1
|
Jana S, Alayash AI. Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxid Redox Signal 2025; 42:730-750. [PMID: 39846399 DOI: 10.1089/ars.2023.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 42, 730-750.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
3
|
Glass JB, Elbon CE, Williams LD. Something old, something new, something borrowed, something blue: the anaerobic microbial ancestry of aerobic respiration. Trends Microbiol 2023; 31:135-141. [PMID: 36058785 DOI: 10.1016/j.tim.2022.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Aerobic respiration evolved by bricolage, with modules cobbled together as microbial biochemistry coevolved with Earth's geochemistry. The mitochondrial electron transport chain represents a patchwork of respiratory modules inherited from microbial methanogenesis, iron oxidation, anoxygenic photosynthesis, and denitrification pathways, and preserves a biochemical record of Earth's redox environment over its four-billion-year history. Imprints of the anoxic early Earth are recognizable in Complex I's numerous iron-sulfur cofactors and vestigial binding sites for ferredoxin, nickel-iron, and molybdopterin, whereas the more recent advent of oxygen as a terminal electron acceptor necessitated use of heme and copper cofactors by Complex IV. Bricolage of respiratory complexes resulted in supercomplexes for improved electron transfer efficiency in some bacteria and archaea, and in many eukaryotes. Accessory subunits evolved to wrap mitochondrial supercomplexes for improved assembly and stability. Environmental microbes with 'fossil' proteins that are similar to ancestral forms of the respiratory complexes deserve further scrutiny and may reveal new insights on the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Claire E Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Shi W, Hu R, Zhao R, Zhu J, Shen H, Li H, Wang L, Yang Z, Jiang Q, Qiao Y, Jiang G, Cheng J, Wan X. Transcriptome analysis of hepatopancreas and gills of Palaemon gravieri under salinity stress. Gene 2022; 851:147013. [DOI: 10.1016/j.gene.2022.147013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
5
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
6
|
Cloning and Organelle Expression of Bamboo Mitochondrial Complex I Subunits Nad1, Nad2, Nad4, and Nad5 in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23074054. [PMID: 35409414 PMCID: PMC8999482 DOI: 10.3390/ijms23074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the nad1, nad2, nad4, and nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast Saccharomyces cerevisiae. The mitochondrial targeting peptide mt gene (encoding MT) and the egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5'-terminal and 3'-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K+, Na+, or H+.
Collapse
|
7
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
8
|
Phylogeny and Evolutionary History of Respiratory Complex I Proteins in Melainabacteria. Genes (Basel) 2021; 12:genes12060929. [PMID: 34207155 PMCID: PMC8235220 DOI: 10.3390/genes12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
The evolution of oxygenic photosynthesis was one of the most transformative evolutionary events in Earth's history, leading eventually to the oxygenation of Earth's atmosphere and, consequently, the evolution of aerobic respiration. Previous work has shown that the terminal electron acceptors (complex IV) of aerobic respiration likely evolved after the evolution of oxygenic photosynthesis. However, complex I of the respiratory complex chain can be involved in anaerobic processes and, therefore, may have pre-dated the evolution of oxygenic photosynthesis. If so, aerobic respiration may have built upon respiratory chains that pre-date the rise of oxygen in Earth's atmosphere. The Melainabacteria provide a unique opportunity to examine this hypothesis because they contain genes for aerobic respiration but likely diverged from the Cyanobacteria before the evolution of oxygenic photosynthesis. Here, we examine the phylogenies of translated complex I sequences from 44 recently published Melainabacteria metagenome assembled genomes and genomes from other Melainabacteria, Cyanobacteria, and other bacterial groups to examine the evolutionary history of complex I. We find that complex I appears to have been present in the common ancestor of Melainabacteria and Cyanobacteria, supporting the idea that aerobic respiration built upon respiratory chains that pre-date the evolution of oxygenic photosynthesis and the rise of oxygen.
Collapse
|
9
|
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I. Sci Rep 2021; 11:12641. [PMID: 34135385 PMCID: PMC8209014 DOI: 10.1038/s41598-021-91631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
Collapse
|
10
|
Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front Physiol 2021; 12:627837. [PMID: 33967820 PMCID: PMC8103168 DOI: 10.3389/fphys.2021.627837] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are known to generate approximately 90% of cellular reactive oxygen species (ROS). The imbalance between mitochondrial reactive oxygen species (mtROS) production and removal due to overproduction of ROS and/or decreased antioxidants defense activity results in oxidative stress (OS), which leads to oxidative damage that affects several cellular components such as lipids, DNA, and proteins. Since the kidney is a highly energetic organ, it is more vulnerable to damage caused by OS and thus its contribution to the development and progression of chronic kidney disease (CKD). This article aims to review the contribution of mtROS and OS to CKD progression and kidney function deterioration.
Collapse
Affiliation(s)
- Hasna Tirichen
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Hasnaa Yaigoub
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Weiwei Xu
- Shanxi Medical University, Taiyuan, China
| | - Changxin Wu
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Shanxi Medical University, Taiyuan, China.,Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China.,Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
11
|
Zuchan K, Baymann F, Baffert C, Brugna M, Nitschke W. The dyad of the Y-junction- and a flavin module unites diverse redox enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148401. [PMID: 33684340 DOI: 10.1016/j.bbabio.2021.148401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
The concomitant presence of two distinctive polypeptide modules, which we have chosen to denominate as the "Y-junction" and the "flavin" module, is observed in 3D structures of enzymes as functionally diverse as complex I, NAD(P)-dependent [NiFe]-hydrogenases and NAD(P)-dependent formate dehydrogenases. Amino acid sequence conservation furthermore suggests that both modules are also part of NAD(P)-dependent [FeFe]-hydrogenases for which no 3D structure model is available yet. The flavin module harbours the site of interaction with the substrate NAD(P) which exchanges two electrons with a strictly conserved flavin moiety. The Y-junction module typically contains four iron-sulphur centres arranged to form a Y-shaped electron transfer conduit and mediates electron transfer between the flavin module and the catalytic units of the respective enzymes. The Y-junction module represents an electron transfer hub with three potential electron entry/exit sites. The pattern of specific redox centres present both in the Y-junction and the flavin module is correlated to present knowledge of these enzymes' functional properties. We have searched publicly accessible genomes for gene clusters containing both the Y-junction and the flavin module to assemble a comprehensive picture of the diversity of enzymes harbouring this dyad of modules and to reconstruct their phylogenetic relationships. These analyses indicate the presence of the dyad already in the last universal common ancestor and the emergence of complex I's EFG-module out of a subgroup of NAD(P)- dependent formate dehydrogenases.
Collapse
Affiliation(s)
- Kilian Zuchan
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Frauke Baymann
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France.
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| |
Collapse
|
12
|
Genomes of the " Candidatus Actinomarinales" Order: Highly Streamlined Marine Epipelagic Actinobacteria. mSystems 2020; 5:5/6/e01041-20. [PMID: 33323418 PMCID: PMC7771536 DOI: 10.1128/msystems.01041-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. “Candidatus Actinomarinales” was defined as a subclass of exclusively marine Actinobacteria with small cells and genomes. We have collected all the available genomes in databases to assess the diversity included in this group and analyzed it by comparative genomics. We have found the equivalent of five genera and 18 genomospecies. They have genome reduction parameters equal to those of freshwater actinobacterial “Candidatus Nanopelagicales” or marine alphaproteobacterial Pelagibacterales. Genome recruitment shows that they are found only in the photic zone and mainly in surface waters, with only one genus that is found preferentially at or below the deep chlorophyll maximum. “Ca. Actinomarinales” show a highly conserved core genome (80% of the gene families conserved for the whole order) with a saturation of genomic diversity of the flexible genome at the genomospecies level. We found only a flexible genomic island preserved throughout the order; it is related to the sugar decoration of the envelope and uses several tRNAs as hot spots to increase its genomic diversity. Populations had a discrete level of sequence diversity similar to other marine microbes but drastically different from the much higher levels found for Pelagibacterales. Genomic analysis suggests that they are all aerobic photoheterotrophs with one type 1 rhodopsin and a heliorhodopsin. Like other actinobacteria, they possess the F420 coenzyme biosynthesis pathway, and its lower reduction potential could provide access to an increased range of redox chemical transformations. Last, sequence analysis revealed the first “Ca. Actinomarinales” phages, including a prophage, with metaviromic islands related to sialic acid cleavage. IMPORTANCE Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. Here, we study 182 genomes belonging to the only known exclusively marine pelagic group of the phylum Actinobacteria. The aquatic branch of this phylum is largely known from environmental sequencing studies (single-amplified genomes [SAGs] and metagenome-assembled genomes [MAGs]), and we have collected and analyzed the available information present in databases about the “Ca. Actinomarinales.” They are among the most streamlined microbes to live in the epipelagic zone of the ocean, and their study is critical to obtain a proper view of the diversity of Actinobacteria and their role in aquatic ecosystems.
Collapse
|
13
|
Liu J, Huang Y, He J, Zhuo Y, Chen W, Ge L, Duan D, Lu M, Hu Z. Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression. Front Cell Neurosci 2020; 14:580206. [PMID: 33281557 PMCID: PMC7689024 DOI: 10.3389/fncel.2020.580206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have presented a promising neuroprotective effect in cerebral ischemia/reperfusion (I/R). Olfactory mucosa MSCs (OM-MSCs), a novel source of MSCs located in the human nasal cavity, are easy to obtain and situated for autologous transplantation. The present study was designed to evaluate the neuroprotective effects of OM-MSCs on cerebral I/R injury and the possible mechanisms. In the transient middle cerebral artery occlusion (t-MCAO) model, excessive oxidative stress and increased swollen mitochondria were observed in the peri-infarct cortex. Intravenous injection of OM-MSCs ameliorated mitochondrial damage and restored oxidant/antioxidant imbalance. Using the oxygen glucose deprivation/reperfusion (OGD/R) model in vitro, we discovered that the exposure of mouse neuroblastoma N2a cells to OGD/R triggers excessive reactive oxygen species (ROS) generation and induces mitochondrial deterioration with decreased mitochondrial membrane potential and reduces ATP content. OM-MSC transwell coculture attenuated the above perturbations accompanied with increased UbiA prenyltransferase domain-containing 1 (UBIAD1) expression, whereas these protective effects of OM-MSCs were blocked when UBIAD1 was knocked down. UBIAD1-specific small interfering RNA (siRNA) reversed the increased membrane potential and ATP content promoted by OM-MSCs. Additionally, UBIAD1-specific siRNA blocked the oxidant/antioxidant balance treated by OM-MSCs. Overall, our results suggested that OM-MSCs exert neuroprotective effects in cerebral I/R injury by attenuating mitochondrial dysfunction and enhancing antioxidation via upregulation of UBIAD1.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhuo
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wei Chen
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Da Duan
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Oppermann S, Höfflin S, Friedrich T. ErpA is important but not essential for the Fe/S cluster biogenesis of Escherichia coli NADH:ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148286. [PMID: 32777304 DOI: 10.1016/j.bbabio.2020.148286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. The complex comprises a peripheral arm catalyzing electron transfer and a membrane arm involved in proton-translocation. In Escherichia coli, the peripheral arm features a non-covalently bound flavin mononucleotide and nine iron-sulfur (Fe/S)-clusters. Very little is known about the incorporation of the Fe/S-clusters into the E. coli complex I. ErpA, an A-type carrier protein is discussed to act as a Fe/S-cluster carrier protein. To contribute to the understanding of ErpA for the assembly of E. coli complex I, we analyzed an erpA knock-out strain. Deletion of erpA decreased the complex I content in cytoplasmic membranes to approximately one third and the NADH oxidase activity to one fifth. EPR spectroscopy showed the presence of all Fe/S-clusters of the complex in the membrane but only in minor quantities. Sucrose gradient centrifugation and native PAGE revealed the presence of a marginal amount of a stable and fully assembled complex extractable from the membrane. Thus, ErpA is not essential for the assembly of complex I but its absence leads to a strong decrease of a functional complex in the cytoplasmic membrane due to a major lack of all EPR-detectable Fe/S-clusters.
Collapse
Affiliation(s)
- Sabrina Oppermann
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Simon Höfflin
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie, Albertstr. 21, D-79104 Freiburg, Germany.
| |
Collapse
|
15
|
Ren RC, Wang LL, Zhang L, Zhao YJ, Wu JW, Wei YM, Zhang XS, Zhao XY. DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:299-313. [PMID: 31119902 DOI: 10.1111/jipb.12843] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 05/23/2023]
Abstract
Mitochondria, the main energy transducers in plant cells, require the proper assembly of respiratory chain complexes I-V for their function. The NADH dehydrogenase 4 (nad4) gene encodes mitochondrial respiratory chain complex I subunit IV, but the mechanism underlying nad4 transcript splicing is unclear. Here, we report that the P-type pentatricopeptide repeat (PPR) protein DEFECTIVE KERNEL 43 (DEK43) is responsible for cis-splicing of the nad4 transcript in maize. We demonstrate that DEK43 localizes to both the nucleus and mitochondria. The mutation of Dek43 resulted in embryo-lethal and light-colored defective kernels. Among the 22 mitochondrial group II introns, the splicing efficiency of nad4 introns 1 and 3 was reduced by up to 50% compared to the wild type. The levels of complex I and supercomplex I+III2 were also reduced in dek43. Furthermore, in-gel NADH dehydrogenase assays indicated that the activities of these complexes were significantly reduced in dek43. Further, the mitochondrial ultrastructure was altered in the mutant. Together, our findings indicate that DEK43, a dual-localized PPR protein, plays an important role in maintaining mitochondrial function and maize kernel development.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Li Li Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
16
|
Lee LN, Huang CT, Hsu CL, Chang HC, Jan IS, Liu JL, Sheu JC, Wang JT, Liu WL, Wu HS, Chang CN, Wang JY. Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs. J Clin Med 2019; 8:jcm8081207. [PMID: 31412578 PMCID: PMC6723168 DOI: 10.3390/jcm8081207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatotoxicity is the most severe adverse effect of anti-tuberculosis therapy. Isoniazid's metabolite hydrazine is a mitochondrial complex II inhibitor. We hypothesized that mitochondrial DNA variants are risk factors for drug-induced liver injury (DILI) due to isoniazid, rifampicin or pyrazinamide. METHODS We obtained peripheral blood from tuberculosis (TB) patients before anti-TB therapy. A total of 38 patients developed DILI due to anti-TB drugs. We selected 38 patients with TB but without DILI as controls. Next-generation sequencing detected point mutations in the mitochondrial DNA genome. DILI was defined as ALT ≥5 times the upper limit of normal (ULN), or ALT ≥3 times the ULN with total bilirubin ≥2 times the ULN. RESULTS In 38 patients with DILI, the causative drug was isoniazid in eight, rifampicin in 14 and pyrazinamide in 16. Patients with isoniazid-induced liver injury had more variants in complex I's NADH subunit 5 and 1 genes, more nonsynonymous mutations in NADH subunit 5, and a higher ratio of nonsynonymous to total substitutions. Patients with rifampicin- or pyrazinamide-induced liver injury had no association with mitochondrial DNA variants. CONCLUSIONS Variants in complex I's subunit 1 and 5 genes might affect respiratory chain function and predispose isoniazid-induced liver injury when exposed to hydrazine, a metabolite of isoniazid and a complex II inhibitor.
Collapse
Affiliation(s)
- Li-Na Lee
- Department of Laboratory Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chia-Lin Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsiu-Ching Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - I-Shiow Jan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Jia-Luen Liu
- One-Star Technology, New Taipei City 24352, Taiwan
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- Foundation of Liver Diseases, Taipei 10002, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, and Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Huei-Shu Wu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ching-Nien Chang
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24352, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
17
|
Abstract
Leigh syndrome (LS) is a common neurodegenerative disease affecting neonates with devastating sequences. One of the characteristic features for LS is the phenotypic polymorphism, which-in part-can be dedicated to variety of genetic causes. A strong correlation with mitochondrial dysfunction has been assumed as the main cause of LS. This was based on the fact that most genetic causes are related to mitochondrial complex I genome. The first animal LS model was designed based on NDUFS4 knockdown. Interestingly, however, this one or others could not recapitulate the whole spectrum of manifestations encountered in different cases of LS. We show in this chapter a new animal model for LS based on silencing of one gene that is reported previously in clinical cases, FOXRED1. The new model carries some differences from previous models in the fact that more histopathological degeneration in dopaminergic system is seen and more behavioral changes can be recognized. FOXRED1 is an interesting gene that is related to complex I assembly, hence, plays important role in different neurodegenerative disorders leading to different clinical manifestations.
Collapse
Affiliation(s)
- Sara El-Desouky
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasmeen M Taalab
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- German Institute of Disaster Medicine and Emergency Medicine, Tubingen, Germany
| | - Mohamed El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Atlantic Fellow for Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
18
|
Identification and characterization two isoforms of NADH:ubiquinone oxidoreductase from the hyperthermophilic eubacterium Aquifex aeolicus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:366-373. [DOI: 10.1016/j.bbabio.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/18/2018] [Accepted: 02/24/2018] [Indexed: 12/20/2022]
|
19
|
The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1596-1608. [PMID: 29454073 DOI: 10.1016/j.bbadis.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome.
Collapse
|
20
|
Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol 2017; 12:208-215. [PMID: 28259101 PMCID: PMC5333533 DOI: 10.1016/j.redox.2017.02.012] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/13/2022] Open
Abstract
Hypoxia triggers several mechanisms to adapt cells to a low oxygen environment. Mitochondria are major consumers of oxygen and a potential source of reactive oxygen species (ROS). In response to hypoxia they exchange or modify distinct subunits of the respiratory chain and adjust their metabolism, especially lowering the citric acid cycle. Intermediates of the citric acid cycle participate in regulating hypoxia inducible factors (HIF), the key mediators of adaptation to hypoxia. Here we summarize how hypoxia conditions mitochondria with consequences for ROS-production and the HIF-pathway. Hypoxia provokes changes in mitochondrial morphology, metabolism, and respiration. Hypoxia calls forth changes in redox signaling. HIF-signaling is linked to mitochondrial metabolism and ROS formation. Hypoxia adjusts ETC complex formation, activity, respiration, and ROS formation.
Collapse
Affiliation(s)
- Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany.
| |
Collapse
|
21
|
Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution. ACTA ACUST UNITED AC 2016; 43:1455-65. [DOI: 10.1007/s10295-016-1812-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Abstract
Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78 % more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features support a model for increased acid resistance arising from enhanced control over cytoplasmic pH.
Collapse
|
22
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Wahrnehmung der chemischen Prozesse in einzelnen Organellen mit niedermolekularen Fluoreszenzsonden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| |
Collapse
|
23
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew Chem Int Ed Engl 2016; 55:13658-13699. [DOI: 10.1002/anie.201510721] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| |
Collapse
|
24
|
Hanazono Y, Takeda K, Miki K. Characterization of the Nqo5 subunit of bacterial complex I in the isolated state. FEBS Open Bio 2016; 6:687-95. [PMID: 27398308 PMCID: PMC4932448 DOI: 10.1002/2211-5463.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022] Open
Abstract
The subunits that comprise bacterial complex I (NADH:ubiquinone oxidoreductase) are also found in more complicated mitochondrial enzymes in eukaryotic organisms. Although the Nqo5 subunit is one of these conserved components and important for the formation of complex, it has been little studied. Here, we report structure analyses of isolated Nqo5 from Thermus thermophilus. Biochemical studies indicated that the C-terminal region following the 30-Kd subunit motif is disordered in the isolated state, while the remaining portion is already folded. Crystallographic studies of a trypsin-resistant fragment revealed detailed structural differences in the folded domain between the isolated and complexed states.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| |
Collapse
|
25
|
Fromm S, Senkler J, Eubel H, Peterhänsel C, Braun HP. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3079-93. [PMID: 27122571 PMCID: PMC4867900 DOI: 10.1093/jxb/erw165] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christoph Peterhänsel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
26
|
Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 2016; 36:BSR20150295. [PMID: 26839416 PMCID: PMC4793296 DOI: 10.1042/bsr20150295] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.
Collapse
|
27
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
28
|
Steimle S, Schnick C, Burger EM, Nuber F, Krämer D, Dawitz H, Brander S, Matlosz B, Schäfer J, Maurer K, Glessner U, Friedrich T. Cysteine scanning reveals minor local rearrangements of the horizontal helix of respiratory complex I. Mol Microbiol 2015; 98:151-61. [PMID: 26115017 DOI: 10.1111/mmi.13112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 12/22/2022]
Abstract
The NADH:ubiquinone oxidoreductase, respiratory complex I, couples electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. The complex consists of a peripheral arm catalyzing the redox reaction and a membrane arm catalyzing proton translocation. The membrane arm is almost completely aligned by a 110 Å unique horizontal helix that is discussed to transmit conformational changes induced by the redox reaction in a piston-like movement to the membrane arm driving proton translocation. Here, we analyzed such a proposed movement by cysteine-scanning of the helix of the Escherichia coli complex I. The accessibility of engineered cysteine residues and the flexibility of individual positions were determined by labeling the preparations with a fluorescent marker and a spin-probe, respectively, in the oxidized and reduced states. The differences in fluorescence labeling and the rotational flexibility of the spin probe between both redox states indicate only slight conformational changes at distinct positions of the helix but not a large movement.
Collapse
Affiliation(s)
- Stefan Steimle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Christian Schnick
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Eva-Maria Burger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Franziska Nuber
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Dorothée Krämer
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Hannah Dawitz
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Sofia Brander
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Bartlomiej Matlosz
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Jacob Schäfer
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Katharina Maurer
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Udo Glessner
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
29
|
Vartak RS, Semwal MK, Bai Y. An update on complex I assembly: the assembly of players. J Bioenerg Biomembr 2014; 46:323-8. [PMID: 25030182 DOI: 10.1007/s10863-014-9564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.
Collapse
Affiliation(s)
- Rasika S Vartak
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
30
|
Schoenfuss HL, Maie T, Moody KN, Lesteberg KE, Blob RW, Schoenfuss TC. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni. PLoS One 2013; 8:e84851. [PMID: 24386424 PMCID: PMC3873996 DOI: 10.1371/journal.pone.0084851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.
Collapse
Affiliation(s)
- Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristine N. Moody
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kelsey E. Lesteberg
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tonya C. Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
31
|
Weigoldt M, Meens J, Bange FC, Pich A, Gerlach GF, Goethe R. Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment. Microbiology (Reading) 2013; 159:380-391. [DOI: 10.1099/mic.0.062737-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mathias Weigoldt
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franz-Christoph Bange
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Andreas Pich
- Institute for Toxicology, Medical School Hannover, Hannover, Germany
| | - Gerald F. Gerlach
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
32
|
Peters K, Belt K, Braun HP. 3D Gel Map of Arabidopsis Complex I. FRONTIERS IN PLANT SCIENCE 2013; 4:153. [PMID: 23761796 PMCID: PMC3671202 DOI: 10.3389/fpls.2013.00153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/04/2013] [Indexed: 05/20/2023]
Abstract
Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Katrin Peters
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Hannover, Germany
| | - Katharina Belt
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Hannover, Germany
| | - Hans-Peter Braun
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Hans-Peter Braun, Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany e-mail:
| |
Collapse
|
33
|
Hoefs SJ, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Molecular base of biochemical complex I deficiency. Mitochondrion 2012; 12:520-32. [DOI: 10.1016/j.mito.2012.07.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
|
34
|
Fu Y, Lan J, Zhang Z, Hou R, Wu X, Yang D, Zhang R, Zheng W, Nie H, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G. Novel insights into the transcriptome of Dirofilaria immitis. PLoS One 2012; 7:e41639. [PMID: 22911833 PMCID: PMC3402454 DOI: 10.1371/journal.pone.0041639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023] Open
Abstract
Background The heartworm Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis in dogs and cats, and also infects a wide range of wild mammals as well as humans. One bottleneck for the design of fundamentally new intervention and management strategies against D. immitis may be the currently limited knowledge of fundamental molecular aspects of D. immitis. Methodology/Principal Findings A next-generation sequencing platform combining computational approaches was employed to assess a global view of the heartworm transcriptome. A total of 20,810 unigenes (mean length = 1,270 bp) were assembled from 22.3 million clean reads. From these, 15,698 coding sequences (CDS) were inferred, and about 85% of the unigenes had orthologs/homologs in public databases. Comparative transcriptomic study uncovered 4,157 filarial-specific genes as well as 3,795 genes potentially involved in filarial-Wolbachia symbiosis. In addition, the potential intestine transcriptome of D. immitis (1,101 genes) was mined for the first time, which might help to discover ‘hidden antigens’. Conclusions/Significance This study provides novel insights into the transcriptome of D. immitis and sheds light on its molecular processes and survival mechanisms. Furthermore, it provides a platform to discover new vaccine candidates and potential targets for new drugs against dirofilariosis.
Collapse
Affiliation(s)
- Yan Fu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Jingchao Lan
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Zhihe Zhang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xuhang Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Deying Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Runhui Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Wanpeng Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Huaming Nie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Ning Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Zhi Yang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Chengdong Wang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Li Liu
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Shuxian Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya’an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
- * E-mail:
| |
Collapse
|
35
|
Hedman AK, Li MS, Langford PR, Kroll JS. Transcriptional profiling of serogroup B Neisseria meningitidis growing in human blood: an approach to vaccine antigen discovery. PLoS One 2012; 7:e39718. [PMID: 22745818 PMCID: PMC3382141 DOI: 10.1371/journal.pone.0039718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/25/2012] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis is a nasopharyngeal commensal of humans which occasionally invades the blood to cause septicaemia. The transcriptome of N. meningitidis strain MC58 grown in human blood for up to 4 hours was determined and around 10% of the genome was found to be differentially regulated. The nuo, pet and atp operons, involved in energy metabolism, were up-regulated, while many house-keeping genes were down-regulated. Genes encoding protein chaperones and proteases, involved in the stress response; complement resistant genes encoding enzymes for LOS sialylation and biosynthesis; and fHbp (NMB1870) and nspA (NMB0663), encoding vaccine candidates, were all up-regulated. Genes for glutamate uptake and metabolism, and biosynthesis of purine and pyrimidine were also up-regulated. Blood grown meningococci are under stress and undergo a metabolic adaptation and energy conservation strategy. The localisation of four putative outer membrane proteins encoded by genes found to be up-regulated in blood was assessed by FACS using polyclonal mouse antisera, and one (NMB0390) showed evidence of surface expression, supporting its vaccine candidacy.
Collapse
Affiliation(s)
- Asa K. Hedman
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| |
Collapse
|
36
|
Houštek J, Hejzlarová K, Vrbacký M, Drahota Z, Landa V, Zídek V, Mlejnek P, Šimáková M, Šilhavy J, Mikšík I, Kazdová L, Oliyarnyk O, Kurtz T, Pravenec M. Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains. Physiol Genomics 2012; 44:487-94. [PMID: 22414913 DOI: 10.1152/physiolgenomics.00156.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Common inbred strains of the laboratory rat can be divided into four different mitochondrial DNA haplotype groups represented by the SHR, BN, LEW, and F344 strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. LEW mitochondrial genomes by comparing the SHR to a new SHR conplastic strain, SHR-mt(LEW); these strains are genetically identical except for their mitochondrial genomes. Complete mitochondrial DNA (mtDNA) sequence analysis comparing the SHR and LEW strains revealed gene variants encoding amino acid substitutions limited to a single mitochondrial enzyme complex, NADH dehydrogenase (complex I), affecting subunits 2, 4, and 5. Two of the variants in the mt-Nd4 subunit gene are located close to variants known to be associated with exercise intolerance and diabetes mellitus in humans. No variants were found in tRNA or rRNA genes. These variants in mt-Nd2, mt-Nd4, and mt-Nd5 in the SHR-mt(LEW) conplastic strain were linked to reductions in oxidative and nonoxidative glucose metabolism in skeletal muscle. In addition, SHR-mt(LEW) conplastic rats showed increased serum nonesterified fatty acid levels and resistance to insulin stimulated incorporation of glucose into adipose tissue lipids. These results provide evidence that inherited variation in mitochondrial genes encoding respiratory chain complex I subunits, in the absence of variation in the nuclear genome and other confounding factors, can influence glucose and lipid metabolism when expressed on the nuclear genetic background of the SHR strain.
Collapse
Affiliation(s)
- Josef Houštek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Steimle S, Willistein M, Hegger P, Janoschke M, Erhardt H, Friedrich T. Asp563 of the horizontal helix of subunit NuoL is involved in proton translocation by the respiratory complex I. FEBS Lett 2012; 586:699-704. [PMID: 22326235 DOI: 10.1016/j.febslet.2012.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/30/2022]
Abstract
The NADH:ubiquinone oxidoreductase couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. It contains a 110Å long helix running parallel to the membrane part of the complex. Deletion of the helix resulted in a reduced H(+)/e(-) stoichiometry indicating its direct involvement in proton translocation. Here, we show that the mutation of the conserved amino acid D563(L), which is part of the horizontal helix of the Escherichia coli complex I, leads to a reduced H(+)/e(-) stoichiometry. It is discussed that this residue is involved in transferring protons to the membranous proton translocation site.
Collapse
Affiliation(s)
- Stefan Steimle
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie und Biochemie, Freiburg i. Br., Germany
| | | | | | | | | | | |
Collapse
|
38
|
Le HT, Gautier V, Kthiri F, Malki A, Messaoudi N, Mihoub M, Landoulsi A, An YJ, Cha SS, Richarme G. YajL, prokaryotic homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J Biol Chem 2011; 287:5861-70. [PMID: 22157000 DOI: 10.1074/jbc.m111.299198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.
Collapse
Affiliation(s)
- Hai-Tuong Le
- Stress Molecules Group, Institut Jacques Monod, Université Paris 7/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
40
|
Erhardt H, Steimle S, Muders V, Pohl T, Walter J, Friedrich T. Disruption of individual nuo-genes leads to the formation of partially assembled NADH:ubiquinone oxidoreductase (complex I) in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:863-71. [PMID: 22063474 DOI: 10.1016/j.bbabio.2011.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Heiko Erhardt
- Albert-Ludwigs-Universität, Freiburg, Institut für Organische Chemie und Biochemie and Spemann Graduate School of Biology and Medicine, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | | | | | | | | | | |
Collapse
|
41
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
42
|
Morina K, Schulte M, Hubrich F, Dörner K, Steimle S, Stolpe S, Friedrich T. Engineering the respiratory complex I to energy-converting NADPH:ubiquinone oxidoreductase. J Biol Chem 2011; 286:34627-34. [PMID: 21832062 DOI: 10.1074/jbc.m111.274571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The respiratory complex I couples the electron transfer from NADH to ubiquinone with a translocation of protons across the membrane. Its nucleotide-binding site is made up of a unique Rossmann fold to accommodate the binding of the substrate NADH and of the primary electron acceptor flavin mononucleotide. Binding of NADH includes interactions of the hydroxyl groups of the adenosine ribose with a conserved glutamic acid residue. Structural analysis revealed that due to steric hindrance and electrostatic repulsion, this residue most likely prevents the binding of NADPH, which is a poor substrate of the complex. We produced several variants with mutations at this position exhibiting up to 200-fold enhanced catalytic efficiency with NADPH. The reaction of the variants with NAD(P)H is coupled with proton translocation in an inhibitor-sensitive manner. Thus, we have created an energy-converting NADPH:ubiquinone oxidoreductase, an activity so far not found in nature. Remarkably, the oxidation of NAD(P)H by the variants leads to an enhanced production of reactive oxygen species.
Collapse
Affiliation(s)
- Klaudia Morina
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Klodmann J, Braun HP. Proteomic approach to characterize mitochondrial complex I from plants. PHYTOCHEMISTRY 2011; 72:1071-80. [PMID: 21167537 DOI: 10.1016/j.phytochem.2010.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/04/2023]
Abstract
Mitochondrial NADH dehydrogenase complex (complex I) is by far the largest protein complex of the respiratory chain. It is best characterized for bovine mitochondria and known to consist of 45 different subunits in this species. Proteomic analyses recently allowed for the first time to systematically explore complex I from plants. The enzyme is especially large and includes numerous extra subunits. Upon subunit separation by various gel electrophoresis procedures and protein identifications by mass spectrometry, overall 47 distinct types of proteins were found to form part of Arabidopsis complex I. An additional subunit, ND4L, is present but could not be detected by the procedures employed due to its extreme biochemical properties. Seven of the 48 subunits occur in pairs of isoforms, six of which were experimentally proven. Fifteen subunits of complex I from Arabidopsis are specific for plants. Some of these resemble enzymes of known functions, e.g. carbonic anhydrases and l-galactono-1,4-lactone dehydrogenase (GLDH), which catalyzes the last step of ascorbate biosynthesis. This article aims to review proteomic data on the protein composition of complex I in plants. Furthermore, a proteomic re-evaluation on its protein constituents is presented.
Collapse
Affiliation(s)
- Jennifer Klodmann
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
44
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
45
|
Steimle S, Bajzath C, Dörner K, Schulte M, Bothe V, Friedrich T. Role of Subunit NuoL for Proton Translocation by Respiratory Complex I. Biochemistry 2011; 50:3386-93. [DOI: 10.1021/bi200264q] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Steimle
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| | - Csaba Bajzath
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| | - Katerina Dörner
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| | - Marius Schulte
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| | - Vinzenz Bothe
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
46
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nowaczyk MM, Wulfhorst H, Ryan CM, Souda P, Zhang H, Cramer WA, Whitelegge JP. NdhP and NdhQ: two novel small subunits of the cyanobacterial NDH-1 complex. Biochemistry 2011; 50:1121-4. [PMID: 21244052 DOI: 10.1021/bi102044b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The subunit composition of the NAD(P)H dehydrogenase complex of Thermosynechococcus elongatus was analyzed by different types of mass spectrometry. All 15 known subunits (NdhA-NdhO) were identified in the purified NDH-1L complex. Moreover, two additional intact mass tags of 4902.7 and 4710.5 Da could be assigned after reannotation of the T. elongatus genome. NdhP and NdhQ are predicted to contain a single transmembrane helix each, and homologues are apparent in other cyanobacteria. Additionally, ndhP is present in some cyanophages in a cluster of PSI genes and exhibits partial similarity to NDF6, a subunit of the plant NDH-1 complex.
Collapse
Affiliation(s)
- Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hielscher R, Friedrich T, Hellwig P. Far- and Mid-Infrared Spectroscopic Analysis of the Substrate-Induced Structural Dynamics of Respiratory Complex I. Chemphyschem 2010; 12:217-24. [DOI: 10.1002/cphc.201000688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/22/2010] [Indexed: 11/07/2022]
|
49
|
Peng L, Yamamoto H, Shikanai T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:945-53. [PMID: 21029720 DOI: 10.1016/j.bbabio.2010.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 11/19/2022]
Abstract
Eleven genes (ndhA-ndhK) encoding proteins homologous to the subunits of bacterial and mitochondrial NADH dehydrogenase (complex I) were found in the plastid genome of most land plants. These genes encode subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in photosystem I (PSI) cyclic electron transport and chlororespiration. Although the chloroplast NDH is believed to be closely and functionally related to the cyanobacterial NDH-1L complex, extensive proteomic, genetic and bioinformatic studies have discovered many novel subunits that are specific to higher plants. On the basis of extensive mutant characterization, the chloroplast NDH complex is divided into four parts, the A, B, membrane and lumen subcomplexes, of which subunits in the B and lumen subcomplexes are specific to higher plants. These results suggest that the structure of NDH has been drastically altered during the evolution of land plants. Furthermore, chloroplast NDH interacts with multiple copies of PSI to form the unique NDH-PSI supercomplex. Two minor light-harvesting-complex I (LHCI) proteins, Lhca5 and Lhca6, are required for the specific interaction between NDH and PSI. The evolution of chloroplast NDH in land plants may be required for development of the function of NDH to alleviate oxidative stress in chloroplasts. In this review, we summarize recent progress on the subunit composition and structure of the chloroplast NDH complex, as well as the information on some factors involved in its assembly. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
50
|
Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1894-900. [PMID: 20959113 DOI: 10.1016/j.bbabio.2010.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 09/29/2010] [Accepted: 10/13/2010] [Indexed: 11/20/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.
Collapse
|