1
|
Li S, Wu L, Xie J, Zhou G, Wen X, Deng L, Lin S, Liu G, Chen S, Xiao Z. Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats. ACS Chem Neurosci 2025; 16:479-489. [PMID: 39791183 DOI: 10.1021/acschemneuro.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects. However, the specific role and molecular mechanisms of EDA in the treatment of BPRA remain to be fully elucidated. The present study used a rat model of BPRA, following avulsion of the fifth, sixth and seventh cervical (C5, C6 and C7) anterior roots. Notably, C6 was replanted following a subcutaneous injection of either saline or 30 mg/kg/day EDA for seven continuous days. Subsequently, behavioral, histochemical, Western blot and reverse transcription-quantitative PCR (RT-PCR) analyses were conducted. Results of the present study revealed that treatment with EDA improves motor dysfunction, indicated by the increased Grooming test score, usage of the affected limb, and Irvine, Beatties and Bresnahan (IBB) score, following BPRA. In addition, EDA reduced the death of motoneurons (MNs), indicated by the increased number of Nissl-positive neuron, at the site of the affected limb, inhibited neuroinflammation and cellular pyroptosis, indicated by the decreased expression levels of IL-1β, IL-6, TNF-α, IL-18, p-p65, NLRP3, GSDMD and Caspase-1, improved the morphology of the abnormal myocutaneous nerve fibers, promoted axon remyelination, indicated by increased mRNA expression levels of remyelination-associated genes, including egr2, GAP-43, hmgcr, L1CAM, mpz, pmp22 and prx and demyelination-associated genes, including ngfr, notch1, pou3f1 and sox2, and alleviated muscle atrophy, indicated by the increased weight and volume of biceps brachii muscle, and the decreased number of fibroblasts and increased diameters in the fibers. Collectively, results of the present study suggested that EDA may support axonal remyelination and inhibit pyroptosis-associated neuroinflammation, enhancing MN survival and facilitating functional motor recovery. Thus, the present study may provide a novel theoretical basis for the use of EDA in the treatment of BPRA.
Collapse
Affiliation(s)
- Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lin Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, People's Republic of China
| | - Juan Xie
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, People's Republic of China
| | - Guijuan Zhou
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuanwei Wen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Limin Deng
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shudong Lin
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guozhi Liu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuangxi Chen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Zheng Y, Peng L, Jiang G, Zhou J, Yang S, Bai L, Li X, He M. Activation of chaperone-mediated autophagy exerting neuroprotection effect on intracerebral hemorrhage-induced neuronal injury by targeting Lamp2a. Exp Neurol 2024; 382:114986. [PMID: 39368534 DOI: 10.1016/j.expneurol.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common and devastating type of stroke, marked by significant morbidity and a grim prognosis. The inflammation cascade triggered by astrocytes plays a critical role in secondary brain injury (SBI) following ICH, leading to detrimental effects such as cell death. However, effective intervention strategies are currently lacking. This study aims to investigate the role of the astrocyte cascade reaction following ICH and identify potential intervention targets. Utilizing the GSE216607 and GSE206971 databases for analysis, we established a mouse autologous blood model. Firstly, our research revealed a significant activation of the autophagy pathway following intracerebral hemorrhage (ICH), with a notable upregulation of Lamp2a, a key factor in chaperone-mediated autophagy (CMA), primarily localized in astrocytes. Additionally, the downregulation of Lamp2a resulted in a significant augmentation of A1 reactive astrocytes, concomitant with a reduction in myelin coverage area, heightened neuronal injury, exacerbated motor and sensory deficits, and diminished neurological scores after ICH in mice. Conversely, CA77.1, an activator of CMA, could reverse ICH-induced augmentation of A1 reactive astrocytes, myelin damage, neuronal death, and neurobehavioral disorders. In conclusion, the activation of astrocyte CMA following ICH can exert neuroprotective effects. Lamp2a represents a promising therapeutic target for post-ICH treatment.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lu Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
3
|
Brady S, Poulton J, Muller S. Inclusion body myositis: Correcting impaired mitochondrial and lysosomal autophagy as a potential therapeutic strategy. Autoimmun Rev 2024; 23:103644. [PMID: 39306221 DOI: 10.1016/j.autrev.2024.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Inclusion body myositis (IBM) is a late onset sporadic myopathy with a characteristic clinical presentation, but as yet unknown aetiology or effective treatment. Typical clinical features are early predominant asymmetric weakness of finger flexor and knee extensor muscles. Muscle biopsy shows endomysial inflammatory infiltrate, mitochondrial changes, and protein aggregation. Proteostasis (protein turnover) appears to be impaired, linked to potentially dysregulated chaperone-mediated autophagy and mitophagy (a type of mitochondrial quality control). In this review, we bring together the most recent clinical and biological data describing IBM. We then address the question of diagnosing this pathology and the relevance of the current biological markers that characterize IBM. In these descriptions, we put a particular emphasis on data related to the deregulation of autophagic processes and to the mitochondrial-lysosomal crosstalk. Finally, after a short description of current treatments, an overview is provided pointing towards novel therapeutic targets and emerging regulatory molecules that are being explored for treating IBM. Special attention is paid to autophagy inhibitors that may offer innovative breakthrough therapies for patients with IBM.
Collapse
Affiliation(s)
- Stefen Brady
- Oxford Adult Muscle Service, John Radcliffe Hospital, Oxford University Hospital Trust, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
4
|
Du Z, Lessard S, Iyyanki T, Chao M, Hammond T, Ofengeim D, Klinger K, de Rinaldis E, Shameer K, Chatelain C. Genetic analyses of inflammatory polyneuropathy and chronic inflammatory demyelinating polyradiculoneuropathy identified candidate genes. HGG ADVANCES 2024; 5:100317. [PMID: 38851890 PMCID: PMC11259940 DOI: 10.1016/j.xhgg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes, and pathways. We first focused on CIDP, and 516 CIDP cases and 403,545 controls were included in the GWAS analysis. We also investigated genetic risk for inflammatory polyneuropathy (IP), in which we performed a GWAS study using FinnGen data and combined the results with GWAS from the UK Biobank using a fixed-effect meta-analysis. A total of 1,261 IP cases and 823,730 controls were included in the analysis. Stratified analyses by gender were performed. Mendelian randomization (MR), colocalization, and transcriptome-wide association study (TWAS) analyses were performed to identify associated genes. Gene-set analyses were conducted to identify associated pathways. We identified one genome-wide significant locus at 20q13.33 for CIDP risk among women, the top variant located at the intron region of gene CDH4. Sex-combined MR, colocalization, and TWAS analyses identified three candidate pathogenic genes for CIDP and five genes for IP. MAGMA gene-set analyses identified a total of 18 pathways related to IP or CIDP. Sex-stratified analyses identified three genes for IP among males and two genes for IP among females. Our study identified suggestive risk genes and pathways for CIDP and IP. Functional analyses should be conducted to further confirm these associations.
Collapse
Affiliation(s)
- Zhaohui Du
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Samuel Lessard
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Tejaswi Iyyanki
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Michael Chao
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | | | | | | | | | - Khader Shameer
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Clément Chatelain
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
6
|
潘 知, 李 思, 李 玲, 张 燕, 华 子. [Impact of chaperone-mediated autophagy on bilirubin-induced damage of mouse microglial cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:385-393. [PMID: 38660903 PMCID: PMC11057293 DOI: 10.7499/j.issn.1008-8830.2312014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 μmol/L QX77 for 24 hours), UCB group (treated with 40 μmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 μmol/L QX77 and 40 μmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 μmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 μmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1β, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1β, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.
Collapse
|
7
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Tseng HC, Pan CY. Dopamine Activates the D1R-Zn 2+ Signaling Pathway to Trigger Inflammatory Response in Primary-Cultured Rat Embryonic Cortical Neurons. Cell Mol Neurobiol 2023; 43:3593-3604. [PMID: 37289255 PMCID: PMC11409952 DOI: 10.1007/s10571-023-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Neuroinflammation is an early event during the pathogenesis of neurodegenerative disorders. Most studies focus on how the factors derived from pathogens or tissue damage activate the inflammation-pyroptosis cell death pathway. It is unclear whether endogenous neurotransmitters could induce inflammatory responses in neurons. Our previous reports have shown that dopamine-induced elevation of intracellular Zn2+ concentration via the D1-like receptor (D1R) is a prerequisite for autophagy and cell death in primary cultured rat embryonic neurons. Here we further examined that this D1R-Zn2+ signaling initiates the transient inflammatory response leading to cell death in cultured cortical neurons. Pretreating the cultured neurons with Zn2+ chelator and inhibitors against inflammation could enhance the cell viability in neurons treated with dopamine and dihydrexidine, an agonist of D1R. Both dopamine and dihydrexidine greatly enhanced inflammasome formation; a Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, suppressed this increment. Dopamine and dihydrexidine increased the expression levels of NOD-like receptor pyrin domain-containing protein 3 and enhanced the maturation of caspase-1, gasdermin D, and IL-1β; these changes were all Zn2+-dependent. Dopamine treatment did not recruit the N-terminal of the gasdermin D to the plasma membrane but enhanced its localization to the autophagosomes. Pretreating the neurons with IL-1β could increase the viability of neurons challenged with dopamine. These results demonstrate a novel D1R-Zn2+ signaling cascade activating neuroinflammation and cell death. Therefore, maintaining a balance between dopamine homeostasis and inflammatory responses is an important therapeutic target for neurodegeneration. Dopamine elicits transient inflammatory responses in cultured cortical neurons via the D1R-Zn2+ signaling pathway. Dopamine elevates [Zn2+]i to induce the formation of inflammasomes, which activates caspase-1, resulting in the maturation of IL-1β and gasdermin D (GSDMD). Therefore, the homeostasis of dopamine and Zn2+ are critical therapeutic targets for inflammation-derived neurodegeneration.
Collapse
Affiliation(s)
- Hui-Chiun Tseng
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan.
| |
Collapse
|
9
|
Chen F, Bai N, Yue F, Hao Y, Wang H, He Y, Lu K. Effects of Oral β-caryophyllene (BCP) Treatment on Perioperative Neurocognitive Disorders: Attenuation of Neuroinflammation Associated with Microglial Activation and Reinforcement of Autophagy Activity in Aged Mice. Brain Res 2023:148425. [PMID: 37244603 DOI: 10.1016/j.brainres.2023.148425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Perioperative neurocognitive disorders (PND) are a constellation of cognitive impairments that arise following surgical procedures and anesthesia, with a higher incidence in elderly patients. PND is deeply entwined with microglia-mediated neuroinflammation and disrupted autophagy. β-caryophyllene (BCP) is a natural terpene that occurs widely in dietary plants, and possesses robust anti-inflammatory properties by selectively activating CB2 receptors (CB2R). Accordingly, the present study endeavors to investigate the potential of BCP in ameliorating PND in aged mice, by mitigating hippocampal neuroinflammation and improving autophagy. In this study, an abdominal surgery was utilized to induce perioperative neurocognitive disorders (PND) in aged mice. BCP was administered orally at a dosage of 200 mg/kg for seven consecutive days prior to the scheduled surgery. In order to explore the relationship between BCP and CB2 receptors (CB2R), a co-administration of intraperitoneal injections of the CB2R antagonist AM630 was implemented, 30 minutes preceding the oral gavage of BCP. Postoperative cognitive functions were assessed using Morris water maze (MWM) tests. The extent of hippocampal inflammation was examined by measuring the microglial marker Iba-1 protein levels, Iba-1 and GFAP immunoactivity, as well as IL-1β and IL-6 concentrations. Evaluation of autophagy activity was conducted based on the ratio of LC3B2/LC3B1 and protein levels of Beclin-1, p62, and phospho-mTOR (p-mTOR). After being orally administered BCP, the compromised behavioral performance of abdominal surgical interventions on aged mice was alleviated. This was evident by the extended escape latency, reduced time spent in the target quadrant, and fewer platform crossings observed through MWM testing. While hippocampal CB2R mRNA or protein expression remained unaffected by the abdominal surgical procedure, their levels were significantly upregulated in mice that were administered BCP. Moreover, the oral administration of BCP was able to reduce neuroinflammation in response to microglia activation, as evidenced by the decreased levels of Iba-1 protein and immunoactivity, as well as the reduction of IL-1β and IL-6 concentrations. Additionally, BCP intensified autophagic activity, as detected by increased LC3B2/LC3B1 ratio and Beclin-1 protein levels, coupled with decreased levels of p62 and p-mTOR in the hippocampus of aged mice. Conversely, the treatment of AM630 ameliorated the suppressive effect of BCP triggered by the neuroinflammation caused by microglial activation post-surgery in aged mice (increased Iba-1 protein levels and immunoactivity, accompanied by higher IL-1β and IL-6 concentrations). Furthermore, the pro-autophagy effect of BCP on aged mice following surgery was partially blocked by AM630, culminating in decreased LC3B2/LC3B1 ratio and Beclin-1 protein levels. However, the levels of p62 and p-mTOR remained unchanged by AM630. Our investigation unveils the remarkable therapeutic benefits of oral BCP administration for managing PND in aged mice through the attenuation of neuroinflammation associated with microglial activation and the fortification of autophagy activity. Hence, BCP holds great promise as a formidable candidate englobing various potential physiological mechanisms that would mitigate cognitive decline associated with aging.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Fang Yue
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Yabo Hao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Yun He
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an 710061, Shaanxi, China.
| | - Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China.
| |
Collapse
|
10
|
Muller S. The abscopal effect: Implications for drug discovery in autoimmunity. Autoimmun Rev 2023; 22:103315. [PMID: 36924921 DOI: 10.1016/j.autrev.2023.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
The emergence of novel targeted therapies and the tools that increase the stability and delivery of drugs have greatly improved treatment outcomes in autoimmune diseases (ADs). Recently-developed strategies deplete specific deleterious T- and B-cell subsets, interrupt receptor-ligand interactions, and/or inhibit the secretion or activity of inflammatory mediators linked to tissue damage. Although generally efficient, these lines of intervention have limitations, with documented cases of drug-resistance and undesired side effects. They are also difficult to apply to non-organ-specific ADs, where the trigger and effector antigens are unknown and in which autoimmune activity is widely spread throughout the body. The potential of cellular modulators that act at a distance from the affected site, by abscopal effect, as described in the case of cancer radio- and immuno-therapy might be especially efficient in the context of ADs. Future research to discover small molecule- and peptide-based treatments will need to explore potential drugs with abscopal effects that could elicit potent immune tolerance and clinical quiescence to restore quality of life of affected patients.
Collapse
Affiliation(s)
- Sylviane Muller
- CNRS and Strasbourg University Unit Biotechnology and Cell signalling/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
11
|
The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol 2023; 19:366-383. [PMID: 36894628 DOI: 10.1038/s41581-023-00692-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.
Collapse
|
12
|
Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy. Int Immunopharmacol 2023; 115:109695. [PMID: 36638658 DOI: 10.1016/j.intimp.2023.109695] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Neuropathic pain is a complex condition that seriously affects human quality of life. This study aimed to investigate the therapeutic mechanism of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) and try to discover new targets for alleviating neuropathic pain. Extracellular vesicles were isolated and identified via ultracentrifugation. BV-2 microglial cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of MSC-EVs. Further, microglial activation and neuroinflammation were evaluated by flow cytometry, RT-qPCR, and ELISA. High-throughput sequencing analysis was performed to reveal the differentially expressed (DE) miRNAs in BV-2 microglia. Autophagy-related regulators were assessed by Western blotting and Immunofluorescence staining. Chronic constriction injury (CCI) model was used to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was measured. High-throughput sequencing analysis identified 17 DE miRNAs, which were mainly enriched in PI3K-AKT and mTOR signaling pathways. MSC-EVs inhibited the activation of PI3K/AKT/mTOR signaling pathway in LPS-stimulated microglia. Moreover, MSC-EVs treatment enhanced the autophagy level in activated microglia, whereas autophagy inhibitor 3-MA reversed the suppressing effects of MSC-EVs on microglial activation and neuroinflammation. The MSC-EV-mediated transfer of miR-99b-3p was verified to promote microglial autophagy, and miR-99b-3p overexpression suppressed the expression of pro-inflammatory factors in activated microglia. During in vivo studies, intrathecal injection of MSC-EVs significantly up-regulated the expression of miR-99b-3p, and alleviated mechanical allodynia caused by activated microglia in the spinal cord dorsal horn of CCI rats. Moreover, MSC-EVs treatment repaired CCI-induced autophagic impairment by stimulating autophagy in the spinal cord. Collectively, our findings demonstrated that MSC-EVs had an analgesic effect on neuropathic pain via promoting autophagy, and these antinociceptive effects were at least in part caused by MSC-EV-mediated transfer of miR-99b-3p, thereby inhibiting microglial activation and pro-inflammatory cytokines expression.
Collapse
|
13
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
14
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
15
|
Zhang Z, Zhang X, Wu X, Zhang Y, Lu J, Li D. Sirt1 attenuates astrocyte activation via modulating Dnajb1 and chaperone-mediated autophagy after closed head injury. Cereb Cortex 2022; 32:5191-5205. [PMID: 35106540 DOI: 10.1093/cercor/bhac007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Our previous study indicates that Silent information regulator 1 (Sirt1) is involved in macroautophagy by upregulating light chain 3 (LC3) expression in astrocyte to exert a neuroprotective effect. Chaperon-mediated autophagy (CMA), another form of autophagy, is also upregulated after brain injury. However, little is known about the role of Sirt1 in regulation of the CMA. In the present study, an in vivo model of closed head injury (CHI) and an in vitro model of primary cortical astrocyte stimulated with interleukin-1β were employed to mimic the astrocyte activation induced by traumatic brain injury. Lentivirus carrying target complementary DNA (cDNA) or short hairpin RNA (shRNA) sequence was used to overexpress Sirt1 or knockdown DnaJ heat shock protein family member B1 (Dnajb1) (a molecular chaperone). We found that Sirt1 overexpression ameliorated neurological deficits, reduced tissue loss, and attenuated astrocyte activation after CHI, which was reversed by Dnajb1-shRNA administration. The upregulation of CMA activity induced by CHI in vivo and in vitro was inhibited after Dnajb1 knockdown. Sirt1 potently promoted CMA activity via upregulating Dnajb1 expression. Mechanically, Sirt1 could interact with Dnajb1 and modulate the deacetylation and ubiquitination of Dnajb1. These findings collectively suggest that Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the CMA activity via modulating the deacetylation and ubiquitination of Dnajb1 after CHI.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Xin Wu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Yan Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| |
Collapse
|
16
|
Lu R, Zhang L, Yang X. Interaction between autophagy and the NLRP3 inflammasome in Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 2022; 14:1018848. [PMID: 36262883 PMCID: PMC9574200 DOI: 10.3389/fnagi.2022.1018848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Autophagy degrades phagocytosed damaged organelles, misfolded proteins, and various pathogens through lysosomes as an essential way to maintain cellular homeostasis. Autophagy is a tightly regulated cellular self-degradation process that plays a crucial role in maintaining normal cellular function and homeostasis in the body. The NLRP3 inflammasome in neuroinflammation is a vital recognition receptor in innate cellular immunity, sensing external invading pathogens and endogenous stimuli and further triggering inflammatory responses. The NLRP3 inflammasome forms an inflammatory complex by recognizing DAMPS or PAMPS, and its activation triggers caspase-1-mediated cleavage of pro-IL-1β and pro-IL-18 to promote the inflammatory response. In recent years, it has been reported that there is a complex interaction between autophagy and neuroinflammation. Strengthening autophagy can regulate the expression of NLRP3 inflammasome to reduce neuroinflammation in neurodegenerative disease and protect neurons. However, the related mechanism is not entirely clear. The formation of protein aggregates is one of the standard features of Neurodegenerative diseases. A large number of toxic protein aggregates can induce inflammation. In theory, activation of the autophagy pathway can remove the potential toxicity of protein aggregates and delay the progression of the disease. This article aims to review recent research on the interaction of autophagy, NLRP3 inflammasome, and protein aggregates in Alzheimer’s disease (AD) and Parkinson’s disease (PD), analyze the mechanism and provide theoretical references for further research in the future.
Collapse
Affiliation(s)
- Ranran Lu
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
| | - Lijie Zhang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, China
- *Correspondence: Xinling Yang,
| |
Collapse
|
17
|
Park J, Kim Y, Lee C, Kim YT. 3,5-Dicaffeoylquinic acid attenuates microglial activation-mediated inflammatory pain by enhancing autophagy through the suppression of MCP3/JAK2/STAT3 signaling. Biomed Pharmacother 2022; 153:113549. [DOI: 10.1016/j.biopha.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022] Open
|
18
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
20
|
CIDP: Current Treatments and Identification of Targets for Future Specific Therapeutic Intervention. IMMUNO 2022. [DOI: 10.3390/immuno2010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated inflammatory disorder of the peripheral nervous system. This clinically heterogeneous neurological disorder is closely related to Guillain–Barré syndrome and is considered the chronic counterpart of that acute disease. Currently available treatments are mostly empirical; they include corticosteroids, intravenous immunoglobulins, plasma exchange and chronic immunosuppressive agents, either alone or in combination. Recent advances in the understanding of the underlying pathogenic mechanisms in CIDP have brought a number of novel ways of possible intervention for use in CIDP. This review summarizes selected pre-clinical and clinical findings, highlights the importance of using adapted animal models to evaluate the efficacy of novel treatments, and proposes the outlines of future directions to ameliorate the conditions of patients with CIDP.
Collapse
|
21
|
Mondal B, Dutta T, Padhy A, Das S, Sen Gupta S. Lysosome-Targeting Strategy Using Polypeptides and Chimeric Molecules. ACS OMEGA 2022; 7:5-16. [PMID: 35036673 PMCID: PMC8757330 DOI: 10.1021/acsomega.1c04771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Lysosomes are membranous compartments containing hydrolytic enzymes, where cellular degradation of proteins and enzymes among others occurs in a controlled manner. Lysosomal dysfunction results in various pathological situations, such as several lysosomal storage disorders, neurodegeneration, infectious diseases, cancers, and aging. In this review, we have discussed different strategies for synthesizing peptides/chimeric molecules, their lysosome-targeting ability, and their ability to treat several lysosomal associated diseases, including lysosomal storage diseases and cancers. We have also discussed the delivery of cargo molecules into the lysosome using lysosome-targeting ligand-decorated nanocarriers. The introduction of a protein-binding ligand along with a lysosome-targeting ligand to manufacture a chimeric architecture for cell-specific protein (extracellular and membrane protein) degradation ability has been discussed thoroughly. Finally, the future applications of these lysosome-targeting peptides, nanocarriers, and chimeric molecules have been pointed out.
Collapse
Affiliation(s)
- Basudeb Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tahiti Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sabyasachi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
22
|
Bakare OO, Fadaka AO, Akanbi MO, Akinyede KA, Klein A, Keyster M. Evaluation of selected carotenoids of Lycopersicon esculentum variants as therapeutic targets for 'Alzheimer's disease: an in silico approach. BMC Mol Cell Biol 2021; 22:49. [PMID: 34592924 PMCID: PMC8483808 DOI: 10.1186/s12860-021-00386-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
The seriousness and menace of the worldwide weight of 'Alzheimer's disease have been related to a few factors, which incorporate antioxidant system depletion, mutation of proteins, and high expression of cholinesterases due to aging, environmental influence, diet, infectious agents, and hormonal imbalance. Overexpression of cholinesterases has been emphatically connected to 'Alzheimer's disease because of the unreasonable hydrolysis of acetylcholine and butyrylcholine. Certain plant phytochemicals, for example, beta-carotenoids, lutein, neoxanthin, and viola-xanthine from Lycopersicon esculentum Mill. Var. esculentum (ESC) and Lycopersicon esculentum Mill. Var. cerasiforme (CER) has been utilized altogether as a therapeutic candidate for the treatment of 'Alzheimer's disease. Therefore, this research sought to investigate the drug-likeness of the individual carotenoids as detailed for cholinesterase inhibition in the treatment of 'Alzheimer's disease. Four potential cholinesterase inhibitors from ESC and CER were retrieved from the PubChem database. Investigation of their drug-likeness, toxicity prediction, molecular docking, and dynamic simulations were carried out using Molinspiration, PreADMET V.2.0, Patchdock server, and Schrodinger Maestro software respectively. Neoxanthin was ranked the safest with a greater tendency to inhibit the cholinesterases with high binding affinity. In addition, its stability after simulation in a mimicked biological environment suggests its relevance as a potential drug candidate for the treatment of 'Alzheimer's disease through the inhibition of cholinesterases.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Bioinformatics research group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa. .,Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| | - Adewale Oluwaseun Fadaka
- Bioinformatics research group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.,Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Musa Oyebowale Akanbi
- Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7535, South Africa
| | - Ashwil Klein
- Plant Omics group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory (EBL), Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
23
|
Liang T, Qiang T, Ren L, Wang B, Hu W. An ultrasensitive polarity-specific two-photon probe for revealing autophagy in live cells during scrap leather-induced neuroinflammation process. Analyst 2021; 146:4659-4665. [PMID: 34190222 DOI: 10.1039/d1an00667c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A polarity-sensitive fluorescence probe AMN was developed to demonstrate the role of autophagy inhibitory drugs in the process of leather residue-induced neuroinflammation, promoting the knowledge of the relationship between autophagy and neuroinflammation. AMN showed a turn-on fluorescent signal in the process of autophagy inhibition via two-photon confocal imaging, which is different from the current popular autophagy probes. Therefore, AMN can offer high-sensitive imaging analysis of the autophagy inhibition process to better understand the role of autophagy in the process of neuroinflammation. The model of scrap leather-induced neuroinflammation using PC12 cells demonstrated that neuroinflammation can induce autophagy by releasing reactive oxygen species (ROS), and autophagy can alleviate neuroinflammation significantly via ROS scavenging.
Collapse
Affiliation(s)
- Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
24
|
Barrera MJ, Aguilera S, Castro I, Carvajal P, Jara D, Molina C, González S, González MJ. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren's syndrome. Autoimmun Rev 2021; 20:102867. [PMID: 34118452 DOI: 10.1016/j.autrev.2021.102867] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Facultad de Odontología, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | | | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Santerre M, Arjona SP, Allen CN, Callen S, Buch S, Sawaya BE. HIV-1 Vpr protein impairs lysosome clearance causing SNCA/alpha-synuclein accumulation in neurons. Autophagy 2021; 17:1768-1782. [PMID: 33890542 DOI: 10.1080/15548627.2021.1915641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite the promising therapeutic effects of combinatory antiretroviral therapy (cART), 20% to 30% of HIV/AIDS patients living with long term infection still exhibit related cognitive and motor disorders. Clinical studies in HIV-infected patients revealed evidence of basal ganglia dysfunction, tremors, fine motor movement deficits, gait, balance, and increased risk of falls. Among older HIV+ adults, the frequency of cases with SNCA/α-synuclein staining is higher than in older healthy persons and may predict an increased risk of developing a neurodegenerative disease. The accumulation of SNCA aggregates known as Lewy Bodies is widely described to be directly linked to motor dysfunction. These aggregates are naturally removed by Macroautophagy/autophagy, a cellular housekeeping mechanism, that can be disturbed by HIV-1. The molecular mechanisms involved in linking HIV-1 proteins and autophagy remain mostly unclear and necessitates further exploration. We showed that HIV-1 Vpr protein triggers the accumulation of SNCA in neurons after decreasing lysosomal acidification, deregulating lysosome positioning, and the expression levels of several proteins involved in lysosomal maturation. Viruses and retroviruses such as HIV-1 are known to manipulate autophagy in order to use it for their replication while blocking the degradative final step, which could destroy the virus itself. Our study highlights how the suppression of neuronal autophagy by HIV-1 Vpr is a mechanism leading to toxic protein aggregation and neurodegeneration.Abbreviations: BLOC1: Biogenesis of Lysosome-related Organelles Complex 1; CART: combinatory antiretroviral therapy; CVB: coxsackievirus; DAPI: 4',6-diamidino-2-phenylindole; DENV: dengue virus; GFP: green fluorescent protein; HCV: hepatitis C virus; HCMV: human cytomegalovirus; HIV: human immunodeficiency virus; Env: HIV-1 envelope glycoproteins; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; VSV: Indiana vesiculovirus; LTR: Long Terminal Repeat; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MLBs: multilamellar bodies; RIPA: Radioimmunoprecipitation assay buffer; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; Tat: transactivator of TAR; TEM: transmission electron microscope; Vpr: Viral protein R.
Collapse
Affiliation(s)
- Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine and Department of Neurology Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine and Department of Neurology Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Charles Ns Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine and Department of Neurology Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine and Department of Neurology Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Neurology Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Bonam SR, Muller S. Parkinson's disease is an autoimmune disease: A reappraisal. Autoimmun Rev 2020; 19:102684. [PMID: 33131704 DOI: 10.1016/j.autrev.2020.102684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Parkinson's disease (PD) is a common, age-related, neurodegenerative disorder characterized by motor deficits and a cognitive decline. In the large majority of cases, it is associated with cytoplasmic aggregation of α-synuclein/SNCA and the formation of Lewy bodies in the dopamine neurons in the substantia nigra pars compacta. The etiopathogenesis of PD remains poorly understood. The disease results from an interplay of genetic and environmental factors, including pharmacological molecules, which destroy dopaminergic neurons. Recently, several notable data have highlighted various immune alterations underlying that PD is associated to autoimmune features and could be considered as an autoimmune disease. In this short article, we briefly review key elements participating to this emerging viewpoint.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
28
|
In Vivo Remodeling of Altered Autophagy-Lysosomal Pathway by a Phosphopeptide in Lupus. Cells 2020; 9:cells9102328. [PMID: 33092174 PMCID: PMC7589999 DOI: 10.3390/cells9102328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
The phosphopeptide P140/Lupuzor, which improves the course of lupus disease in mice and patients, targets chaperone-mediated autophagy (CMA), a selective form of autophagy that is abnormally upregulated in lupus-prone MRL/lpr mice. Administered intravenously to diseased mice, P140 reduces the expression level of two major protein players of CMA, LAMP2A and HSPA8, and inhibits CMA in vitro in a cell line that stably expresses a CMA reporter. Here, we aimed to demonstrate that P140 also affects CMA in vivo and to unravel the precise cellular mechanism of how P140 interacts with the CMA process. MRL/lpr mice and CBA/J mice used as control received P140 or control peptides intravenously. Lysosome-enriched fractions of spleen or liver were prepared to examine lysosomal function. Highly purified lysosomes were further isolated and left to incubate with the CMA substrate to study at which cellular step P140 interacts with the CMA process. The data show that P140 effectively regulates CMA in vivo in MRL/lpr mice at the step of substrate lysosomal uptake and restores some alterations of defective lysosomes. For the first time, it is demonstrated that by occluding the intralysosome uptake of CMA substrates, a therapeutic molecule can attenuate excessive CMA activity in a pathological pro-inflammatory context and protect against hyperinflammation. This recovery effect of P140 on hyperactivated CMA is not only important for lupus therapy but potentially also for treating other (auto)inflammatory diseases, including neurologic and metabolic disorders, where CMA modulation would be highly beneficial.
Collapse
|
29
|
Bonam SR, Bayry J, Tschan MP, Muller S. Progress and Challenges in The Use of MAP1LC3 as a Legitimate Marker for Measuring Dynamic Autophagy In Vivo. Cells 2020; 9:E1321. [PMID: 32466347 PMCID: PMC7291013 DOI: 10.3390/cells9051321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
Tremendous efforts have been made these last decades to increase our knowledge of intracellular degradative systems, especially in the field of autophagy. The role of autophagy in the maintenance of cell homeostasis is well documented and the existence of defects in the autophagic machinery has been largely described in diseases and aging. Determining the alterations occurring in the many forms of autophagy that coexist in cells and tissues remains complicated, as this cellular process is highly dynamic in nature and can vary from organ to organ in the same individual. Although autophagy is extensively studied, its functioning in different tissues and its links with other biological processes is still poorly understood. Several assays have been developed to monitor autophagy activity in vitro, ex vivo, and in vivo, based on different markers, the use of various inhibitors and activators, and distinct techniques. This review emphasizes the methods applied to measure (macro-)autophagy in tissue samples and in vivo via a protein, which centrally intervenes in the autophagy pathway, the microtubule-associated protein 1A/1B-light chain 3 (MAP1LC3), which is the most widely used marker and the first identified to associate with autophagosomal structures. These approaches are presented and discussed in terms of pros and cons. Some recommendations are provided to improve the reliability of the interpretation of results.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, 67412 Strasbourg University/Laboratory of Excellence Medalis, 67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France;
| | - Mario P. Tschan
- Institute of Pathology, Division of Experimental Pathology, University of Bern, 3008 Bern, Switzerland;
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, 67412 Strasbourg University/Laboratory of Excellence Medalis, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
| |
Collapse
|
30
|
Handa K, Kanno H, Matsuda M, Sugaya T, Murakami T, Prudnikova M, Ozawa H, Itoi E. Chaperone-Mediated Autophagy after Spinal Cord Injury. J Neurotrauma 2020; 37:1687-1695. [PMID: 32233738 DOI: 10.1089/neu.2019.6820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy is the degradation process of dysfunctional intracellular components and has a crucial function in various human diseases. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). CMA is a major route for the elimination of cellular aberrant proteins and can provide a cytoprotective effect. The present study investigated the expression of lysosome-associated membrane protein type 2A (LAMP2A), which is the hallmark of CMA activity, in damaged neural tissue after spinal cord injury (SCI) in mice. The number of LAMP2A-expressing cells was significantly increased at the lesion following SCI. The increased number of LAMP2A-positive cells was observed from 24 h and peaked at 3 days after injury. A western blot analysis confirmed that the level of LAMP2A protein was significantly increased in the injured spinal cord compared with the uninjured cord. On double staining for LAMP2A and different neural cell type markers, the increased expression of LAMP2A was observed in neurons, astrocytes, oligodendrocytes, and microglia/macrophages following injury. An electron microscopic analysis showed that secondary lysosomes were increased in damaged neurons at the lesion site. Immunoelectron microscopy revealed that the gold particles with anti-LAMP2A antibody were frequently localized at the secondary lysosomes in the injured site. These findings indicated that CMA was clearly activated in damaged neural tissue after SCI. The activation of CMA may contribute to the elimination of intracellular aberrant proteins and exert a neuroprotective effect following SCI.
Collapse
Affiliation(s)
- Kyoichi Handa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruo Kanno
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiharu Matsuda
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Sugaya
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taishi Murakami
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maria Prudnikova
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ozawa
- Department of Orthopedic Surgery, Tohoku Medical and Pharmaceutical University, Faculty of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020; 40:256-266. [PMID: 31744863 PMCID: PMC6948934 DOI: 10.1523/jneurosci.1066-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the cellular process involved in transportation and degradation of membrane, proteins, pathogens, and organelles. This fundamental cellular process is vital in development, plasticity, and response to disease and injury. Compared with neurons, little information is available on autophagy in glia, but it is paramount for glia to perform their critical responses to nervous system disease and injury, including active tissue remodeling and phagocytosis. In myelinating glia, autophagy has expanded roles, particularly in phagocytosis of mature myelin and in generating the vast amounts of membrane proteins and lipids that must be transported to form new myelin. Notably, autophagy plays important roles in removing excess cytoplasm to promote myelin compaction and development of oligodendrocytes, as well as in remyelination by Schwann cells after nerve trauma. This review summarizes the cell biology of autophagy, detailing the major pathways and proteins involved, as well as the roles of autophagy in Schwann cells and oligodendrocytes in development, plasticity, and diseases in which myelin is affected. This includes traumatic brain injury, Alexander's disease, Alzheimer's disease, hypoxia, multiple sclerosis, hereditary spastic paraplegia, and others. Promising areas for future research are highlighted.
Collapse
Affiliation(s)
| | - Raffaella De Pace
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
32
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
33
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
34
|
The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol Med Rep 2019; 20:2867-2874. [PMID: 31322238 DOI: 10.3892/mmr.2019.10491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate whether apigenin elicits antidepressant effects in depressant‑like mice via the regulation of autophagy. The depressant‑like behaviors were established in a chronic restraint stress model. Male BALB/c mice were subjected to restraint stress for 6 h/day for a period of 21 days, and deficits in sucrose preference, tail suspension and forced swim tests were confirmed to be improved following oral apigenin. To investigate the underlining mechanisms, the hippocampal levels of p62 and microtubule‑associated protein light chain 3‑II/I (LC3‑II/I) were measured using western blot analysis. The expression levels of LC3‑II/I and p62 indicated that the significantly inhibited autophagy level induced by chronic restraint stress can be increased following apigenin treatment. Similar to the level of autophagy, the expression levels of adenosine monophosphate‑activated protein kinase (AMPK) and Unc‑51 like autophagy activating kinase‑1 were downregulated after chronic restraint stress stimulation and, subsequently upregulated following treatment with apigenin. Conversely, the levels of mammalian target of rapamycin (mTOR) were increased in chronic restraint stress mice and inhibited by apigenin. Collectively, the present findings indicated that apigenin potentially promotes autophagy via the AMPK/mTOR pathway and induces antidepressive effects in chronic restraint stress mice.
Collapse
|
35
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
36
|
Retnakumar SV, Muller S. Pharmacological Autophagy Regulators as Therapeutic Agents for Inflammatory Bowel Diseases. Trends Mol Med 2019; 25:516-537. [PMID: 30952481 DOI: 10.1016/j.molmed.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
The arsenal of effective molecules to treat patients with chronic inflammatory bowel diseases (IBDs) remains limited. These remitting-relapsing diseases have become a global health issue and new therapeutic strategies are eagerly awaited to regulate the course of these disorders. Since the association between autophagy-related gene polymorphism and an increased risk of Crohn's disease (CD) has been discovered, a new domain of investigation has emerged, focused on the intracellular degradation system, with the objective of generating new medicines that are safer and more targeted. This review summarizes the drugs administered to IBD patients and describes recently emerged therapeutic agents. We compile evidence on the contribution of autophagy to IBD pathogenesis, give an overview of pharmacological autophagy regulators in animal models of colitis, and propose novel therapeutic avenues based on autophagy components.
Collapse
Affiliation(s)
- Sruthi Vijaya Retnakumar
- CNRS-University of Strasbourg, Biotechnology and Cell signaling, Institut de Science et d'ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell signaling, Institut de Science et d'ingénierie Supramoléculaire, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France.
| |
Collapse
|
37
|
Affiliation(s)
- Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai-Zion Medical Center, Technion, Haifa, Israel.
| |
Collapse
|
38
|
Kremer L, Taleb O, Boehm N, Mensah-Nyagan AG, Trifilieff E, de Seze J, Brun S. FTY720 controls disease severity and attenuates sciatic nerve damage in chronic experimental autoimmune neuritis. J Neuroinflammation 2019; 16:54. [PMID: 30825874 PMCID: PMC6397476 DOI: 10.1186/s12974-019-1441-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune-mediated inflammatory disease of the peripheral nervous system characterized by a response directed against certain myelin proteins and for which therapies are limited. Previous studies have suggested a beneficial role of FTY720, a sphingosine 1-phosphate (S1P) receptor agonist, known to deplete lymphocytes from the peripheral blood by sequestering them into lymph nodes, in the treatment of experimental autoimmune neuritis (EAN). Therefore, we investigated whether FTY720 is also beneficial in chronic experimental autoimmune neuritis (c-EAN), a recently developed rat model mimicking human CIDP. Methods c-EAN was induced in Lewis rats by immunization with S-palm P0(180–199) peptide. Rats were treated with FTY720 (1 mg/kg) or vehicle intraperitoneally once daily from the onset of clinical signs for 18 days; clinical signs were assessed daily until 60 days post-immunization (dpi). Electrophysiological and histological features were examined at different time points. We also evaluated the serum levels of different pro- and anti-inflammatory cytokines by ELISA or flow cytometry at 18, 40, and 60 dpi. Results Our data demonstrate that FTY720 decreased the severity and abolished the chronicity of the disease in c-EAN rats. Therapeutic FTY720 treatment reversed electrophysiological and histological anomalies, suggesting that myelinated fibers were subsequently preserved, it inhibited macrophage and IL-17+ cell infiltration in PNS, and it significantly reduced circulating pro-inflammatory cytokines. Conclusions FTY720 treatment has beneficial effects on c-EAN, a new animal model mimicking human CIDP. We have shown that FTY720 is an effective immunomodulatory agent, improving the disease course of c-EAN, preserving the myelinated fibers, attenuating the axonal degeneration, and decreasing the number of infiltrated inflammatory cells in peripheral nerves. These data confirm the interest of testing FTY720 or molecules targeting S1P in human peripheral neuropathies. Electronic supplementary material The online version of this article (10.1186/s12974-019-1441-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurent Kremer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nelly Boehm
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculty of Medicine, Institute of Histology, University of Strasbourg, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Elisabeth Trifilieff
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jérôme de Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Susana Brun
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119/Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France. .,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
39
|
Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation. J Ginseng Res 2019; 44:442-452. [PMID: 32372866 PMCID: PMC7195596 DOI: 10.1016/j.jgr.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
Backgroud Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem–leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.
Collapse
|
40
|
Bendorius M, Po C, Muller S, Jeltsch-David H. From Systemic Inflammation to Neuroinflammation: The Case of Neurolupus. Int J Mol Sci 2018; 19:E3588. [PMID: 30428632 PMCID: PMC6274746 DOI: 10.3390/ijms19113588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.
Collapse
Affiliation(s)
- Mykolas Bendorius
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000 Strasbourg, France.
| | - Sylviane Muller
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| | - Hélène Jeltsch-David
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| |
Collapse
|
41
|
Activation of CD137 Signaling Enhances Vascular Calcification through c-Jun N-Terminal Kinase-Dependent Disruption of Autophagic Flux. Mediators Inflamm 2018; 2018:8407137. [PMID: 30356425 PMCID: PMC6178178 DOI: 10.1155/2018/8407137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023] Open
Abstract
Background Vascular calcification is widespread and clinically significant, contributing to substantial morbidity and mortality. Calcifying vascular cells are partly derived from local vascular smooth muscle cells (VSMCs), which can undergo chondrogenic or osteogenic differentiation under inflammatory environment. Recently, we have found activation of CD137 signaling accelerated vascular calcification. However, the underlying mechanism remains unknown. This study aims to identify key mediators involved in CD137 signaling-induced vascular calcification in vivo and in vitro. Methods Autophagy flux was measured through mRFP-GFP-LC3 adenovirus and transmission electron microscopy. Von Kossa assay and alkaline phosphatase (ALP) activity were used to observe calcification in vivo and in vitro, respectively. Autophagosome-containing vesicles were collected and identified by flow cytometry and Western blot. Autophagy or calcification-associated targets were measured by Western blot, quantitative real-time PCR, and immunohistochemistry. Results Treatment with the agonist-CD137 displayed c-Jun N-terminal kinase- (JNK-) dependent increase in the expression of various markers of autophagy and the number of autophagosomes relative to the control group. Autophagy flux experiments suggested that agonist-CD137 blocked the fusion of autophagosomes with lysosomes in cultured VSMCs. Calcium deposition, ALP activity, and the expression of calcification-associated proteins also increased in agonist-CD137 group compared with anti-CD137 group, which could be recovered by autophagy stimulator rapamycin. Autophagosome-containing vesicles collected from agonist-CD137 VSMCs supernatant promoted VSMC calcification. Conclusion The present study identified a new pathway in which CD137 promotes VSMC calcification through the activation of JNK signaling, subsequently leading to the disruption of autophagic flux, which is responsible for CD137-induced acceleration of vascular calcification.
Collapse
|
42
|
Bendorius M, Neeli I, Wang F, Bonam SR, Dombi E, Buron N, Borgne-Sanchez A, Poulton J, Radic M, Muller S. The Mitochondrion-lysosome Axis in Adaptive and Innate Immunity: Effect of Lupus Regulator Peptide P140 on Mitochondria Autophagy and NETosis. Front Immunol 2018; 9:2158. [PMID: 30319621 PMCID: PMC6168670 DOI: 10.3389/fimmu.2018.02158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondria deserve special attention as sensors of cellular energy homeostasis and metabolic state. Moreover, mitochondria integrate intra- and extra-cellular signals to determine appropriate cellular responses that range from proliferation to cell death. In autoimmunity, as in other inflammatory chronic disorders, the metabolism of immune cells may be extensively remodeled, perturbing sensitive tolerogenic mechanisms. Here, we examine the distribution and effects of the therapeutic 21-mer peptide called P140, which shows remarkable efficacy in modulating immune responses in inflammatory settings. We measured P140 and control peptide effects on isolated mitochondria, the distribution of peptides in live cells, and their influence on the levels of key autophagy regulators. Our data indicate that while P140 targets macro- and chaperone-mediated autophagy processes, it has little effect, if any, on mitochondrial autophagy. Remarkably, however, it suppresses NET release from neutrophils exposed to immobilized NET-anti-DNA IgG complexes. Together, our results suggest that in the mitochondrion-lysosome axis, a likely driver of NETosis and inflammation, the P140 peptide does not operate by affecting mitochondria directly.
Collapse
Affiliation(s)
- Mykolas Bendorius
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fengjuan Wang
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Srinivasa Reddy Bonam
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Eszter Dombi
- Nuffield Department of Women's and Reproductive Health, Women's Centre, Oxford, United Kingdom
| | | | | | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, Women's Centre, Oxford, United Kingdom
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sylviane Muller
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France.,Institute for Advanced Study, University of Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Bonam SR, Wang F, Muller S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option. J Autoimmun 2018; 94:16-32. [PMID: 30219390 DOI: 10.1016/j.jaut.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Nowadays, pharmacologic treatments of autoinflammatory diseases are largely palliative rather than curative. Most of them result in non-specific immunosuppression, which can be associated with broad disruption of natural and induced immunity with significant and sometimes serious unwanted injuries. Among the novel strategies that are under development, tools that modulate the immune system to restore normal tolerance mechanisms are central. In these approaches, peptide therapeutics constitute a class of agents that display many physicochemical advantages. Within this class of potent drugs, the phosphopeptide P140 is very promising for treating patients with lupus, and likely also patients with other chronic inflammatory diseases. We discovered that P140 targets autophagy, a finely orchestrated catabolic process, involved in the regulation of inflammation and in the biology of immune cells. In vitro, P140 acts directly on a particular form of autophagy called chaperone-mediated autophagy, which seems to be hyperactivated in certain subsets of lymphocytes in lupus and in other autoinflammatory settings. In lupus, the "correcting" effect of P140 on autophagy results in a weaker signaling of autoreactive T cells, leading to a significant improvement of pathophysiological status of treated mice. These findings also demonstrated ex vivo in human cells, open novel avenues of therapeutic intervention in pathological conditions, in which specific and not general targeting is highly pursued in the context of the new action plans for personalized medicines.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
44
|
Brun S, Schall N, Bonam SR, Bigaut K, Mensah-Nyagan AG, de Sèze J, Muller S. An autophagy-targeting peptide to treat chronic inflammatory demyelinating polyneuropathies. J Autoimmun 2018; 92:114-125. [DOI: 10.1016/j.jaut.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
|
45
|
Vomero M, Barbati C, Colasanti T, Perricone C, Novelli L, Ceccarelli F, Spinelli FR, Di Franco M, Conti F, Valesini G, Alessandri C. Autophagy and Rheumatoid Arthritis: Current Knowledges and Future Perspectives. Front Immunol 2018; 9:1577. [PMID: 30072986 PMCID: PMC6058034 DOI: 10.3389/fimmu.2018.01577] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a degradation mechanism by which cells recycle cytoplasmic components to generate energy. By influencing lymphocyte development, survival, and proliferation, autophagy regulates the immune responses against self and non-self antigens. Deregulation of autophagic pathway has recently been implicated in the pathogenesis of several autoimmune diseases, including rheumatoid arthritis (RA). Indeed, autophagy seems to be involved in the generation of citrullinated peptides, and also in apoptosis resistance in RA. In this review, we summarize the current knowledge on the role of autophagy in RA and discuss the possibility of a clinical application of autophagy modulation in this disease.
Collapse
|
46
|
Barrera MJ, Aguilera S, Castro I, González S, Carvajal P, Molina C, Hermoso MA, González MJ. Endoplasmic reticulum stress in autoimmune diseases: Can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjögren's syndrome. Autoimmun Rev 2018; 17:796-808. [PMID: 29890347 DOI: 10.1016/j.autrev.2018.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
For many years, researchers in the field of autoimmunity have focused on the role of the immune components in the etiopathogenesis of autoimmune diseases. However, some studies have demonstrated the importance of target tissues in their pathogenesis and the breach of immune tolerance. The immune system as well as target tissue cells (plasmatic, β-pancreatic, fibroblast-like synoviocytes, thyroid follicular and epithelial cells of the lachrymal glands, salivary glands, intestine, bronchioles and renal tubules) share the characteristic of secretory cells with an extended endoplasmic reticulum (ER). The function of these cells depends considerably on a normal ER function and calcium homeostasis, so they can produce and secrete their main components, which include glycoproteins involved in antigenic presentation such as major histocompatibility complex (MHC) class I and II. All these proteins are synthesized and modified in the ER, and for this reason disturbances in the normal functions of this organelle such as protein folding, protein quality control, calcium homeostasis and redox balance, promote accumulation of unfolded or misfolded proteins, a condition known as ER stress. Autoimmune diseases are characterized by inflammation, which has been associated with an ER stress condition. Interestingly, patients with these diseases contain circulating auto-antibodies against chaperone proteins (such as Calnexin and GRP94), thus affecting the folding and assembly of MHC class I and II glycoproteins and their loading with peptide. The main purpose of this article is to review the involvement of the protein quality control and unfolded protein response (UPR) in the ER protein homeostasis (proteostasis) and their alterations in autoimmune diseases. In addition, we describe the interaction between ER stress and inflammation and evidences are shown of how autoimmune diseases are associated with an ER stress condition, with a special emphasis on the second most prevalent autoimmune rheumatic disease, Sjögren's syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Escuela de Postgrado, Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Shao QH, Zhang XL, Chen Y, Zhu CG, Shi JG, Yuan YH, Chen NH. Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol 2018; 99:115-123. [PMID: 29763880 DOI: 10.1016/j.molimm.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
20C, a novel bibenzyl compound, is isolated from Gastrodia elata. In our previous study, 20C showed protective effects on tunicamycin-induced endoplasmic reticulum stress, rotenone-induced apoptosis and rotenone-induced oxidative damage. However, the anti-neuroinflammatory effect of 20C is still with limited acquaintance. The objective of this study was to confirm the anti-neuroinflammatory effect of 20C on Lipopolysaccharide (LPS)-activated BV-2 cells and further elucidated the underlying molecular mechanisms. In this study, 20C significantly attenuated the protein levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin (IL)-1β, and secretion of nitric oxide (NO) and tumor necrosis factor (TNF)-α induced by Lipopolysaccharide (LPS) in BV-2 cells. Moreover, 20C up-regulated the levels of autophagy-related proteins in LPS-activated BV-2 cells. The requirement of mitogen-activated protein kinases (MAPKs) has been well documented for regulating the process of autophagy. Both 20C and rapamycin enhanced autophagy by suppressing the phosphorylation of MAPKs signaling pathway. Furthermore, 20C treatment significantly inhibited the levels of toll like receptor 4 (TLR4), phosphorylated-protein kinase B (Akt) and phosphorylated-mechanistic target of rapamycin (mTOR), indicating blocking TLR4/Akt/mTOR might be an underlying basis for the anti-inflammatory effect of 20C. These findings suggest that 20C has therapeutic potential for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
48
|
Huang Z, Huang X, Wang Q, Jiang R, Sun G, Xu Y, Wu Q. Extract of Euryale ferox Salisb
exerts antidepressant effects and regulates autophagy through the adenosine monophosphate-activated protein kinase-UNC-51-like kinase 1 pathway. IUBMB Life 2018; 70:300-309. [DOI: 10.1002/iub.1731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Zhiheng Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Xiaoyan Huang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qian Wang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Ruizhi Jiang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Guangda Sun
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Yiming Xu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| | - Qinan Wu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; Nanjing China
| |
Collapse
|
49
|
Li B, Wang F, Schall N, Muller S. Rescue of autophagy and lysosome defects in salivary glands of MRL/lpr mice by a therapeutic phosphopeptide. J Autoimmun 2018; 90:132-145. [PMID: 29486915 DOI: 10.1016/j.jaut.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/29/2022]
Abstract
Sjögren's syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic infiltrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, major organ involvement, neuropathies and lymphomas. Current treatments only focus on relieving symptoms and do not target the origin of the disease, which is largely unknown. The question we addressed here was whether some defects exist in autophagy processes in Sjögren's syndrome and if they can be corrected or minimized using an appropriate mechanism-driven treatment targeting this central survival pathway. Using a recognized murine model of secondary Sjögren's syndrome, we identified molecular alterations of autophagy occurring in the salivary glands of MRL/lpr mice, and discovered that opposite (up- or down-regulated) autophagy events can arise in distinct organs of the same mouse strain, here in lymphoid organs and salivary glands. We showed further that the therapeutic P140 peptide, known to directly act on chaperone-mediated autophagy, rescued MRL/lpr mice from cellular infiltration and autophagy defects occurring in salivary glands. Our findings provide a proof-of-concept that targeting autophagy might represent a promising therapeutic strategy for treating patients with Sjögren's syndrome.
Collapse
Affiliation(s)
- Baihui Li
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Nicolas Schall
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
50
|
Karch J, Schips TG, Maliken BD, Brody MJ, Sargent MA, Kanisicak O, Molkentin JD. Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. eLife 2017; 6:e30543. [PMID: 29148970 PMCID: PMC5697932 DOI: 10.7554/elife.30543] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Cells deficient in the pro-death Bcl-2 family members Bax and Bak are known to be resistant to apoptotic cell death, and previous we have shown that these two effectors are also needed for mitochondrial-dependent cellular necrosis (Karch et al., 2013). Here we show that mouse embryonic fibroblasts deficient in Bax/Bak1 are resistant to the third major form of cell death associated with autophagy through a mechanism involving lysosome permeability. Indeed, specifically targeting Bax only to the lysosome restores autophagic cell death in Bax/Bak1 null cells. Moreover, a monomeric-only mutant form of Bax is sufficient to increase lysosomal membrane permeability and restore autophagic cell death in Bax/Bak1 double-deleted mouse embryonic fibroblasts. Finally, increasing lysosomal permeability through a lysomotropic detergent in cells devoid of Bax/Bak1 restores autophagic cell death, collectively indicting that Bax/Bak integrate all major forms of cell death through direct effects on membrane permeability of multiple intracellular organelles.
Collapse
Affiliation(s)
- Jason Karch
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
- Howard Hughes Medical InstituteCincinnatiUnited States
| | - Tobias G Schips
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
| | - Bryan D Maliken
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
| | - Matthew J Brody
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiOhioUnited States
- Howard Hughes Medical InstituteCincinnatiUnited States
| |
Collapse
|