1
|
Zhang C, Sun G, Jin H, Wei Y, Zheng S, Wang X, Zhao X, Zhang D, Jia J. Double-negative T cells in combination with ursodeoxycholic acid ameliorates immune-mediated cholangitis in mice. BMC Med 2025; 23:209. [PMID: 40189495 PMCID: PMC11974204 DOI: 10.1186/s12916-025-04043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a liver-specific autoimmune disease. Treatment of PBC with ursodeoxycholic acid (UDCA) is not sufficient to prevent disease progression. Our previous study revealed that the number of hepatic double-negative T cells (DNT), which are unique regulatory T cells, was reduced in PBC patients. However, whether replenishment of DNT can prevent the progression of PBC remains unclear. METHODS DnTGFβRII (Tg) mice and 2OA-BSA-immunized mice received DNT alone or in combination with oral UDCA. After 6-12 weeks of treatment, these mice were assessed for serological changes, liver pathological manifestations and intrahepatic immune responses. RESULTS Adoptive transfer of DNT alone significantly decreased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), antimitochondrial antibody M2 (AMA-M2) and immunoglobulin M (IgM) in both Tg and 2OA-BSA-immunized PBC mouse models. In addition, DNT exhibited a strong killing effect on liver T cells and strong inhibition of their proliferation, but did not significantly improve the histology of PBC liver. However, combination therapy with DNT and oral UDCA predominantly ameliorated liver inflammation and significantly inhibited hepatic T and B cells. In vitro further study revealed that UDCA up-regulated the proliferation of DNT, increased the expression of the functional molecule perforin, and reduced the expression of NKG2A and endothelial cell protein C receptor (EPCR) through the farnesoid X receptor (FXR)/JNK signaling pathway in both mice and human DNT. CONCLUSIONS A single transfer of DNT ameliorated PBC in mice, while combination therapy of DNT with oral UDCA displayed a better efficacy, with stronger inhibition of hepatic T and B cells. This study highlights the potential application of DNT-based combination therapy for PBC, especially for UDCA non-responders.
Collapse
Affiliation(s)
- Chunpan Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Guangyong Sun
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hua Jin
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yunxiong Wei
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
2
|
Yu S, Xie J, Li PH, Chen Y, Tang IY, Lin X. Therapeutic potential of interleukin-17 neutralization in a novel humanized mouse model of Sjögren's disease. Pharmacol Res 2024; 210:107524. [PMID: 39617280 DOI: 10.1016/j.phrs.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Sjögren's disease (SjD) is a chronic autoimmune disease, in which the immune system targets exocrine glands and leads to dryness symptoms. There is an increasing need to develop novel therapeutic approach as the treatment plan has not been changed in the past decade. However, findings in mouse model may not be directly applied in patients, given the substantial differences of immune system between human and mice. In the present study, using antigens derived from human salivary A-253 cells, we established experimental Sjögren's syndrome (ESS) in mice with human immune system (HIS). HIS-ESS mice exhibited key features of human disease, including salivary hypofunction, increased serum levels of autoantibodies and tissue destruction in the salivary glands. Phenotypic analysis revealed enhanced effector B and T cell subsets, including Th1, Th17 and T follicular helper (Tfh) cells in HIS-ESS mice, while multiplex imaging analysis suggested enlarged B cell follicles and expanded memory B cells. IL-17 neutralization therapy significantly ameliorated disease pathology at both acute and chronic stages, in which B cells were mainly affected, to the less extent Th1 and Tfh cells in HIS-ESS mice. Together, HIS-ESS mouse model highly recapitulated SjD features and immunopathogenesis, which may serve as a useful tool in drug screening and pre-clinical studies.
Collapse
Affiliation(s)
- Sulan Yu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Jing Xie
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Philip Hei Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Yacun Chen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Iris Yanki Tang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Xiang Lin
- School of Chinese Medicine, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Meng Q, Ma J, Cui J, Gu Y, Shan Y. Subpopulation dynamics of T and B lymphocytes in Sjögren's syndrome: implications for disease activity and treatment. Front Immunol 2024; 15:1468469. [PMID: 39290700 PMCID: PMC11405198 DOI: 10.3389/fimmu.2024.1468469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder primarily affecting the body's exocrine glands, particularly the salivary and lacrimal glands, which lead to severe symptoms of dry eyes and mouth. The pathogenesis of SS involves the production of autoantibodies by activated immune cells, and secretion of multiple cytokines, which collectively lead to tissue damage and functional impairment. In SS, the Immune interaction among T and B cells is particularly significant. Lymphocytic infiltration in the salivary glands is predominantly composed of CD4+ T cells, whose activation cause the death of glandular epithelial cells and subsequent tissue destruction. The excessive activity of T cells contributes significantly to the disease mechanism, with helper T cells (CD4+) differentiating into various subgroups including Th1/Th2, Th17, as well as Treg, each contributing to the pathological process through distinct cytokine secretion. In patients with SS, B cells are excessively activated, leading to substantial production of autoantibodies. These antibodies can attack self-tissues, especially the lacrimal and salivary glands, causing inflammation and tissue damage. Changes in B cell subpopulations in SS patients, such as increases in plasmablasts and plasma cells, correlate positively with serum autoantibody levels and disease progression. Therapies targeting T cells and B cells are extensively researched with the aim of alleviating symptoms and improving the quality of life for patients. Understanding how these cells promote disease development through various mechanisms, and further identifying novel T and B cell subgroups with functional characterization, will facilitate the development of more effective strategies to treat SS.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Junfu Ma
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiakang Cui
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yangyi Gu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
5
|
Wang Z, Xu Y, Liang S. Network pharmacology and molecular docking analysis on the mechanism of Tripterygium wilfordii Hook in the treatment of Sjögren syndrome. Medicine (Baltimore) 2024; 103:e37532. [PMID: 38579044 PMCID: PMC10994482 DOI: 10.1097/md.0000000000037532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/07/2024] Open
Abstract
Tripterygium wilfordii Hook. F (TWH) has significant anti-inflammatory and immunosuppressive effects, and is widely used in the inflammatory response mediated by autoimmune diseases. However, the multi-target mechanism of TWH action in Sjögren syndrome (SS) remains unclear. Therefore, the aim of this study was to explore the molecular mechanism of TWH in the treatment of SS using network pharmacology and molecular docking methods. TWH active components and target proteins were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. SS-related targets were obtained from the GeneCards database. After overlap, the therapeutic targets of TWH in the treatment of SS were screened. Protein-protein interaction and core target analysis were performed by STRING network platform and Cytoscape software. In addition, the affinity between TWH and the disease target was confirmed by molecular docking. Finally, the DAVID (visualization and integrated) database was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of overlapping targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database shows that TWH contains 30 active components for the treatment of SS. Protein-protein interaction and core target analysis suggested that TNF, MMP9, TGFB1, AKT1, and BCL2 were the key targets of TWH in the treatment of SS. In addition, the molecular docking method confirmed that the bioactive molecules of TWH had a high affinity with the target of SS. Enrichment analysis showed that TWH active components were involved in multiple signaling pathways. Pathways in cancer, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications is the main pathway. It is associated with a variety of biological processes such as inflammation, apoptosis, immune injury, and cancer. Based on data mining network pharmacology, and molecular docking method validation, TWH is likely to be a promising candidate for the treatment of SS drug, but still need to be further verified experiment.
Collapse
Affiliation(s)
- Zelin Wang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanan Xu
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufen Liang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Liu X, Wang H, Wang X, Jiang X, Jin Y, Han Y, Zhang Z. Identification and verification of inflammatory biomarkers for primary Sjögren's syndrome. Clin Rheumatol 2024; 43:1335-1352. [PMID: 38376769 PMCID: PMC10944815 DOI: 10.1007/s10067-024-06901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/04/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by inflammatory infiltration, and dysfunction of the salivary and lacrimal glands. This research aimed to explore the disease pathogenesis and improve the diagnosis and treatment of pSS by mining inflammation-associated biomarkers. METHODS Five pSS-related datasets were retrieved from the Gene Expression Omnibus (GEO) database. Inflammation-associated biomarkers were determined by the least absolute shrinkage and selection operator (LASSO) and support vector machines recursive feature elimination (SVM-RFE). Single sample gene set enrichment analysis (ssGSEA) was implemented to profile the infiltration levels of immune cells. Real-time quantitative PCR (RT-qPCR) verified the expression of biomarkers in clinical samples. RESULTS Four genes (LY6E, EIF2AK2, IL15, and CXCL10) were screened as inflammation-associated biomarkers in pSS, the predictive performance of which were determined among three pSS-related datasets (AUC > 0.7). Functional enrichment results suggested that the biomarkers were involved in immune and inflammation-related pathways. Immune infiltration analysis revealed that biomarkers were notably connected with type 2 T helper cells, regulatory T cells which were significantly expressed between pSS and control. TESTOSTERONE and CYCLOSPORINE were predicted to take effect by targeting CXCL10 and IL15 in pSS, respectively. CONCLUSION Four inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were explored, and the underlying regulatory mechanisms and targeted drugs associated with these biomarkers were preliminarily investigated according to a series of bioinformatics methods based on the online datasets of pSS, which provided a reference for understanding the pathogenesis of pSS. Key Points • Inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were firstly identified in Sjögren's syndrome based on LASSO and SVM-RFE analyses. • CXCL10, EIF2AK2 and LY6E were prominently positively correlated with immature B cells, while IL15 were significantly negatively correlated with memory B cells in Sjögren's syndrome. • LY6E, EIF2AK2, IL15, and CXCL10 were significantly more highly expressed in clinical Sjögren's syndrome samples compared to healthy control samples, which was consistent with the analysis results of the GEO database. •LY6E, EIF2AK2, IL15, and CXCL10 might be used as the biomarkers for the treatment and diagnosis of Sjögren's syndrome.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Stomatology, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
| | - Haojie Wang
- Department of Stomatology, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
| | - Xiao Wang
- Department of Stomatology, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China
| | - Xiaodan Jiang
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China
| | - Yinji Jin
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Han
- Department of Oral Medicine, Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering, Haidian District, 22 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Haidian District, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
7
|
Liao Z, Li D, Liao S, Zeng Z, Liu J, Xie T, Hu B, Wang W, Hong X, Liu D, Yin L, Tang D, Dai Y. Proteomics profiling and lysine malonylation analysis in primary Sjogren's syndrome. J Proteomics 2023; 287:104977. [PMID: 37482272 DOI: 10.1016/j.jprot.2023.104977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Primary Sjogren's Syndrome (pSS) is a chronic autoimmune disease, with unclear pathogenies. Lysine-malonylation (Kmal) as a novel post-translational modification (PTMs) was found associated with metabolic, immune, and inflammatory processes. For purpose of investigating the proteomic profile and functions of kmal in pSS, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis and bioinformatics analysis are performed based on twenty-eight pSS patients versus twenty-seven healthy controls (HCs). A total of 331 down-regulated proteins and 289 up-regulated proteins are observed in differentially expressed proteins (DEPs) of pSS. We discover the expression of transforming growth factor beta-1 (TGFB1) and CD40 ligand downregulate which enriches in the inflammatory associated pathway. Expression of signal transducer and activator of transcription 1-alpha/beta (STAT1) show upregulation and enrich in type I interferon signaling pathway and IL-27-mediated signaling pathway. In differentially malonylated proteins (DMPs) of pSS, we identify 3 proteins are down-regulated in 7 sites and 18 proteins are up-regulated in 19 sites. Expression of malonylated integrin-linked kinase (ILK) significantly enrich in the focal adhesion pathway. Together, our data provide evidence that downregulation of TGFB1 and CD40LG play a critical role in the inflammatory process of pSS, while upregulation of STAT1 may be associated with IL-27 immunity and pSS immune dysfunction. Moreover, kmal modification at the kinase domain of ILK may destabilize ILK that thus contributing to pSS pathogenies by regulating the focal adhesion pathway. SIGNIFICANCE: Our research offered the first characterization of Kmal, a newly identified form of lysine acylation in pSS, as well as proteomic data on individuals with pSS. In this study, we found that several key DMPs were associated with focal adhesion pathway, which contributes to the development of pSS. The present results provide an informative dataset for the future exploration of Kmal in pSS.
Collapse
Affiliation(s)
- Zhennan Liao
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China; China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dandan Li
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shengyou Liao
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhipeng Zeng
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jiayi Liu
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ting Xie
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Wang
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Donge Tang
- China Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
8
|
La Rocca G, Ferro F, Sambataro G, Elefante E, Fonzetti S, Fulvio G, Navarro IC, Mosca M, Baldini C. Primary-Sjögren's-Syndrome-Related Interstitial Lung Disease: A Clinical Review Discussing Current Controversies. J Clin Med 2023; 12:3428. [PMID: 37240535 PMCID: PMC10218845 DOI: 10.3390/jcm12103428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lung involvement, especially interstitial lung disease, is a potentially severe extra-glandular manifestation of Primary Sjogren's Syndrome (pSS-ILD). ILD can manifest either as a late complication of pSS or anticipate sicca symptoms, likely reflecting two different patho-physiological entities. Presence of lung involvement in pSS subjects can remain subclinical for a long time; therefore, patients should be actively screened, and lung ultrasound is currently being investigated as a potential low cost, radiation-free, easily repeatable screening tool for detection of ILD. In contrast, rheumatologic evaluation, serology testing, and minor salivary gland biopsy are crucial for the recognition of pSS in apparently idiopathic ILD patients. Whether the HRCT pattern influences prognosis and treatment response in pSS-ILD is not clear; a UIP pattern associated with a worse prognosis in some studies, but not in others. Many aspects of pSS-ILD, including its actual prevalence, association with specific clinical-serological characteristics, and prognosis, are still debated by the current literature, likely due to poor phenotypic stratification of patients in clinical studies. In the present review, we critically discuss these and other clinically relevant "hot topics" in pSS-ILD. More specifically, after a focused discussion, we compiled a list of questions regarding pSS-ILD that, in our opinion, are not easily answered by the available literature. We subsequently tried to formulate adequate answers on the basis of an extensive literature search and our clinical experience. At the same, we highlighted different issues that require further investigation.
Collapse
Affiliation(s)
- Gaetano La Rocca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Francesco Ferro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy;
- Artroreuma S.R.L., Rheumatology Outpatient Clinic Associated with the National Health System, Corso S. Vito 53, 95030 Catania, Italy
| | - Elena Elefante
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Silvia Fonzetti
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Giovanni Fulvio
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Inmaculada C. Navarro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| | - Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy; (F.F.); (E.E.); (S.F.); (G.F.); (I.C.N.); (M.M.); (C.B.)
| |
Collapse
|
9
|
Zapata-Salazar NA, Kubelis-Lopez DE, Salinas-Santander MA, Sanchez-Dominguez CN, Xolalpa-Rosales AC, Gomez-Galindo ME, Ocampo-Candiani J. Association of rs4711998 of IL-17A, rs2275913 of IL-17A and rs763780 IL-17F gene polymorphisms with non-segmental vitiligo in a Mexican population. Arch Dermatol Res 2023; 315:447-454. [PMID: 35960353 DOI: 10.1007/s00403-022-02382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Vitiligo is the most common depigmenting disease characterized by achromic macules due to selective loss of melanocytes. The pathogenesis remains poorly elucidated, and multiple hypotheses exist regarding its pathogenesis. Evidence suggests that stress on melanocytes can result in activation of the immune system, and involvement of both activated cluster of differentiation (CD8+) cytotoxic and CD4+ T cells in the dysfunction, depigmentation, and apoptosis of melanocytes. Recent studies show that the interleukin 17 (IL-17) axis plays a central role in the pathogenesis of the disease. IL-17 is an important regulatory effector cytokine in this pathway. The aim of this study was to evaluate the association of IL-17A rs4711998 (-832A/G), IL-17A rs2275913 (-197G/A), and IL-17F rs763780 (7488A/G) with vitiligo in a Northeastern Mexican population. This was a case-control study and included 116 patients with vitiligo and 116 control subjects. Genotype characterization of IL-17A rs4711998 (-832A/G), IL-17A rs2275913 (-197G/A), and IL-17F rs763780 (7488A/G) was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. A p ≤ 0.05 was considered significant. It was observed that the combination of the genotypes GG/GA for IL-17F rs763780 (7488A/G) was associated with an increased risk for the development of vitiligo (OR 2.0943, 95% Cl 1.2375-3.5445, p = 0.0056). Regarding IL-17A rs4711998 (-832A/G) and IL-17A rs2275913 (-197G/A) genotyping, no association with vitiligo development was found. In conclusion, the SNP rs763780 in the IL-17F gene appears to be a risk factor for vitiligo development in this Mexican population and it may be useful in future studies, especially for the development of new therapies.
Collapse
Affiliation(s)
- Natalia Aranza Zapata-Salazar
- Department of Dermatology, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Av. Madero and Gonzalitos S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - David Emmanuel Kubelis-Lopez
- Department of Dermatology, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Av. Madero and Gonzalitos S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | | | - Celia Nohemi Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Monterrey, Nuevo Leon, Mexico
| | - Ana Cecilia Xolalpa-Rosales
- Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Monterrey, Nuevo Leon, Mexico
| | - Marely Eugenia Gomez-Galindo
- Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Monterrey, Nuevo Leon, Mexico
| | - Jorge Ocampo-Candiani
- Department of Dermatology, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autonoma de Nuevo Leon (UANL), Av. Madero and Gonzalitos S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
10
|
Velikkakam T, Gollob KJ, Dutra WO. Double-negative T cells: Setting the stage for disease control or progression. Immunology 2022; 165:371-385. [PMID: 34939192 PMCID: PMC10626195 DOI: 10.1111/imm.13441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Double-negative (DN) T cells are present at relatively low frequencies in human peripheral blood, and are characterized as expressing the alpha-beta or gamma-delta T-cell receptor (TCR), but not the CD4 nor the CD8 co-receptors. Despite their low frequencies, these cells are potent producers of cytokines and, thus, are key orchestrators of immune responses. DN T cells were initially associated with induction of peripheral immunological tolerance and immunomodulatory activities related to disease prevention. However, other studies demonstrated that these cells can also display effector functions associated with pathology development. This apparent contradiction highlighted the heterogeneity of the DN T-cell population. Here, we review phenotypic and functional characteristics of DN T cells, emphasizing their role in human diseases. The need for developing biomarkers to facilitate the translation of studies from animal models to humans will also be discussed. Finally, we will examine DN T cells as promising therapeutic targets to prevent or inhibit human disease development.
Collapse
Affiliation(s)
- Teresiama Velikkakam
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einsten, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Wang Y, Xiao J, Duan Y, Miao M, Huang B, Chen J, Cheng G, Zhou X, Jin Y, He J, Li Z, So KF. Lycium barbarum Polysaccharide Ameliorates Sjögren's Syndrome in a Murine Model. Mol Nutr Food Res 2021; 65:e2001118. [PMID: 33825332 DOI: 10.1002/mnfr.202001118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Indexed: 12/18/2022]
Abstract
SCOPE This study aims to evaluate the therapeutic efficacy and mechanisms of Lycium barbarum polysaccharide (LBP) in primary Sjögren's syndrome (pSS). METHODS AND RESULTS Non-obese diabetic mice (the pSS model) are randomly divided into four groups: Low dose LBP (LBP.L, 5 mg kg-1 d-1 ), high dose LBP (10 mg kg-1 d-1 ), low dose interleukin (IL)-2 (25 000 IU/d), and control (saline water). Drugs were treated for 12 weeks. LBP.L significantly reduces the salivary gland inflammation compared with the control group (histological score p LBP.L vs Control = 0.019; foci number: p LBP.L vs Control = 0.038). LBP.L also remarkably reduces the effector follicular helper T (Tfh) cells and the CD4+ IL-17A+ helper T (Th17) cells in both spleen and cervical lymph node (cLN) cells. Additionally, the ratios of regulatory T cell (Treg)/Tfh cells and Treg/Th17 cells are substantially increased in mice treated with LBP.L in both spleen and cLNs. LBP also inhibits Th17 and Tfh cells and markedly increases the Treg/Tfh ratio in human peripheral blood mononuclear cells. CONCLUSION LBP.L inhibits the progression of pSS in mice, associated with modulation of T cell differentiation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jia Xiao
- Clinical Research Institute and Department of Interventional Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchen Duan
- Department of Rheumatology and Immunology, Beijing Hospital, Beijing, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Bo Huang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jiali Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xingyu Zhou
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Kwok-Fai So
- GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
13
|
Delgado Silva J, Almeida JS, Rodrigues-Santos P, Santos Rosa M, Gonçalves L. Activated double-negative T cells (CD3 +CD4 -CD8 -HLA-DR +) define response to renal denervation for resistant hypertension. Clin Immunol 2020; 218:108521. [PMID: 32619647 DOI: 10.1016/j.clim.2020.108521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To explore the cellular immune response of patients with resistant hypertension treated with renal denervation (RDN). METHODS AND RESULTS Twenty-three patients were included and blood samples were obtained in six timings, pre and post procedure. Response was evaluated at six-months and one year and was observed in 69.6% and 82.6% of patients, respectively. Absolute values of HLA-DR+ double negative (DN) T cells were significantly lower in the group of 'responders' at one year, and interaction between the timings were found in three T cell subsets (T CD4, T CD8 and naïve T CD8 cells), with the 'responders' tending to present with lower absolute values and little inter-timing variation. CONCLUSIONS 'Responders' significantly present with lower absolute values of activated DN T cells and have lower and more stable values of total T CD8+, CD4+, and naïve T CD8+ cells. These cell types may be able to predict response to RDN.
Collapse
Affiliation(s)
- Joana Delgado Silva
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre (CHUC), Coimbra, Portugal.
| | - Jani-Sofia Almeida
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Manuel Santos Rosa
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Lino Gonçalves
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Department of Cardiology, Coimbra's Hospital and University Centre (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Metabolic abnormalities exacerbate Sjögren's syndrome by and is associated with increased the population of interleukin-17-producing cells in NOD/ShiLtJ mice. J Transl Med 2020; 18:186. [PMID: 32370746 PMCID: PMC7201776 DOI: 10.1186/s12967-020-02343-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Sjögren’s syndrome (SS) is an autoimmune disease mediated by lymphocytic infiltration into exocrine glands, resulting in progressive lacrimal and salivary destruction and dysfunctional glandular secretion. Metabolic syndrome influences the immune system. To investigate its relationship with metabolic abnormalities, we evaluated the pathogenesis of SS and the immune cell populations in non-obese diabetic NOD/ShiLtJ mice with type 1 diabetes (T1D). Methods To induce metabolic abnormalities, streptozotocin (STZ)—a glucosamine–nitrosourea compound that destroys pancreatic β cells, resulting in T1D—was injected into NOD/ShiLtJ mice. The blood glucose level was measured to evaluate induction of T1D. The severity of SS was assessed by determining the body weight, salivary flow rate, and histologic parameters. The expression levels of proinflammatory factors in the salivary glands, lacrimal gland, and spleen were quantified by real–time PCR. The populations of various T– and B–cell subtypes in the peripheral blood, spleen, and salivary glands were assessed by flow cytometry. Results Induction of T1D in NOD/ShiLtJ mice increased both the severity of SS and the levels of proinflammatory cytokines in the salivary glands compared to the controls. Furthermore, the number of interleukin-17–producing immune cells in the peripheral blood, spleen, and salivary glands was increased in STZ- compared to vehicle-treated NOD/ShiLtJ mice. Conclusions Metabolic abnormalities play an important role in the development of SS.
Collapse
|
15
|
Bittner-Eddy PD, Fischer LA, Costalonga M. Transient Expression of IL-17A in Foxp3 Fate-Tracked Cells in Porphyromonas gingivalis-Mediated Oral Dysbiosis. Front Immunol 2020; 11:677. [PMID: 32391008 PMCID: PMC7190800 DOI: 10.3389/fimmu.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
In periodontitis Porphyromonas gingivalis contributes to the development of a dysbiotic oral microbiome. This altered ecosystem elicits a diverse innate and adaptive immune response that simultaneously involves Th1, Th17, and Treg cells. It has been shown that Th17 cells can alter their gene expression to produce interferon-gamma (IFN-γ). Forkhead box P3 (Foxp3) is considered the master regulator of Treg cells that produce inhibitory cytokines like IL-10. Differentiation pathways that lead to Th17 and Treg cells from naïve progenitors are considered antagonistic. However, it has been reported that Treg cells expressing IL-17A as well as IFN-γ producing Th17 cells have been observed in several inflammatory conditions. Each scenario appears plausible with T cell transdifferentiation resulting from persistent microbial challenge and consequent inflammation. We established that oral colonization with P. gingivalis drives an initial IL-17A dominated Th17 response in the oral mucosa that is dependent on intraepithelial Langerhans cells (LCs). We hypothesized that Treg cells contribute to this initial IL-17A response through transient expression of IL-17A and that persistent mucosal colonization with P. gingivalis drives Th17 cells toward an IFN-γ phenotype at later stages of infection. We utilized fate-tracking mice where IL-17A- or Foxp3-promoter activity drives the permanent expression of red fluorescent protein tdTomato to test our hypothesis. At day 28 of infection timeline, Th17 cells dominated in the oral mucosa, outnumbering Th1 cells by 3:1. By day 48 this dominance was inverted with Th1 cells outnumbering Th17 cells by nearly 2:1. Tracking tdTomato+ Th17 cells revealed only sporadic transdifferentiation to an IFN-γ-producing phenotype by day 48; the appearance of Th1 cells at day 48 was due to a late de novo Th1 response. tdTomato+ Foxp3+ T cells were 35% of the total live CD4+T cells in the oral mucosa and 3.9% of them developed a transient IL-17A-producing phenotype by day 28. Interestingly, by day 48 these IL-17A-producing Foxp3+ T cells had disappeared. Therefore, persistent oral P. gingivalis infection stimulates an initial IL-17A-biased response led by Th17 cells and a small but significant number of IL-17A-expressing Treg cells that changes into a late de novo Th1 response with only sporadic transdifferentiation of Th17 cells.
Collapse
|
16
|
Bufotalin ameliorates experimental Sjögren's syndrome development by inhibiting Th17 generation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1977-1985. [PMID: 31950221 DOI: 10.1007/s00210-020-01817-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory autoimmune disease Sjögren's syndrome (SS) is characterized by the reduced secretion of exocrine glands, suggesting strategies targeting inflammation to be a potential option for SS therapy. Bufotalin, an active constituent of Bufadienolides, exerts potent antitumor effects with unknown effects on autoimmune diseases including SS. This study aims to investigate whether bufotalin possesses therapeutic potentials to SS and the underlying mechanisms. The experimental Sjögren's syndrome (ESS) murine model was constructed by SG-immunization and murine naïve CD4+ T cells were cultured under Th17 polarization conditions with or without low doses of bufotalin treatment. Saliva flow rate was measured, and flow cytometry was applied to analyze T cell subpopulations. ELISA was conducted to determine the levels of targeted inflammatory cytokines. Bufotalin-treated ESS mice showed higher saliva flow rates, lower serum levels of autoantibodies (anti-M3R and anti-SSA IgG), lower serum levels of pro-inflammatory cytokines, as well as lower Th17 cell population from spleens and cervical lymph nodes. Additionally, in vitro study showed that bufotalin inhibits Th17 polarization and secretion of cytokines IL-17 and IFN-γ. Bufotalin at a low dose significantly ameliorates ESS development, possibly via inhibiting pro-inflammatory Th17 population and secretion of inflammatory cytokines during ESS pathogenesis.
Collapse
|
17
|
Mielle J, Tison A, Cornec D, Le Pottier L, Daien C, Pers JO. B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 2019; 60:2545-2560. [PMID: 30770916 DOI: 10.1093/rheumatology/key332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Biological abnormalities associated with B lymphocytes are a hallmark of patients with primary Sjögren's syndrome. Those patients present abnormal distribution of B lymphocytes in peripheral blood and B cells in exocrine glands. B cells produce auto-antibodies, cytokines and present antigens but can also suppressive functions. In this review, we will summarize current knowledge on B cells in primary Sjögren's syndrome patients, demonstrate their critical role in the immunopathology of the disease and describe the past and current trials targeting B cells.
Collapse
Affiliation(s)
- Julie Mielle
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | - Alice Tison
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, France.,Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Claire Daien
- Departement of Rheumatology, UMR5535, Inflammation and Cancer, University of Montpellier and Teaching hospital of Montpellier, Montpellier, France
| | | |
Collapse
|
18
|
Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol 2018; 53:219-236. [PMID: 28474288 DOI: 10.1007/s12016-017-8608-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the implications of B, T, and natural killer (NK) cells in the pathophysiology of systemic autoimmune diseases, the assessment of their distribution in the blood could be helpful for physicians in the complex process of determining a precise diagnosis. In primary Sjögren's syndrome, transitional and active naive B cells are increased and memory B cells are decreased compared to healthy controls and other systemic diseases. However, their utility to improve the accuracy of classification criteria has not been proven. In early untreated rheumatoid arthritis, proportions of regulatory T cells are constantly reduced, but other patterns are difficult to determine given the heterogeneity of published studies. In systemic lupus erythematosus, the lack of studies using large cohorts of patients and the diversity of the possible pathological mechanisms involved are also important impediments. Nevertheless, transitional B cell and plasma cell proportions are increased in most of the studies, the CD4/CD8 ratio is decreased, and the number of NK cells is reduced. Despite the low number of studies, anomalies of lymphocyte subset distribution was also described in ANCA-associated vasculitis, systemic scleroderma, and myositis. For now, flow cytometric analysis of lymphocyte subsets has focused mainly on specific subpopulations and is more useful for basic and translational research than for diagnostics in clinical practice. However, new modern methods such as mass cytometry and bioinformatics analyses may offer the possibility to simultaneously account for the relative proportions of multiple lymphocyte subsets and define a global profile in homogeneous groups of patients. The years to come will certainly incorporate such global lymphocyte profiling in reclassification of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France.,INSERM U1227, European University of Brest, Brest, France
| | - Pierre Gazeau
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France
| | - Sophie Hillion
- INSERM U1227, European University of Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHRU Morvan, Brest, France
| | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.,UMR5535, CNRS, Institute of molecular genetic, Montpellier, France
| | - Divi Y K Cornec
- Service de Rhumatologie, Hôpital de la Cavale Blanche, CHRU Brest, BP 824, 29609, Brest cedex, France. .,INSERM U1227, European University of Brest, Brest, France.
| |
Collapse
|
19
|
Zhang LW, Zhou PR, Wei P, Cong X, Wu LL, Hua H. Expression of interleukin-17 in primary Sjögren's syndrome and the correlation with disease severity: A systematic review and meta-analysis. Scand J Immunol 2018; 87:e12649. [PMID: 29476557 DOI: 10.1111/sji.12649] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- L.-W. Zhang
- Department of Oral Medicine; Peking University School and Hospital of Stomatology; Beijing China
| | - P.-R. Zhou
- Department of Oral Medicine; Peking University School and Hospital of Stomatology; Beijing China
| | - P. Wei
- Department of Oral Medicine; Peking University School and Hospital of Stomatology; Beijing China
| | - X. Cong
- Department of Physiology and Pathophysiology; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - L.-L. Wu
- Department of Physiology and Pathophysiology; Peking University Health Science Center; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - H. Hua
- Department of Oral Medicine; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
20
|
Brandt D, Hedrich CM. TCRαβ +CD3 +CD4 -CD8 - (double negative) T cells in autoimmunity. Autoimmun Rev 2018; 17:422-430. [PMID: 29428806 DOI: 10.1016/j.autrev.2018.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Abstract
TCRαβ+CD3+CD4-CD8- "double negative" (DN) T cells comprise a small subset of mature peripheral T cells. The origin and function of DN T cells are somewhat unclear and discussed controversially. While DN T cells resemble a rare and heterogeneous T cell subpopulation in healthy individuals, numbers of TCRαβ+ DN T cells are expanded in several inflammatory conditions, where they also exhibit distinct effector phenotypes and infiltrate inflamed tissues. Thus, DN T cells may be involved in systemic inflammation and tissue damage in autoimmune/inflammatory conditions, including SLE, Sjögren's syndrome, and psoriasis. Here, the current understanding of the origin and phenotype of DN T cells, and their role in the instruction of immune responses, autoimmunity and inflammation will be discussed in health and disease.
Collapse
Affiliation(s)
- D Brandt
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Division of Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
21
|
Verstappen GM, Corneth OB, Bootsma H, Kroese FG. Th17 cells in primary Sjögren's syndrome: Pathogenicity and plasticity. J Autoimmun 2018; 87:16-25. [DOI: 10.1016/j.jaut.2017.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
|
22
|
Wang SQ, Zhang LW, Wei P, Hua H. Is hydroxychloroquine effective in treating primary Sjogren's syndrome: a systematic review and meta-analysis. BMC Musculoskelet Disord 2017; 18:186. [PMID: 28499370 PMCID: PMC5427554 DOI: 10.1186/s12891-017-1543-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To systematically review and assess the efficacy and safety of hydroxychloroquine (HCQ) for treating primary Sjogren's syndrome (pSS). METHODS Five electronic databases (Pubmed, EMBASE, Web of science, Ovid, Cochrane Library) were searched for randomized controlled trials and retrospective or prospective studies published in English that reported the effect of HCQ on pSS. The subjective symptoms (sicca symptoms, fatigue and pain) and the objective indexes (erythrocyte sedimentation rate and Schirmer test) were assessed as main outcome measures. A meta-analysis and descriptive study on the efficacy and safety of HCQ were conducted. The estimate of the effect of HCQ treatment was expressed as a proportion together with 95% confidence interval, and plotted on a forest plot. RESULTS Four trials with totals of 215 SS patients, including two randomized controlled trials, one double blind crossover trial and one retrospective open-label study, were analyzed in this review. For dry mouth and dry eyes, the effectiveness of HCQ treatment was essentially the same as placebo treatment. For fatigue, the effectiveness of HCQ was lower than placebo. The efficacy of HCQ in treating pain associated with pSS was superior to that of the placebo. There was no significant difference between HCQ-treated groups and controls in terms of Schirmer test results, but HCQ could reduce the erythrocyte sedimentation rate compare with placebo. A descriptive safety assessment showed that gastrointestinal adverse effects were the most common adverse effects associated with HCQ. CONCLUSIONS This systematic review showed that there is no significant difference between HCQ and placebo in the treatment of dry mouth and dry eye in pSS. Well-designed, randomized, controlled trials are needed to provide higher-quality evidence to confirm our findings, and future studies should focus on some other index or extraglandular measures, such as cutaneous manifestations, to further explore the therapeutic effect of HCQ in pSS.
Collapse
Affiliation(s)
- Shi-Qin Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Li-Wei Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
23
|
Increased Interleukin-17F is Associated with Elevated Autoantibody Levels and More Clinically Relevant Than Interleukin-17A in Primary Sjögren's Syndrome. J Immunol Res 2017; 2017:4768408. [PMID: 28210632 PMCID: PMC5292172 DOI: 10.1155/2017/4768408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022] Open
Abstract
Th17 related immune response is pathogenic in primary Sjögren's syndrome (pSS). However, the role of IL-17F, one potent inflammatory member of IL-17 family cytokines in pSS, has not been specifically defined. We recruited one hundred and nine pSS patients and forty-two healthy controls and their serum levels of IL-17A and IL-17F were determined by multiplex cytokine assays. White blood cell, red blood cell, neutrophil, lymphocyte, IgM, IgG, C3, C4, RF, ANA, anti-SSA antibody, and anti-SSB antibody were measured by standard laboratory techniques. EULAR Sjögren's syndrome disease activity index (ESSDAI) score was also evaluated accordingly. We found that IL-17F was significantly increased in pSS patients. Elevated levels of IL-17F were associated with increased IgG and IgM, higher titers of ANA and anti-SSA antibodies, and reduction of C3 and C4. Patients with higher disease activity also showed higher serum IL-17F levels. However, serum IL-17A was only increased in patients with longer disease duration and showed few correlation with clinical and laboratory features in pSS patients. In conclusion, IL-17F was correlated with increased autoantibody levels and disease activity in pSS and is more clinically relevant than IL-17A.
Collapse
|
24
|
Roca F, Dominique S, Schmidt J, Smail A, Duhaut P, Lévesque H, Marie I. Interstitial lung disease in primary Sjögren's syndrome. Autoimmun Rev 2017; 16:48-54. [DOI: 10.1016/j.autrev.2016.09.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
|
25
|
Zhao L, Nocturne G, Haskett S, Boudaoud S, Lazure T, Le Pajolec C, Mariette X, Mingueneau M, Banerjee D. Clinical relevance of RORγ positive and negative subsets of CD161+CD4+ T cells in primary Sjögren's syndrome. Rheumatology (Oxford) 2016; 56:303-312. [PMID: 27803305 DOI: 10.1093/rheumatology/kew360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The relevance of the Th17 pathway in primary SS (pSS) is unclear. Published studies have relied on restimulating circulating CD161+ T cells in vitro for quantitation of IL-17-producing cells. While CD161 marks all IL-17+ T cells, it is also expressed by other Th subsets. The aim of this study was to directly analyse retinoic acid receptor-related orphan nuclear receptor (ROR)-γ expressing and non-expressing subsets of CD161+ T cells to determine the relevance of the Th17 pathway in pSS. METHODS We quantitated the frequencies of both CD161- and RORγ-expressing T cells by comparative flow cytometry in peripheral blood mononuclear cells from a well-stratified cohort of pSS patients and control subjects. We also analysed the expression of antigen D-related HLA (HLA-DR) and CD161 in labial salivary glands from nine subjects undergoing a diagnostic biopsy. RESULTS While the frequencies of both RORγ+ and RORγ- subsets of CD161+ CD4+ T cells were increased in peripheral blood from pSS patients, the increase in the RORγ+ subset positively correlated with humoral manifestations of the disease (anti-SSA/SSB autoantibodies and hypergammaglobulinaemia), but not with disease activity, and vice versa for the RORγ- subset. An increased frequency of HLA-DR+ CD161+CD4+ T cells was observed in labial salivary gland biopsies from pSS patients, suggesting chronic activation of CD161+CD4+ T cells in the target tissue of the disease. CONCLUSION In addition to pointing to CD161 as a marker of a pathogenic subset of CD4+ T cells in pSS patients, our data indicate that even though the RORγ+ (Th17) CD161+ subset might contribute to humoral manifestations of the disease, the RORγ- (non-Th17) CD161+ subset is the one associated with disease activity in pSS patients.
Collapse
Affiliation(s)
- Linlin Zhao
- Immunology Research, Biogen, Cambridge, MA, USA
| | - Gaetane Nocturne
- Faculté de Médecine, Université Paris Sud.,INSERM, U1184, Center for Immunology of Viral Infections and Autoimmune Diseases.,Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Saida Boudaoud
- Faculté de Médecine, Université Paris Sud.,INSERM, U1184, Center for Immunology of Viral Infections and Autoimmune Diseases
| | - Thierry Lazure
- Faculté de Médecine, Université Paris Sud.,INSERM, U1184, Center for Immunology of Viral Infections and Autoimmune Diseases.,Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Christine Le Pajolec
- Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Xavier Mariette
- Faculté de Médecine, Université Paris Sud.,INSERM, U1184, Center for Immunology of Viral Infections and Autoimmune Diseases.,Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
26
|
Sambataro D, Sambataro G, Dal Bosco Y, Polosa R. Present and future of biologic drugs in primary Sjögren's syndrome. Expert Opin Biol Ther 2016; 17:63-75. [PMID: 27616561 DOI: 10.1080/14712598.2017.1235698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Primary Sjögren's (pSS) syndrome is a chronic, autoimmune, and systemic disease characterized by xerostomia, xerophthalmia, muscle pain and fatigue. The disease may be complicated by a systemic involvement, such as a pulmonary fibrosis or the development of lymphoma which severely worsens the prognosis. Actually, there are no recommendations for the management of pSS. However, recent advances in the understanding of its pathogenesis have uncovered some pathways that have potential as therapeutic targets. Areas covered: In this review, the authors present the biologic drugs potentially valuable to the treatment of pSS in light of its physiopathology with a 'bird's eye' view of future prospects. The authors took into account relevant studies published from 2004 to 2016. Expert opinion: Biological treatment in pSS is a promising opportunity to potentially control disease activity and prevent its complication. Currently, inhibition of B-cell and IL-17 pathways seem to be the most promising avenues. New achievements in the knowledge of pSS pathophysiology are necessary in order to try to simultaneously predict the predominant pathogenic pathway, the kind of patients at major risk to develop a more severe disease, and the appropriate biological therapy to use.
Collapse
Affiliation(s)
- Domenico Sambataro
- a Department of Clinical and Experimental Medicine, Teaching Hospital Policlinico 'G. Rodolico' , University of Catania , Catania , Italy.,b Outpatient Clinic of Rheumatology accredited to National Health System , 'Artroreuma srl' , Mascalucia , Italy
| | - Gianluca Sambataro
- b Outpatient Clinic of Rheumatology accredited to National Health System , 'Artroreuma srl' , Mascalucia , Italy
| | - Ylenia Dal Bosco
- a Department of Clinical and Experimental Medicine, Teaching Hospital Policlinico 'G. Rodolico' , University of Catania , Catania , Italy
| | - Riccardo Polosa
- a Department of Clinical and Experimental Medicine, Teaching Hospital Policlinico 'G. Rodolico' , University of Catania , Catania , Italy
| |
Collapse
|
27
|
Abstract
Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, via A. Manzoni 56, 20089 Rozzano, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Nakahara E, Yagasaki H, Shimozawa K, Hirai M, Takahashi S. Severe Thrombocytopenia as Initial Signs of Primary Sjögren Syndrome in a 9-Year-Old Female. Pediatr Blood Cancer 2016; 63:1312-3. [PMID: 27003329 DOI: 10.1002/pbc.25977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Erina Nakahara
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| | | | - Maiko Hirai
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| | - Shori Takahashi
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| |
Collapse
|
29
|
Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Di Benedetto P, Cipriani P, Giacomelli R, Gerli R. Interleukin (IL)-17-producing pathogenic T lymphocytes co-express CD20 and are depleted by rituximab in primary Sjögren's syndrome: a pilot study. Clin Exp Immunol 2016; 184:284-92. [PMID: 26814615 DOI: 10.1111/cei.12771] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
Compelling evidence suggests that interleukin (IL)-17 and IL-17-producing cells play a pivotal role in the pathogenesis of primary Sjögren's syndrome (pSS). We investigated phenotypical and functional effects of the anti-CD20 antibody rituximab (RTX) on circulating and glandular IL-17-producing T cells in pSS. RTX is able to deplete glandular IL-17(+) CD3(+) CD4(-) CD8(-) double-negative (DN) and CD4(+) Th17 cells as well as circulating IL-17(+) DN T cells. A fraction of glandular and circulating IL-17(+) DN cells and CD4(+) T helper type 17 (Th17) cells co-expresses CD20 on the cell surface explaining, at least in part, such depletive capacity of RTX. The exposure to RTX does not rescue the in-vitro corticosteroid resistance of IL-17(+) DN T cells. Our results support further the therapeutic role in pSS of RTX that, despite its B cell specificity, appears able to also hamper IL-17-producing T cells in this disease.
Collapse
Affiliation(s)
- A Alunno
- Rheumatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - F Carubbi
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - O Bistoni
- Rheumatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - S Caterbi
- Rheumatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - E Bartoloni
- Rheumatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - P Di Benedetto
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Gerli
- Rheumatology Section, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Alunno A, Ibba-Manneschi L, Bistoni O, Rosa I, Caterbi S, Gerli R, Manetti M. Mobilization of lymphatic endothelial precursor cells and lymphatic neovascularization in primary Sjögren's syndrome. J Cell Mol Med 2016; 20:613-22. [PMID: 26828975 PMCID: PMC5125813 DOI: 10.1111/jcmm.12793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Although lymphatic neovascularization may be a key feature of chronic inflammation, it is almost unexplored in primary Sjögren's syndrome (pSS). A recent study revealed a pro‐lymphangiogenic function of interleukin (IL)‐17, a leading player in pSS pathogenesis. The aims of the study were to investigate lymphangiogenic mediators and lymphatic vasculature in pSS, as well as their possible association with IL‐17. Circulating lymphatic endothelial precursor cells (LEPCs) and Th17 cells were enumerated in pSS patients and healthy donors. VEGF‐C and IL‐17 levels were assessed in paired serum samples. Lymphatic vasculature, VEGF‐C/VEGF receptor (VEGFR)‐3 and IL‐17 were evaluated in pSS minor salivary glands (MSGs) and compared with normal and non‐specific chronic sialadenitis (NSCS) MSGs. Circulating LEPCs were expanded in pSS and correlated with circulating Th17 cells, IL‐17 and VEGF‐C. In pSS MSGs, a newly formed lymphatic capillary network was found within periductal inflammatory infiltrates and the number of interlobular lymphatic vessels was significantly increased compared with normal and NSCS MSGs. Strong VEGF‐C expression was detected in pSS ductal epithelial cells and periductal inflammatory cells. Numerous VEGFR‐3+ infiltrating mononuclear cells were exclusively observed in pSS MSGs. VEGFR‐3 expression was strongly increased in lymphatic capillaries of pSS MSGs. IL‐17+ inflammatory cells were preferentially observed around lymphatic vessels in pSS MSGs. This study supports the notion that lymphvasculogenesis and lymphangiogenesis are active in pSS, thereby unmasking a novel aspect of disease pathogenesis. In addition, our results suggest another possible pathogenic role of IL‐17 in pSS, further supporting its therapeutic targeting in this disease.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sara Caterbi
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| |
Collapse
|
31
|
Singh RK, Lee KM, Vujkovic-Cvijin I, Ucmak D, Farahnik B, Abrouk M, Nakamura M, Zhu TH, Bhutani T, Wei M, Liao W. The role of IL-17 in vitiligo: A review. Autoimmun Rev 2016; 15:397-404. [PMID: 26804758 DOI: 10.1016/j.autrev.2016.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 12/19/2022]
Abstract
IL-17 is involved in the pathogenesis of several autoimmune diseases; however its role in vitiligo has not been well defined. Emerging human and mouse studies have demonstrated that systemic, tissue, and cellular levels of IL-17 are elevated in vitiligo. Many studies have also shown significant positive correlations between these levels and disease activity, extent, and severity. Treatments that improve vitiligo, such as ultraviolet B phototherapy, also modulate IL-17 levels. This review synthesizes our current understanding of how IL-17 may influence the pathogenesis of autoimmune vitiligo at the molecular level. This has implications for defining new vitiligo biomarkers and treatments.
Collapse
Affiliation(s)
- Rasnik K Singh
- University of California - Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Kristina M Lee
- Department of Dermatology, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Ivan Vujkovic-Cvijin
- Mucosal Immunology Section, National Institute of Allergy & Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derya Ucmak
- Department of Dermatology, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Benjamin Farahnik
- University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Michael Abrouk
- University of California - Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Mio Nakamura
- University of California - San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center, San Francisco, CA 94118, USA
| | - Tian Hao Zhu
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Tina Bhutani
- Department of Dermatology, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Maria Wei
- Department of Dermatology, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Wilson Liao
- Department of Dermatology, University of California-San Francisco, San Francisco, CA 94115, USA
| |
Collapse
|
32
|
Wu C, Wang Z, Zourelias L, Thakker H, Passineau MJ. IL-17 sequestration via salivary gland gene therapy in a mouse model of Sjogren's syndrome suppresses disease-associated expression of the putative autoantigen Klk1b22. Arthritis Res Ther 2015; 17:198. [PMID: 26245278 PMCID: PMC4527205 DOI: 10.1186/s13075-015-0714-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION IL-17 has a putative role in the pathophysiology of Sjogren's syndrome (SS) and has been shown to be upregulated in the salivary glands of affected individuals. Sequestration of IL-17 with Adenoviral-mediated gene therapy has previously shown a benefit upon the SS-like phenotype in the Aec1/Aec2 mouse model. We sought to understand the proteomic consequences of IL-17 sequestration in the salivary gland of this mouse model as a means of illuminating the role of IL-17 in SS-like disease. METHODS Ultrasound-assisted gene transfer (UAGT) was utilized to express a fusion protein composed of the extracellular portion of the IL-17 receptor fused to fragment of crystallization (Fc) in the submandibular glands of Aec1/Aec2 mice at 8 weeks of age. After confirming expression of the fusion protein and local and systemic sequestration of IL-17, proteomic profiling was performed on submandibular glands of a treated cohort of Aec1/Aec2 animals relative to the background strain and sham-treated animals. RESULTS The most notable proteomic signatures of IL-17 sequestration on SS-like disease-related proteins were Kallikrein-related peptidases, including the putative autoantigen Klk1b22. IL-17 sequestration also notably led to an isoelectric shift, but not a molecular weight shift, of Kallikrein-1, attributed to phosphorylation. CONCLUSION Non-viral IL-17 sequestration gene therapy in the salivary gland is feasible and downregulates expression of a putative SS autoantigen in the Aec1/Aec2 mouse.
Collapse
Affiliation(s)
- Changgong Wu
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Zhimin Wang
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Lee Zourelias
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Hiteshi Thakker
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Michael J Passineau
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| |
Collapse
|
33
|
The 2014 ACR annual meeting: a bird’s eye view of autoimmunity in 2015. Autoimmun Rev 2015; 14:622-32. [DOI: 10.1016/j.autrev.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
|
34
|
Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Mirabelli G, Cannarile F, Cipriani P, Giacomelli R, Gerli R. T Regulatory and T Helper 17 Cells in Primary Sjögren's Syndrome: Facts and Perspectives. Mediators Inflamm 2015; 2015:243723. [PMID: 26060357 PMCID: PMC4427804 DOI: 10.1155/2015/243723] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Historically, primary Sjögren's syndrome (pSS) was thought to be a T helper (h) 1 driven disease due to the predominance of CD4(+)T lymphocytes and their products in target organs and peripheral blood of patients. In the last decades, the identification of a number of T cell subsets, including Th17, T regulatory (Treg), and follicular helper T cells, challenged this long-standing paradigm and prompted to identify their role in pSS pathogenesis. In addition the impact of abnormal proinflammatory cytokine production, such as IL-6, IL-17, IL-22, and IL-23, has also attracted considerable attention. However, although several studies have been carried out in experimental models and patients with pSS, many aspects concerning the role of Treg cells and IL-17/Th17 cell system in pSS pathogenesis are not fully elucidated. In particular, the role played by different IL-17-producing T cell subsets as well as the effects of pharmacological therapies on Treg/Th17 cell balance represents an intriguing issue. The aim of this review article is to provide an overview of current knowledge on Treg cells and IL-17-producing T cells in pSS pathogenesis. We believe that these insights into pSS pathogenesis may provide the basis for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Francesco Carubbi
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Sara Caterbi
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Giulia Mirabelli
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Francesca Cannarile
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberto Giacomelli
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
35
|
Verstappen GM, Kroese FGM, Vissink A, Bootsma H. Pharmacotherapy for managing extraglandular symptoms of primary Sjögren’s syndrome. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1010510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Binger KJ, Linker RA, Muller DN, Kleinewietfeld M. Sodium chloride, SGK1, and Th17 activation. Pflugers Arch 2014; 467:543-50. [PMID: 25471348 DOI: 10.1007/s00424-014-1659-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The incidence of autoimmune diseases in Western civilizations is increasing rapidly, suggesting an influence of environmental factors, such as diet. The pathogenesis of several of these autoimmune diseases is characterized by aberrant activation of T helper 17 (Th17) cells. Recent reports have shown that the differentiation of Th17 cells is sensitive to changes in local microenvironments, in particular salt (NaCl) concentrations, in a molecular mechanism centered around the serum- and glucocorticoid-inducible kinase 1 (SGK1). In this review, we summarize the recently disclosed mechanisms by which salt has been shown to affect SGK1 and, subsequently, Th17 activation.
Collapse
Affiliation(s)
- Katrina J Binger
- Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, 13125, Germany
| | | | | | | |
Collapse
|
37
|
Ma HD, Wang YH, Chang C, Gershwin ME, Lian ZX. The intestinal microbiota and microenvironment in liver. Autoimmun Rev 2014; 14:183-91. [PMID: 25315744 DOI: 10.1016/j.autrev.2014.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
The intestinal microbiome plays a significant role in the development of autoimmune diseases, in particular, inflammatory bowel diseases. But the interplay between the intestinal tract and the liver may explain the increased association with autoimmune liver diseases and inflammatory bowel diseases. The gut-liver axis involves multiple inflammatory cell types and cytokines, chemokines and other molecules which lead to the destruction of normal liver architecture. Triggers for the initiation of these events are unclear, but appear to include multiple environmental factors, including pathogenic or even commensal microbial agents. The variation in the gut microbiome has been cited as a major factor in the pathogenesis of autoimmune liver disease and even other autoimmune diseases. The unique positioning of the liver at the juncture of the peripheral circulation and the portal circulation augments the interaction between naïve T cells and other hepatic cells and leads to the disruption in the development of tolerance to commensal bacteria and other environmental agents. Finally, the innate immune system and in particular toll-like receptors play a significant role in the pathogenesis of autoimmune liver disease.
Collapse
Affiliation(s)
- Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|