1
|
Ghasoub M, Scholten C, Geeraert B, Long X, Joshi S, Wedderburn CJ, Roos A, Subramoney S, Hoffman N, Narr K, Woods R, Zar HJ, Stein DJ, Donald K, Lebel C. The Effects of Prenatal Alcohol Exposure on Structural Brain Connectivity and Early Language Skills in a South African Birth Cohort. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2025; 6:nol_a_00161. [PMID: 40201449 PMCID: PMC11977823 DOI: 10.1162/nol_a_00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025]
Abstract
Prenatal alcohol exposure (PAE) is associated with various neurological, behavioral and cognitive deficits, including reading and language. Previous studies have demonstrated altered white matter in children and adolescents with PAE and associations with reading and language performance in children aged 3 years and older. However, little research has focused on the toddler years, despite this being a critical period for behavioral and neural development. We aimed to determine associations between structural brain connectivity and early language skills in toddlers, in the context of PAE. Eighty-eight toddlers (2-3 yr, 56 males), 23 of whom had PAE, underwent a diffusion MRI scan in Cape Town, South Africa, with language skills assessed using the Expressive and Receptive Communication subtests from the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Diffusion scans were preprocessed to create a structural network of regions associated with language skills using graph theory analysis. Linear regression models were used to examine moderation effects of PAE on structural network properties and language skills. Toddlers with PAE had higher structural connectivity in language networks than unexposed children. PAE moderated the relationship between structural network properties and Expressive Communication scores. None of the effects survived correction for multiple comparisons. Our findings show weak moderation effects of PAE on structural language network properties and language skills. Our study sheds light on the structural connectivity correlates of early language skills in an understudied population during a critical neurodevelopmental period, laying the foundation for future research.
Collapse
Affiliation(s)
- Mohammad Ghasoub
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Chloe Scholten
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bryce Geeraert
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Xiangyu Long
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine J. Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sivenesi Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine Lebel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Perdue MV, Geeraert BL, Manning KY, Dewey D, Lebel C. Phonological decoding ability is associated with fiber density of the left arcuate fasciculus longitudinally across reading development. Dev Cogn Neurosci 2025; 72:101537. [PMID: 40020403 PMCID: PMC11910681 DOI: 10.1016/j.dcn.2025.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Numerous studies have linked reading ability to white matter microstructure using diffusion tensor imaging, but findings have been inconsistent and lack specificity. Fiber-specific diffusion-weighted magnetic resonance imaging (dMRI) models offer enhanced precision in measuring specific microstructural features, but they have not yet been applied to examine associations between reading ability and white matter microstructure development as children learn to read. We applied constrained spherical deconvolution (CSD) and fiber-specific modelling to characterize developmental changes in fiber density of key white matter tracts of the reading network, and investigated associations between tract-wise fiber density and children's phonological decoding abilities. Fiber density was measured from ages 2-13 years, and decoding ability (pseudoword reading) was assessed at ages 6 years and older. Higher decoding ability was associated with greater fiber density in the left arcuate fasciculus, and effects remained consistent over time. Follow-up analysis revealed that asymmetry changes in the arcuate fasciculus were moderated by decoding ability: good decoders showed leftward asymmetry from early childhood onward, while poorer decoders shifted toward leftward asymmetry over time. These results suggest that densely organized fibers in the left arcuate fasciculus serve as a foundation for the development of reading skills from the pre-reading stage through fluent reading.
Collapse
Affiliation(s)
- Meaghan V Perdue
- University of Calgary, Department of Radiology, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Hotchkiss Brain Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | - Bryce L Geeraert
- University of Calgary, Department of Radiology, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Hotchkiss Brain Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada
| | - Kathryn Y Manning
- University of Calgary, Department of Radiology, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Hotchkiss Brain Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Hotchkiss Brain Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Department of Pediatrics, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Department of Community Health Sciences, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada
| | - Catherine Lebel
- University of Calgary, Department of Radiology, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada; University of Calgary, Hotchkiss Brain Institute, 28 Oki Drive NW, Calgary, Alberta T3B 6A8, Canada
| |
Collapse
|
3
|
Sagi R, Taylor JSH, Neophytou K, Cohen T, Rapp B, Rastle K, Ben-Shachar M. White matter associations with spelling performance. Brain Struct Funct 2024; 229:2115-2135. [PMID: 38528269 PMCID: PMC11611966 DOI: 10.1007/s00429-024-02775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/12/2024] [Indexed: 03/27/2024]
Abstract
Multiple neurocognitive processes are involved in the highly complex task of producing written words. Yet, little is known about the neural pathways that support spelling in healthy adults. We assessed the associations between performance on a difficult spelling-to-dictation task and microstructural properties of language-related white matter pathways, in a sample of 73 native English-speaking neurotypical adults. Participants completed a diffusion magnetic resonance imaging scan and a cognitive assessment battery. Using constrained spherical deconvolution modeling and probabilistic tractography, we reconstructed dorsal and ventral white matter tracts of interest, bilaterally, in individual participants. Spelling associations were found in both dorsal and ventral stream pathways. In high-performing spellers, spelling scores significantly correlated with fractional anisotropy (FA) within the left inferior longitudinal fasciculus, a ventral stream pathway. In low-performing spellers, spelling scores significantly correlated with FA within the third branch of the right superior longitudinal fasciculus, a dorsal pathway. An automated analysis of spelling errors revealed that high- and low- performing spellers also differed in their error patterns, diverging primarily in terms of the orthographic distance between their errors and the correct spelling, compared to the phonological plausibility of their spelling responses. The results demonstrate the complexity of the neurocognitive architecture of spelling. The distinct white matter associations and error patterns detected in low- and high- performing spellers suggest that they rely on different cognitive processes, such that high-performing spellers rely more on lexical-orthographic representations, while low-performing spellers rely more on phoneme-to-grapheme conversion.
Collapse
Affiliation(s)
- Romi Sagi
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - J S H Taylor
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Kyriaki Neophytou
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA
- Department of Neurology, Johns Hopkins Medicine, Baltimore, USA
| | - Tamar Cohen
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - Kathleen Rastle
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
5
|
Gupta G, Arrington CN, Morris R. Sex Differences in White Matter Diffusivity in Children with Developmental Dyslexia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:721. [PMID: 38929300 PMCID: PMC11201584 DOI: 10.3390/children11060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Despite the high prevalence of developmental dyslexia in the U.S. population, research remains limited and possibly biased due to the overrepresentation of males in most dyslexic samples. Studying biological sex differences in the context of developmental dyslexia can help provide a more complete understanding of the neurological markers that underly this disorder. The current study aimed to explore sex differences in white matter diffusivity in typical and dyslexic samples in third and fourth graders. Participants were asked to complete behavioral/cognitive assessments at baseline followed by MRI scanning and diffusion-weighted imaging sequences. A series of ANOVAs were conducted for comparing group membership (developmental dyslexia or typically developing), gender status (F/M), and white matter diffusivity in the tracts of interest. The Results indicated significant differences in fractional anisotropy in the left hemisphere components of the inferior and superior (parietal and temporal) longitudinal fasciculi. While males with dyslexia had lower fractional anisotropy in these tracts compared to control males, no such differences were found in females. The results of the current study may suggest that females may use a more bilateral/alternative reading network.
Collapse
Affiliation(s)
- Gehna Gupta
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
| | - C. Nikki Arrington
- Department of Neuroscience, Georgia State University, Atlanta, GA 30303, USA;
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| | - Robin Morris
- Georgia State/Georgia Tech Center for Advanced Brain Imaging, Atlanta, GA 30318, USA;
- Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
- Center for Translational Research in Neuroimaging and Data Science, Atlanta, GA 30303, USA
| |
Collapse
|
6
|
Han Y, Jing Y, Shi Y, Mo H, Wan Y, Zhou H, Deng F. The role of language-related functional brain regions and white matter tracts in network plasticity of post-stroke aphasia. J Neurol 2024; 271:3095-3115. [PMID: 38607432 DOI: 10.1007/s00415-024-12358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The neural mechanisms underlying language recovery after a stroke remain controversial. This review aimed to summarize the plasticity and reorganization mechanisms of the language network through neuroimaging studies. Initially, we discussed the involvement of right language homologues, perilesional tissue, and domain-general networks. Subsequently, we summarized the white matter functional mapping and remodeling mechanisms associated with language subskills. Finally, we explored how non-invasive brain stimulation (NIBS) promoted language recovery by inducing neural network plasticity. It was observed that the recruitment of right hemisphere language area homologues played a pivotal role in the early stages of frontal post-stroke aphasia (PSA), particularly in patients with larger lesions. Perilesional plasticity correlated with improved speech performance and prognosis. The domain-general networks could respond to increased "effort" in a task-dependent manner from the top-down when the downstream language network was impaired. Fluency, repetition, comprehension, naming, and reading skills exhibited overlapping and unique dual-pathway functional mapping models. In the acute phase, the structural remodeling of white matter tracts became challenging, with recovery predominantly dependent on cortical activation. Similar to the pattern of cortical activation, during the subacute and chronic phases, improvements in language functions depended, respectively, on the remodeling of right white matter tracts and the restoration of left-lateralized language structural network patterns. Moreover, the midline superior frontal gyrus/dorsal anterior cingulate cortex emerged as a promising target for NIBS. These findings offered theoretical insights for the early personalized treatment of aphasia after stroke.
Collapse
Affiliation(s)
- Yue Han
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jing
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Health Management (Physical Examination) Center, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Hongbin Mo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafei Wan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China.
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Slaby RJ, Arrington CN, Malins J, Sevcik RA, Pugh KR, Morris R. Properties of white matter tract diffusivity in children with developmental dyslexia and comorbid attention deficit/hyperactivity disorder. J Neurodev Disord 2023; 15:25. [PMID: 37550628 PMCID: PMC10408076 DOI: 10.1186/s11689-023-09495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Developmental dyslexia (DD) and attention deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders. Individuals with DD or ADHD have both been shown to have deficits in white matter tracts associated with reading and attentional control networks. However, white matter diffusivity in individuals comorbid with both DD and ADHD (DD + ADHD) has not been specifically explored. METHODS Participants were 3rd and 4th graders (age range = 7 to 11 years; SD = 0.69) from three diagnostic groups ((DD (n = 40), DD + ADHD (n = 22), and typical developing (TD) (n = 20)). Behavioral measures of reading and attention alongside measures of white matter diffusivity were collected for all participants. RESULTS DD + ADHD and TD groups differed in mean fractional anisotropy (FA) for the left and right Superior Longitudinal Fasciculus (SLF)-Parietal Terminations and SLF-Temporal Terminations. Mean FA for the DD group across these SLF tracts fell between the lower DD + ADHD and higher TD averages. No differences in mean diffusivity nor significant brain-behavior relations were found. CONCLUSIONS Findings suggest that WM diffusivity in the SLF increases along a continuum across DD + ADHD, DD, and TD.
Collapse
Affiliation(s)
- Ryan J Slaby
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
- Department of Psychology, University of Milano-Bicocca, Piazza Dell' Ateneo Nuovo,1, 20126, Milan, Italy
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA.
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA.
- Georgia State University, Center for Translational Research in Neuroimaging and Data Science, 55 Park Place, 18th Floor, Atlanta, GA, 30303, USA.
| | - Jeffrey Malins
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
| | - Rose A Sevcik
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
| | - Kenneth R Pugh
- Yale University, Haskins Laboratories, 300 George Street, Suite 900, New Haven, CT, 06511, USA
| | - Robin Morris
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA, 30303, USA
- GSU/Georgia Tech Center for Advanced Brain Imaging, 831 Marietta St NW, Atlanta, GA, 30318, USA
- Georgia State University, Center for Translational Research in Neuroimaging and Data Science, 55 Park Place, 18th Floor, Atlanta, GA, 30303, USA
| |
Collapse
|
8
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
9
|
Feng G, Yan X, Shen L, Perkins K, Mao J, Wu Y, Shi L, Cao F. Distinct neural correlates of poor decoding and poor comprehension in children with reading disability. Cereb Cortex 2023; 33:3239-3254. [PMID: 35848850 DOI: 10.1093/cercor/bhac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/13/2022] Open
Abstract
Reading disability (RD) can manifest itself as a word decoding problem or a reading comprehension problem. In the current study, we identified 3 subtypes of RD: poor decoders (PD), poor comprehenders (PC), and poor-in-both (PB). We found that PD had greater deficits in meta-linguistic skills such as phonological awareness, orthographic skills, and morphological skills than PC, whereas PC had greater deficits in listening comprehension than PD. In the brain, we also found different patterns of deficits during an auditory rhyming judgment task using functional magnetic resonance imaging. PD showed less activation than PC and age controls in the left dorsal inferior frontal gyrus (IFG) and pre-supplementary motor area (SMA), brain activation of which was correlated with phonological awareness and working memory. In contrast, PC showed less activation in the left fusiform gyrus than PD and age controls, which was correlated with reading comprehension fluency and morphological skill. Last, PB showed both PD's and PC's deficits, as well as additional deficits in the bilateral lingual gyri. Our findings contribute to revealing different neural signatures of poor decoding and poor comprehension, which are distinct disorders but co-occur very often. These findings implicate possibility and necessity of precise diagnosis and individualized intervention.
Collapse
Affiliation(s)
- Guoyan Feng
- Department of Psychology, Sun Yat-Sen University, 132 East Outer Ring Road, University Town, Panyu Ddiatrict, Guangzhou, 510006, China
- School of Management, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Xiaohui Yan
- School of Education Science, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, China
| | - Linling Shen
- Department of Psychology, Sun Yat-Sen University, 132 East Outer Ring Road, University Town, Panyu Ddiatrict, Guangzhou, 510006, China
| | - Kyle Perkins
- Department of Teaching and Learning, College of Arts, Sciences and Education, Florida International University (retired professor), Miami, FL 33199, USA
| | - Jiaqi Mao
- Department of Psychology, Sun Yat-Sen University, 132 East Outer Ring Road, University Town, Panyu Ddiatrict, Guangzhou, 510006, China
| | - Yu Wu
- Department of Psychology, Sun Yat-Sen University, 132 East Outer Ring Road, University Town, Panyu Ddiatrict, Guangzhou, 510006, China
| | - Liping Shi
- Department of Psychology, Sun Yat-Sen University, 132 East Outer Ring Road, University Town, Panyu Ddiatrict, Guangzhou, 510006, China
| | - Fan Cao
- Department of Psychology, the University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Kallankari H, Taskila HL, Heikkinen M, Hallman M, Saunavaara V, Kaukola T. Microstructural alterations in association tracts and language abilities in schoolchildren born very preterm and with poor fetal growth. Pediatr Radiol 2023; 53:94-103. [PMID: 35773359 PMCID: PMC9816217 DOI: 10.1007/s00247-022-05418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prematurity and perinatal risk factors may influence white matter microstructure. In turn, these maturational changes may influence language development in this high-risk population of children. OBJECTIVE To evaluate differences in the microstructure of association tracts between preterm and term children and between preterm children with appropriate growth and those with fetal growth restriction and to study whether the diffusion tensor metrics of these tracts correlate with language abilities in schoolchildren with no severe neurological impairment. MATERIALS AND METHODS This study prospectively followed 56 very preterm children (mean gestational age: 28.7 weeks) and 21 age- and gender-matched term children who underwent diffusion tensor imaging at a mean age of 9 years. We used automated probabilistic tractography and measured fractional anisotropy in seven bilateral association tracts known to belong to the white matter language network. Both groups participated in language assessment using five standardised tests at the same age. RESULTS Preterm children had lower fractional anisotropy in the right superior longitudinal fasciculus 1 compared to term children (P < 0.05). Preterm children with fetal growth restriction had lower fractional anisotropy in the left inferior longitudinal fasciculus compared to preterm children with appropriate fetal growth (P < 0.05). Fractional anisotropy in three dorsal tracts and in two dorsal and one ventral tract had a positive correlation with language assessments among preterm children and preterm children with fetal growth restriction, respectively (P < 0.05). CONCLUSION There were some microstructural differences in language-related tracts between preterm and term children and between preterm children with appropriate and those with restricted fetal growth. Children with better language abilities had a higher fractional anisotropy in distinct white matter tracts.
Collapse
Affiliation(s)
- Hanna Kallankari
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Child Neurology, Oulu University Hospital, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland.
| | - Hanna-Leena Taskila
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| | - Minna Heikkinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Child Language Research Center, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Virva Saunavaara
- PET Center, Turku University Hospital, Turku, Finland ,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuula Kaukola
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
11
|
Brignoni-Pérez E, Dubner SE, Ben-Shachar M, Berman S, Mezer AA, Feldman HM, Travis KE. White matter properties underlying reading abilities differ in 8-year-old children born full term and preterm: A multi-modal approach. Neuroimage 2022; 256:119240. [PMID: 35490913 PMCID: PMC9213558 DOI: 10.1016/j.neuroimage.2022.119240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits. We used two MRI methods to calculate associations of reading and white matter properties in FT and PT children. Participants (N=79: 36 FT and 43 PT) were administered the Gray's Oral Reading Test at age 8. We segmented three dorsal (left arcuate and bilateral superior longitudinal fasciculus) and four ventral (bilateral inferior longitudinal fasciculus and bilateral uncinate) tracts and quantified (1) FA from dMRI and (2) R1 from quantitative T1 relaxometry. We examined correlations between reading scores and these metrics along the trajectories of the tracts. Reading positively correlated with FA in segments of left arcuate and bilateral superior longitudinal fasciculi in FT children; no FA associations were found in PT children. Reading positively correlated with R1 in segments of the left superior longitudinal, right uncinate, and left inferior longitudinal fasciculi in PT children; no R1 associations were found in FT children. Birth group significantly moderated the associations of reading and white matter metrics. Myelin content of white matter may contribute to individual differences in PT but not FT children.
Collapse
Affiliation(s)
- Edith Brignoni-Pérez
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States
| | - Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States.
| |
Collapse
|
12
|
Meisler SL, Gabrieli JDE. A large-scale investigation of white matter microstructural associations with reading ability. Neuroimage 2022; 249:118909. [PMID: 35033675 PMCID: PMC8919267 DOI: 10.1016/j.neuroimage.2022.118909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
Reading involves the functioning of a widely distributed brain network, and white matter tracts are responsible for transmitting information between constituent network nodes. Several studies have analyzed fiber bundle microstructural properties to shed insights into the neural basis of reading abilities and disabilities. Findings have been inconsistent, potentially due to small sample sizes and varying methodology. To address this, we analyzed a large data set of 686 children ages 5-18 using state-of-the-art neuroimaging acquisitions and processing techniques. We searched for associations between fractional anisotropy (FA) and single-word and single-nonword reading skills in children with diverse reading abilities across multiple tracts previously thought to contribute to reading. We also looked for group differences in tract FA between typically reading children and children with reading disabilities. FA of the white matter increased with age across all participants. There were no significant correlations between overall reading abilities and tract FAs across all children, and no significant group differences in tract FA between children with and without reading disabilities. There were associations between FA and nonword reading ability in older children (ages 9 and above). Higher FA in the right superior longitudinal fasciculus (SLF) and left inferior cerebellar peduncle (ICP) correlated with better nonword reading skills. These results suggest that letter-sound correspondence skills, as measured by nonword reading, are associated with greater white matter coherence among older children in these two tracts, as indexed by higher FA.
Collapse
Affiliation(s)
- Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Cheema K, Sweneya S, Craig J, Huynh T, Ostevik AV, Reed A, Cummine J. An investigation of white matter properties as they relate to spelling behaviour in skilled and impaired readers. Neuropsychol Rehabil 2022:1-29. [PMID: 35323090 DOI: 10.1080/09602011.2022.2053168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RESULTS While the inferior longitudinal fasciculus was more strongly related to spelling behaviour in skilled adults, the uncinate fasciculus was more strongly related to spelling behaviour in impaired adults. We found strong left lateralization of the arcuate fasciculus and inferior longitudinal fasciculus in both groups. However, lateralization of the inferior frontal occipital fasciculus was more strongly related to spelling response time behaviour in skilled adults, whereas lateralization of the uncinate fasciculus was more strongly related to spelling accuracy behaviour in the impaired adults. CONCLUSION This study provides some useful information for understanding the underlying white matter pathways that support spelling in skilled and impaired adults and underscore the advantage of adopting multiple spelling tasks and outcomes (i.e., response time and accuracy) to better characterize brain-behaviour relationships in skilled and impaired adults.
Collapse
Affiliation(s)
- Kulpreet Cheema
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sarah Sweneya
- Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Julia Craig
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Truc Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amberley V Ostevik
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alesha Reed
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Koirala N, Perdue MV, Su X, Grigorenko EL, Landi N. Neurite density and arborization is associated with reading skill and phonological processing in children. Neuroimage 2021; 241:118426. [PMID: 34303796 PMCID: PMC8539928 DOI: 10.1016/j.neuroimage.2021.118426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Studies exploring neuroanatomic correlates of reading have associated white matter tissue properties with reading disability and related componential skills (e.g., phonological and single-word reading skills). Mean diffusivity (MD) and fractional anisotropy (FA) are widely used surrogate measures of tissue microstructure with high sensitivity; however, they lack specificity for individual microstructural features. Here we investigated neurite features with higher specificity in order to explore the underlying microstructural architecture. Methods: Diffusion weighted images (DWI) and a battery of behavioral and neuropsychological assessments were obtained from 412 children (6 – 16 years of age). Neurite indices influenced by orientation and density were attained from 23 major white matter tracts. Partial correlations were calculated between neurite indices and indicators of phonological processing and single-word reading skills using age, sex, and image quality metrics as covariates. In addition, mediation analysis was performed using structural equation modeling (SEM) to evaluate the indirect effect of phonological processing on reading skills. Results: We observed that orientation dispersion index (ODI) and neurite density index (NDI) were negatively correlated with single-word reading and phonological processing skills in several tracts previously shown to have structural correlates with reading efficiency. We also observed a significant and substantial effect in which phonological processing mediated the relationship between neurite indices and reading skills in most tracts. Conclusions: In sum, we established that better reading and phonological processing skills are associated with greater tract coherence (lower ODI) and lower neurite density (lower NDI). We interpret these findings as evidence that reading is associated with neural architecture and its efficiency.
Collapse
Affiliation(s)
- Nabin Koirala
- Haskins Laboratories, New Haven, Connecticut, United States.
| | - Meaghan V Perdue
- Haskins Laboratories, New Haven, Connecticut, United States; Department of Psychological Sciences, University of Connecticut, Connecticut, United States
| | - Xing Su
- Haskins Laboratories, New Haven, Connecticut, United States
| | - Elena L Grigorenko
- Haskins Laboratories, New Haven, Connecticut, United States; Department of Psychology, University of Houston, Texas, United States
| | - Nicole Landi
- Haskins Laboratories, New Haven, Connecticut, United States; Department of Psychological Sciences, University of Connecticut, Connecticut, United States
| |
Collapse
|
15
|
Zemmoura I, Burkhardt E, Herbet G. The inferior longitudinal fasciculus: anatomy, function and surgical considerations. J Neurosurg Sci 2021; 65:590-604. [PMID: 33940783 DOI: 10.23736/s0390-5616.21.05391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inferior longitudinal fasciculus (ILF) is a large association white matter tract that interconnects, in a bidirectional manner, the occipital cortex to anterior temporal structures. In view of both its pattern of cortical projections and its recently evidenced multilayered anatomical organization, the ILF has been supposed to be vital for maintaining a wide range of cognitive and affective processes operating on the visual modality. As tumors commonly damage the temporal cortex, an updated knowledge of the functional anatomy of this ventral tract is needed to better map and monitor online its potential functions and thus to improve surgical outcomes. In this review, we first describe the gross anatomy of the ILF, its array of cortical terminations and its different layers. We then provide a comprehensive review of the functions that have been assigned to the tract. We successively address its role in object and face recognition, visual emotion recognition, language and semantic, including reading, and memory. It is especially shown that the ILF is critically involved in visually-guided behaviors, as its breakdown, both in sudden neurosurgical and progressive neurodegenerative diseases, is commonly associated with visual-specific neuropsychological syndromes (e.g. prosopagnosia and pure alexia, and so on). In the last section, we discuss the extent to which the ILF can reorganize in response to glioma infiltration and to surgery, and provide some reflections on how its intra-operative mapping may be refined.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,CHRU de Tours, Neurosurgery Department, Tours, France -
| | - Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS UMR5203, INSERM U1191, Montpellier, France.,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
16
|
Greeley B, Weber RC, Denyer R, Ferris JK, Rubino C, White K, Boyd LA. Aberrant Cerebellar Resting-State Functional Connectivity Related to Reading Performance in Struggling Readers. Dev Sci 2020; 24:e13022. [PMID: 32687663 DOI: 10.1111/desc.13022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Reading is a critical neurodevelopmental skill for school-aged children, which requires a distributed network of brain regions including the cerebellum. However, we do not know how functional connectivity between the cerebellum and other brain regions contributes to reading. Here we used resting-state functional connectivity to understand the cerebellum's role in decoding, reading speed, and comprehension in a group of struggling readers (RD) and a group of adolescents and children with typical reading abilities (TD). We observed an increase in functional connectivity between the sensorimotor network and the left angular gyrus, left lateral occipital cortex, and right inferior frontal gyrus in the RD group relative to the TD group. Additionally, functional connectivity between the cerebellum network and the precentral gyrus was decreased and was related to reading fluency in the RD group. Seed-based analysis revealed increased functional connectivity between crus 1, lobule 6, and lobule 8 of the cerebellum and brain regions related to the default mode network and the motor system for the RD group. We also found associations between reading performance and the functional connectivity between lobule 8 of the cerebellum and the left angular gyrus for both groups, with stronger relationships in the TD group. Specifically, the RD group displayed a positive relationship between functional connectivity, whereas the TD group displayed the opposite relationship. These results suggest that the cerebellum is involved in multiple components of reading performance and that functional connectivity differences observed in the RD group may contribute to poor reading performance.
Collapse
Affiliation(s)
- Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Rachel C Weber
- Department of Educational & Counselling Psychology, and Special Education, University of British Columbia, Vancouver, Canada
| | - Ronan Denyer
- University of British Columbia, Neuroscience, Vancouver, Canada
| | - Jennifer K Ferris
- University of British Columbia, Rehabilitation Sciences, Vancouver, Canada
| | - Cristina Rubino
- University of British Columbia, Rehabilitation Sciences, Vancouver, Canada
| | - Katherine White
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Yablonski M, Ben-Shachar M. Sensitivity to word structure in adult Hebrew readers is associated with microstructure of the ventral reading pathways. Cortex 2020; 128:234-253. [DOI: 10.1016/j.cortex.2020.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
|
18
|
Bassell J, Srivastava S, Prohl AK, Scherrer B, Kapur K, Filip-Dhima R, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Buxbaum JD, Kolevzon A, Warfield SK, Sahin M. Diffusion Tensor Imaging Abnormalities in the Uncinate Fasciculus and Inferior Longitudinal Fasciculus in Phelan-McDermid Syndrome. Pediatr Neurol 2020; 106:24-31. [PMID: 32107139 PMCID: PMC7190002 DOI: 10.1016/j.pediatrneurol.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND This cohort study utilized diffusion tensor imaging tractography to compare the uncinate fasciculus and inferior longitudinal fasciculus in children with Phelan-McDermid syndrome with age-matched controls and investigated trends between autism spectrum diagnosis and the integrity of the uncinate fasciculus and inferior longitudinal fasciculus white matter tracts. METHODS This research was conducted under a longitudinal study that aims to map the genotype, phenotype, and natural history of Phelan-McDermid syndrome and identify biomarkers using neuroimaging (ClinicalTrial NCT02461420). Patients were aged three to 21 years and underwent longitudinal neuropsychologic assessment over 24 months. MRI processing and analyses were completed using previously validated image analysis software distributed as the Computational Radiology Kit (http://crl.med.harvard.edu/). Whole-brain connectivity was generated for each subject using a stochastic streamline tractography algorithm, and automatically defined regions of interest were used to map the uncinate fasciculus and inferior longitudinal fasciculus. RESULTS There were 10 participants (50% male; mean age 11.17 years) with Phelan-McDermid syndrome (n = 8 with autism). Age-matched controls, enrolled in a separate longitudinal study (NIH R01 NS079788), underwent the same neuroimaging protocol. There was a statistically significant decrease in the uncinate fasciculus fractional anisotropy measure and a statistically significant increase in uncinate fasciculus mean diffusivity measure, in the patient group versus controls in both right and left tracts (P ≤ 0.024). CONCLUSION Because the uncinate fasciculus plays a critical role in social and emotional interaction, this tract may underlie some deficits seen in the Phelan-McDermid syndrome population. These findings need to be replicated in a larger cohort.
Collapse
Affiliation(s)
- Julia Bassell
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna K. Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama,Civitan International Research Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Jonathan A. Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York,Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, New York, New York,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | | |
Collapse
|
19
|
Maternal reading and fluency abilities are associated with diffusion properties of ventral and dorsal white matter tracts in their preschool-age children. Brain Cogn 2020; 140:105532. [PMID: 32007789 DOI: 10.1016/j.bandc.2020.105532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Early language exposure and shared parent-child reading, as assessed by maternal reading ability and fluency, affect the child's future language and cognitive abilities. The aim of the current study was to explore the association between maternal reading ability and fluency and diffusion properties of language- and cognition-related white matter tracts in their pre-school age children using diffusion tensor imaging (DTI). DTI data were acquired from fifteen girls (mean age: 3.83 ± 0.49 years). Reading ability and fluency were assessed in their mothers. Effects of hemisphere and node on diffusion properties were measured at 100 points along white matter tracts related to language and cognitive abilities. Significant positive correlations were found between maternal reading ability and fractional anisotropy in left and right dorsal and ventral language and executive functions-related tracts, while maternal reading fluency was associated with higher fractional anisotropy in ventral tracts, mainly in the left hemisphere. Fractional Anisotropy was significantly higher in the left compared to the right arcuate, cingulum cingulate, and inferior longitudinal fasciculus and higher in the right compared to the left superior longitudinal fasciculus. Our results signify the importance of maternal reading as a facilitator of the child's future language and cognitive abilities.
Collapse
|
20
|
Wang K, Li X, Huang R, Ding J, Song L, Han Z. The left inferior longitudinal fasciculus supports orthographic processing: Evidence from a lesion-behavior mapping analysis. BRAIN AND LANGUAGE 2020; 201:104721. [PMID: 31865263 DOI: 10.1016/j.bandl.2019.104721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Orthographic processing is a critical stage in visual word recognition. However, the white-matter pathways that support this processing are unclear, as prior findings might have been confounded by impure behavioral measures, potential structural reorganization of the brain, and limited sample sizes. To address this issue, we investigated the correlations between the integrity of 20 major tracts in the whole brain and the pure orthographic index across 67 patients with short-term brain damage. The integrity of the tracts was measured by the lesion volume percentage and the mean fractional anisotropy value. The orthographic index was calculated as the residual of the orthographic tasks after regressing out corresponding nonorthographic tasks and the orthographic factor from the principal component analysis (PCA) on the basis of four orthographic tasks. We found significant correlations associated with the left inferior longitudinal fasciculus (ILF), even after controlling for the influence of potential confounding variables. These observations strengthen evidence for the vital role of the left ILF in orthographic processing.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaonan Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junhua Ding
- Department of Neurosurgery, Baylor College of Medicine, Houston 77030, USA
| | - Luping Song
- Shenzhen University General Hospital, Department of Rehabilitation Medicine, Shenzhen 518055, China.
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Del Tufo SN, Earle FS, Cutting LE. The impact of expressive language development and the left inferior longitudinal fasciculus on listening and reading comprehension. J Neurodev Disord 2019; 11:37. [PMID: 31838999 PMCID: PMC6912995 DOI: 10.1186/s11689-019-9296-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND During the first 3-years of life, as the brain undergoes dramatic growth, children begin to develop speech and language. Hallmarks of this progression are seen when children reach developmental milestones, forming the foundation of language. Expressive language milestones, such as the production of a child's first word, are delayed in 5-8% of children. While for some children delays in reaching these milestones are harbingers of developmental disorders, for others expressive language delays appear to resolve. Regardless of whether or not early language skills appear resolved, difficulty with later comprehension is a likely outcome. Whether this heightened risk for poor comprehension differs based on text features, individual characteristics, or receipt of intervention remains unknown. Moreover, this relationship between expressive language development and comprehension is not yet linked to neurobiology, though the inferior longitudinal fasciculus (ILF) is a potential neurobiological correlate. Therefore, we investigated the impact of, and interactions between, expressive language development, early intervention, and the ILF on comprehension. METHODS Longitudinal recurrent survival analyses predicted the risk of answering a comprehension question incorrectly. Predictors of comprehension included expressive language development, passage features, participant characteristics, fractional anisotropy, receipt of early intervention, and later diagnosis of speech or language disorders. RESULTS Children with later expressive language milestones had poorer comprehension. When comprehension text features were examined, children with later milestones had poorer listening and reading comprehension, and poorer narrative and expository comprehension. The left ILF acted as a neurodevelopmental correlate, one that moderated the relationship between expressive language milestones and comprehension. Specifically, the left ILF exacerbated the relationship for those who did not receive early intervention and buffered the relationship for those who received intervention services. Early intervention decreased the risk of poor comprehension by 39% for children later diagnosed with a speech or language disorder. CONCLUSIONS Early intervention should be provided for children with delayed expressive language milestones, particularly those who are at risk for speech or language disorders. The ILF plays a critical role in the relationship between expressive language development and comprehension, which may be that of a protective factor for children with the most severe early issues with speech and language.
Collapse
Affiliation(s)
- Stephanie N Del Tufo
- Peabody College of Education and Human Development, Vanderbilt University, 416C One Magnolia Circle, Box 228, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, 6133 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University, 110 Magnolia Circle, Nashville, TN, 37203, USA.,College of Education and Human Development, University of Delaware, 106 Alison Hall West, Newark, DE, 19716, USA
| | - F Sayako Earle
- Communication Sciences and Disorders, University of Delaware, 100 Discovery Boulevard, Newark, DE, 19713, USA
| | - Laurie E Cutting
- Peabody College of Education and Human Development, Vanderbilt University, 416C One Magnolia Circle, Box 228, Nashville, TN, 37203, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, 6133 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, USA. .,Vanderbilt Kennedy Center, Vanderbilt University, 110 Magnolia Circle, Nashville, TN, 37203, USA.
| |
Collapse
|
22
|
Yablonski M, Rastle K, Taylor J, Ben-Shachar M. Structural properties of the ventral reading pathways are associated with morphological processing in adult English readers. Cortex 2019; 116:268-285. [DOI: 10.1016/j.cortex.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
|
23
|
Lebel C, Benischek A, Geeraert B, Holahan J, Shaywitz S, Bakhshi K, Shaywitz B. Developmental trajectories of white matter structure in children with and without reading impairments. Dev Cogn Neurosci 2019; 36:100633. [PMID: 30877928 PMCID: PMC6969254 DOI: 10.1016/j.dcn.2019.100633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/20/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022] Open
Abstract
Left temporal-parietal white matter structure is consistently associated with reading abilities in children. A small number of longitudinal studies show that development of this area over time is altered in children with impaired reading. However, it remains unclear how brain developmental patterns relate to specific reading skills such as fluency, which is a critical part of reading comprehension. Here, we examined white matter development trajectories in children with dysfluent reading (20 dysfluent and inaccurate readers, 36 dysfluent and accurate readers) compared to non-impaired readers (n = 14) over 18 months. We found typical age-related increases of fractional anisotropy (FA) in bilateral temporal-parietal areas in non-impaired readers, but a lack of similar changes in dysfluent readers. We also found steeper decreases of mean diffusivity (MD) in the right corona radiata and left uncinate fasciculus in dysfluent inaccurate readers compared to dysfluent accurate readers. Changes in diffusion parameters were correlated with changes in reading scores over time. These results suggest delayed white matter development in dysfluent readers, and show maturational differences between children with different types of reading impairment. Overall, these results highlight the importance of considering developmental trajectories, and demonstrate that the window of plasticity may be different for different children.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Alina Benischek
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bryce Geeraert
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - John Holahan
- The Yale Center for Dyslexia and Creativity, Yale University, New Haven, CT, United States
| | - Sally Shaywitz
- The Yale Center for Dyslexia and Creativity, Yale University, New Haven, CT, United States
| | - Kirran Bakhshi
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bennett Shaywitz
- The Yale Center for Dyslexia and Creativity, Yale University, New Haven, CT, United States
| |
Collapse
|
24
|
Borchers LR, Bruckert L, Dodson CK, Travis KE, Marchman VA, Ben-Shachar M, Feldman HM. Microstructural properties of white matter pathways in relation to subsequent reading abilities in children: a longitudinal analysis. Brain Struct Funct 2019; 224:891-905. [PMID: 30539288 PMCID: PMC6420849 DOI: 10.1007/s00429-018-1813-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023]
Abstract
Microstructural properties of white matter pathways are associated with concurrent reading abilities in children. In this longitudinal study, we asked whether properties of white matter pathways at the onset of learning to read would be associated with reading abilities at older ages. Children (N = 37) with a wide range of reading abilities completed standardized measures of language and phonological awareness and diffusion MRI at age 6 years. Mean tract-fractional anisotropy (FA) was extracted from reading-related pathways. At age 8, the same children were re-assessed using a standardized reading measure. Using linear regressions, we examined the contribution of tract-FA at age 6 to reading outcome at age 8, beyond known demographic and pre-literacy predictors of reading. Tract-FA of the left arcuate, left and right superior longitudinal fasciculus (SLF), and left inferior cerebellar peduncle (ICP) made unique contributions to reading outcome after consideration of sex and family history of reading delays. Tract-FA of the left and right SLF and left ICP made unique contributions to reading outcome after the addition of pre-literacy skills. Thus, cerebellar and bilateral cortical pathways represented a network associated with subsequent reading abilities. Early white matter properties may be associated with other neuropsychological functions that predict reading or may influence reading development, independent of reading-related abilities. Tract FA at early stages of learning to read may serve as a biomarker of later reading abilities.
Collapse
Affiliation(s)
- Lauren R Borchers
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Cory K Dodson
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
- Department of English Literature and Linguistics, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA.
| |
Collapse
|
25
|
Williamson BJ, Altaye M, Kadis DS. Detrended connectometry analysis to assess white matter correlates of performance in childhood. Neuroimage 2019; 186:637-646. [DOI: 10.1016/j.neuroimage.2018.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
|
26
|
Herbet G, Zemmoura I, Duffau H. Functional Anatomy of the Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. Front Neuroanat 2018; 12:77. [PMID: 30283306 PMCID: PMC6156142 DOI: 10.3389/fnana.2018.00077] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The inferior longitudinal fasciculus (ILF) is a long-range, associative white matter pathway that connects the occipital and temporal-occipital areas of the brain to the anterior temporal areas. In view of the ILF's anatomic connections, it has been suggested that this pathway has a major role in a relatively large array of brain functions. Until recently, however, the literature data on these potential functions were scarce. Here, we review the key findings of recent anatomic, neuromodulation, and neuropsychological studies. We also summarize reports on how this tract is disrupted in a wide range of brain disorders, including psychopathologic, neurodevelopmental, and neurologic diseases. Our review reveals that the ILF is a multilayered, bidirectional tract involved in processing and modulating visual cues and thus in visually guided decisions and behaviors. Accordingly, sudden disruption of the ILF by neurologic insult is mainly associated with neuropsychological impairments of visual cognition (e.g., visual agnosia, prosopagnosia, and alexia). Furthermore, disruption of the ILF may constitute the pathophysiologic basis for visual hallucinations and socio-emotional impairments in schizophrenia, as well as emotional difficulties in autism spectrum disorder. Degeneration of the ILF in neurodegenerative diseases affecting the temporal lobe may explain (at least in part) the gradual onset of semantic and lexical access difficulties. Although some of the functions mediated by the ILF appear to be relatively lateralized, observations from neurosurgery suggest that disruption of the tract's anterior portion can be dynamically compensated for by the contralateral portion. This might explain why bilateral disruption of the ILF in either acute or progressive disease is highly detrimental in neuropsychological terms.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Ilyess Zemmoura
- Department of Neurosurgery, Tours University Medical Center, Tours, France
- UMR 1253, iBrain, INSERM, University of Tours, Tours, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
27
|
Žarić G, Timmers I, Gerretsen P, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Atypical White Matter Connectivity in Dyslexic Readers of a Fairly Transparent Orthography. Front Psychol 2018; 9:1147. [PMID: 30042708 PMCID: PMC6049043 DOI: 10.3389/fpsyg.2018.01147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Atypical structural properties of the brain's white matter bundles have been associated with failing reading acquisition in developmental dyslexia. Because these white matter properties may show dynamic changes with age and orthographic depth, we examined fractional anisotropy (FA) along 16 white matter tracts in 8- to 11-year-old dyslexic (DR) and typically reading (TR) children learning to read in a fairly transparent orthography (Dutch). Our results showed higher FA values in the bilateral anterior thalamic radiations of DRs and FA values of the left thalamic radiation scaled with behavioral reading-related scores. Furthermore, DRs tended to have atypical FA values in the bilateral arcuate fasciculi. Children's age additionally predicted FA values along the tracts. Together, our findings suggest differential contributions of cortical and thalamo-cortical pathways to the developing reading network in dyslexic and typical readers, possibly indicating prolonged letter-by-letter reading or increased attentional and/or working memory demands in dyslexic children during reading.
Collapse
Affiliation(s)
- Gojko Žarić
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Inge Timmers
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gorka Fraga González
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Jurgen Tijms
- IWAL Instituut Voor Leerproblemen, Amsterdam, Netherlands
| | | | - Leo Blomert
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| |
Collapse
|
28
|
Dodson CK, Travis KE, Borchers LR, Marchman VA, Ben-Shachar M, Feldman HM. White matter properties associated with pre-reading skills in 6-year-old children born preterm and at term. Dev Med Child Neurol 2018; 60:695-702. [PMID: 29722009 PMCID: PMC5993607 DOI: 10.1111/dmcn.13783] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
AIM To assess associations between white matter properties and pre-reading skills (phonological awareness and receptive and expressive language) in children born preterm and at term at the onset of reading acquisition. METHOD Six-year-old children born preterm (n=36; gestational age 22-32wks) and at term (n=43) underwent diffusion magnetic resonance imaging and behavioural assessments. Tracts were selected a priori based on findings from a study of 6-year-old children born at term: the left-hemisphere arcuate fasciculus and superior longitudinal fasciculus, and right-hemisphere uncinate fasciculus. Using linear regression, we assessed associations between fractional anisotropy of tracts and phonological awareness and receptive and expressive language scores. We investigated whether associations were moderated by prematurity. RESULTS Fractional anisotropy of the left-hemisphere arcuate fasciculus contributed unique variance to phonological awareness across birth groups. The association between fractional anisotropy of the right-hemisphere uncinate fasciculus and receptive and expressive language was significantly moderated by prematurity. INTERPRETATION A left-hemisphere tract was associated with phonological awareness in both birth groups. A right-hemisphere tract was associated with language only in the term group, suggesting that expressive and receptive language is mediated by different white matter pathways in 6-year-old children born preterm. These findings provide novel insights into similarities and differences of the neurobiology of pre-reading skills between children born preterm and at term at reading onset. WHAT THIS PAPER ADDS White matter properties and pre-reading abilities were associated in children born preterm at the onset of reading. The neurobiology of phonological awareness was similar in children born preterm versus children born at term at 6 years. The neurobiology of language was different in children born preterm versus children born at term at 6 years.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Lauren R Borchers
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan
- Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
29
|
Su M, Zhao J, Thiebaut de Schotten M, Zhou W, Gong G, Ramus F, Shu H. Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Dev Cogn Neurosci 2018; 31:11-19. [PMID: 29727819 PMCID: PMC6969203 DOI: 10.1016/j.dcn.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese is a logographic language that is different from alphabetic languages in visual and semantic complexity. Thus far, it is still unclear whether Chinese children with dyslexia show similar disruption of white matter pathways as in alphabetic languages. The present study focused on the alteration of white matter pathways in Chinese children with dyslexia. Using diffusion tensor imaging tractography, the bilateral arcuate fasciculus (AF-anterior, AF-posterior and AF-direct segments), inferior fronto-occipital fasciculus (IFOF) and inferior longitudinal fasciculus (ILF) were delineated in each individual’s native space. Compared with age-matched controls, Chinese children with dyslexia showed reduced fractional anisotropy in the left AF-direct and the left ILF. Further regression analyses revealed a functional dissociation between the left AF-direct and the left ILF. The AF-direct tract integrity was associated with phonological processing skill, an ability important for reading in all writing systems, while the ILF integrity was associated with morphological processing skill, an ability more strongly recruited for Chinese reading. In conclusion, the double disruption locus in Chinese children with dyslexia, and the functional dissociation between dorsal and ventral pathways reflect both universal and specific properties of reading in Chinese.
Collapse
Affiliation(s)
- Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France; College of Elementary Education, Capital Normal University, Beijing, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM-UPMC UMRS 1127, Paris, France
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|