 30 min social preference-avoidance test, target animals significantly decreased the time spent by the experimental tree shrews in the social interaction (SI) zone, whereas experimental male mice exhibited the opposite. In addition, experimental tree shrews displayed a significantly longer latency to enter the SI zone in the second 15 min session (target-present) than in the first 15 min session (target-absent), which was different from that found in mice. Distinct behavioral patterns in response to a conspecific male were also observed in male tree shrews and mice in the first, second, and third 5 min periods. Thus, social behaviors in tree shrews and mice appeared to be time dependent. In summary, our study provides results of a modified social preference-avoidance test designed for the assessment of social behavior in tree shrews. Our findings demonstrate the existence of social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics. The tree shrew may be a new animal model, which differs from mice, for the study of social avoidance and prosocial behaviors.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin-Ye Dai
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lian-Sheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Xue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao-Hong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
32
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
33
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
34
|
Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature 2020; 583:421-424. [PMID: 32641825 DOI: 10.1038/s41586-020-2471-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/02/2020] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nucleus (SCN) serves as the body's master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day-night cycle1-4. For example, the SCN opposes overnight adipsia by driving water intake before sleep5,6, and by driving the secretion of anti-diuretic hormone7,8 and lowering body temperature9,10 to reduce water loss during sleep11. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase12-16. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19-a time at which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVP neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this information to SCNVP neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLTGAD→ SCNVP pathway and was prevented by chemogenetic inhibition of OVLTGAD neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
Collapse
Affiliation(s)
- Claire Gizowski
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Méndez-Hernández R, Escobar C, Buijs RM. Suprachiasmatic Nucleus-Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity (Silver Spring) 2020; 28 Suppl 1:S10-S17. [PMID: 32538539 DOI: 10.1002/oby.22774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
36
|
Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020; 32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been a resurgence in regulatory peptide science as a result of three converging trends. The first is the increasing population of the drug pipeline with peptide-based therapeutics, mainly in, but not restricted to, incretin-like molecules for treatment of metabolic disorders such as diabetes. The second is the development of genetic and optogenetic tools enabling new insights into how peptides actually function within brain and peripheral circuits to accomplish homeostatic and allostatic regulation. The third is the explosion in defined structures of the G-protein coupled receptors to which most regulatory peptides bind and exert their actions. These trends have closely wedded basic systems biology to drug discovery and development, creating a "two-way street" on which translational advances travel from basic research to the clinic, and, equally importantly, "reverse-translational" information is gathered, about the molecular, cellular and circuit-level mechanisms of action of regulatory peptides, comprising information required for the fine-tuning of drug development through testing in animal models. This review focuses on a small group of 'influential' peptides, including oxytocin, vasopressin, pituitary adenylate cyclase-activating polypeptide, ghrelin, relaxin-3 and glucagon-like peptide-1, and how basic discoveries and their application to therapeutics have intertwined over the past decade.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, NIAAA and NIDA, NIH, Bethesda, MD, USA
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruud M Buijs
- Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Vito S Hernandez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Germán Fajardo-Dolci
- School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
37
|
Baker FC, Siboza F, Fuller A. Temperature regulation in women: Effects of the menstrual cycle. Temperature (Austin) 2020; 7:226-262. [PMID: 33123618 PMCID: PMC7575238 DOI: 10.1080/23328940.2020.1735927] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Core body temperature changes across the ovulatory menstrual cycle, such that it is 0.3°C to 0.7°C higher in the post-ovulatory luteal phase when progesterone is high compared with the pre-ovulatory follicular phase. This temperature difference, which is most evident during sleep or immediately upon waking before any activity, is used by women as a retrospective indicator of an ovulatory cycle. Here, we review both historical and current literature aimed at characterizing changes in core body temperature across the menstrual cycle, considering the assessment of the circadian rhythm of core body temperature and thermoregulatory responses to challenges, including heat and cold exposure, exercise, and fever. We discuss potential mechanisms for the thermogenic effect of progesterone and the temperature-lowering effect of estrogen, and discuss effects on body temperature of exogenous formulations of these hormones as contained in oral contraceptives. We review new wearable temperature sensors aimed at tracking daily temperature changes of women across multiple menstrual cycles and highlight the need for future research on the validity and reliability of these devices. Despite the change in core body temperature across the menstrual cycle being so well identified, there remain gaps in our current understanding, particularly about the underlying mechanisms and microcircuitry involved in the temperature changes.
Collapse
Affiliation(s)
- Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, USA
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Felicia Siboza
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
|
39
|
Komarzynski S, Bolborea M, Huang Q, Finkenstädt B, Lévi F. Predictability of individual circadian phase during daily routine for medical applications of circadian clocks. JCI Insight 2019; 4:130423. [PMID: 31430260 PMCID: PMC6795290 DOI: 10.1172/jci.insight.130423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDCircadian timing of treatments can largely improve tolerability and efficacy in patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell and coordinated by the core body temperature 24-hour rhythm, which is generated by the hypothalamic pacemaker. Individual circadian phase is currently estimated with questionnaire-based chronotype, center-of-rest time, dim light melatonin onset (DLMO), or timing of core body temperature (CBT) maximum (acrophase) or minimum (bathyphase).METHODSWe aimed at circadian phase determination and readout during daily routines in volunteers stratified by sex and age. We measured (a) chronotype, (b) every minute (q1min) CBT using 2 electronic pills swallowed 24 hours apart, (c) DLMO through hourly salivary samples from 1800 hours to bedtime, and (d) q1min accelerations and surface temperature at anterior chest level for 7 days, using a teletransmitting sensor. Circadian phases were computed using cosinor and hidden Markov modeling. Multivariate regression identified the combination of biomarkers that best predicted core temperature circadian bathyphase.RESULTSAmong the 33 participants, individual circadian phases were spread over 5 hours, 10 minutes (DLMO); 7 hours (CBT bathyphase); and 9 hours, 10 minutes (surface temperature acrophase). CBT bathyphase was accurately predicted, i.e., with an error less than 1 hour for 78.8% of the subjects, using a new digital health algorithm (INTime), combining time-invariant sex and chronotype score with computed center-of-rest time and surface temperature bathyphase (adjusted R2 = 0.637).CONCLUSIONINTime provided a continuous and reliable circadian phase estimate in real time. This model helps integrate circadian clocks into precision medicine and will enable treatment timing personalization following further validation.FUNDINGMedical Research Council, United Kingdom; AP-HP Foundation; and INSERM.
Collapse
Affiliation(s)
- Sandra Komarzynski
- Medical School, Warwick University, Coventry, United Kingdom
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
| | - Matei Bolborea
- Medical School, Warwick University, Coventry, United Kingdom
- School of Life Sciences and
| | - Qi Huang
- Medical School, Warwick University, Coventry, United Kingdom
- Department of Statistics, Warwick University, Coventry, United Kingdom
| | - Bärbel Finkenstädt
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
- Department of Statistics, Warwick University, Coventry, United Kingdom
| | - Francis Lévi
- Medical School, Warwick University, Coventry, United Kingdom
- INSERM-Warwick European Associated Laboratory, INSERM U935, Villejuif, France
| |
Collapse
|