1
|
Zhang L, Chen CL, Kang PT, Jin Z, Chen YR. Differential protein acetylation assists import of excess SOD2 into mitochondria and mediates SOD2 aggregation associated with cardiac hypertrophy in the murine SOD2-tg heart. Free Radic Biol Med 2017; 108:595-609. [PMID: 28433661 PMCID: PMC5487267 DOI: 10.1016/j.freeradbiomed.2017.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/28/2022]
Abstract
SOD2 is the primary antioxidant enzyme neutralizing •O2- in mitochondria. Cardiac-specific SOD2 overexpression (SOD2-tg) induces supernormal function and cardiac hypertrophy in the mouse heart. However, the reductive stress imposed by SOD2 overexpression results in protein aggregation of SOD2 pentamers and differential hyperacetylation of SOD2 in the mitochondria and cytosol. Here, we studied SOD2 acetylation in SOD2-tg and wild-type mouse hearts. LC-MS/MS analysis indicated the presence of four acetylated lysines in matrix SOD2 and nine acetylated lysines in cytosolic SOD2 from the SOD2-tg heart. However, only one specific acetylated lysine residue was detected in the mitochondria of the wild-type heart, which was consistent with Sirt3 downregulation in the SOD2-tg heart. LC-MS/MS further detected hyperacetylated SOD2 with a signaling peptide in the mitochondrial inner membrane and matrix of the SOD2-tg heart, indicating partial arrest of the SOD2 precursor in the membrane during translocation into the mitochondria. Upregulation of HSP 70 and cytosolic HSP 60 enabled the translocation of excess SOD2 into mitochondria. In vitro acetylation of matrix SOD2 with Ac2O deaggregated pentameric SOD2, restored the profile of cytosolic SOD2 hyperacetylation, and decreased matrix SOD2 activity. As revealed by 3D structure, acetylation of K89, K134, and K154 of cytosolic SOD2 induces unfolding of the tertiary structure and breaking of the salt bridges that are important for the quaternary structure, suggesting that hyperacetylation and HSP 70 upregulation maintain the unfolded status of SOD2 in the cytosol and mediate the import of SOD2 across the membrane. Downregulation of Sirt3, HSP 60, and presequence protease in the mitochondria of the SOD2-tg heart promoted protein misfolding that led to pentameric aggregation.
Collapse
Affiliation(s)
- Liwen Zhang
- Campus Chemical Instrument Center, Proteomics and Mass Spectrometry Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Zhicheng Jin
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
2
|
Kozlov AV, Lancaster JR, Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 2017; 13:170-181. [PMID: 28578275 PMCID: PMC5458092 DOI: 10.1016/j.redox.2017.05.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. Relationship between mitochondrial dysfunction and high lethality upon sepsis. Criteria to define critical for lethality mitochondrial dysfunction. ATP, calcium, mitochondrial ultrastructure and apoptosis, upon inflammation. Regulation of inflammatory processes by mitochondrial ROS.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria.
| | - Jack R Lancaster
- University of Pittsburgh, Departments of Pharmacology & Chemical Biology, Surgery, and Medicine, 1341A Thomas E. Starzl Biomedical Science Tower, PA 15261, United States
| | - Andras T Meszaros
- University of Szeged, Institute of Surgical Research, 6720 Szeged, Hungary
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria
| |
Collapse
|
3
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
4
|
Rissoli RZ, Abdalla FC, Costa MJ, Rantin FT, McKenzie DJ, Kalinin AL. Effects of glyphosate and the glyphosate based herbicides Roundup Original(®) and Roundup Transorb(®) on respiratory morphophysiology of bullfrog tadpoles. CHEMOSPHERE 2016; 156:37-44. [PMID: 27160633 DOI: 10.1016/j.chemosphere.2016.04.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Glyphosate-based herbicides are widely used in agriculture and are commonly found in water bodies. Roundup Original(®) (RO) contains an isopropylamine glyphosate (GLY) salt containing the surfactant POEA, while Roundup Transorb R(®) (RTR) contains a potassium salt of GLY with unknown surfactants. Both contain different compositions of so-called "inert" ingredients, more toxic than glyphosate. Amphibian tadpoles often experience variations in O2 availability in their aquatic habitats; an ability to tolerate hypoxia can condition their survival and fitness. We evaluated the impacts of sublethal concentrations of GLY (1 mg L(-1)), RO (1 mg L(-1) GLY a.e) and RTR (1 mg L(-1) GLY a.e) on metabolic rate (V·O2 - mLO2 Kg1 h(-1)) of bullfrog tadpoles during normoxia and graded hypoxia, and related this to morphology of their skin, their major site of gas exchange. In control (CT) V·O2 remained unaltered from normoxia until 40 mmHg, indicating a critical O2 tension between 40 and 20 mmHg. GLY significantly reduced V·O2, possibly due to epidermal hypertrophy, which increased O2 diffusion distance to O2 uptake. In contrast, RTR increased V·O2 during hypoxia, indicating an influence of "inert" compounds and surfactants. V·O2 of RO did not differ from CT, suggesting that any increase in V·O2 caused by exposure was antagonized by epidermal hypertrophy. Indeed, all herbicides caused marked alterations in skin morphology, with cell and epithelium wall presenting hyperplasia or hypertrophy and chromatid rupture. In summary, GLY, RO and RTR exert different effects in bullfrog tadpoles, in particular the surfactants and inert compounds appear to influence oxygen uptake.
Collapse
Affiliation(s)
- Rafael Zanelli Rissoli
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Monica Jones Costa
- Department of Biology, Federal University of São Carlos, Sorocaba, SP, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - David John McKenzie
- UMR9190 Centre for Marine Biodiversity Exploitation and Conservation, University of Montpellier, France
| | - Ana Lucia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
ABIKO T, KOBAYASHI K, MATSUKAWA T, SHINOHARA A, FURUTA N. Effects of Selenium Deficiency on Proteins Containing Essential Trace Elements (Fe, Cu, Zn, Mn, Se) in Mouse Brain. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takuto ABIKO
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| | - Keito KOBAYASHI
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| | - Takehisa MATSUKAWA
- Faculty of Medicine, Department of Epidemiology and Environmental Health, Juntendo University
| | - Atsuko SHINOHARA
- Faculty of Medicine, Department of Epidemiology and Environmental Health, Juntendo University
| | - Naoki FURUTA
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| |
Collapse
|
6
|
Zhu X, Zhang M, Liu J, Ge J, Yang G. Ametoctradin is a potent Qo site inhibitor of the mitochondrial respiration complex III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3377-3386. [PMID: 25784492 DOI: 10.1021/acs.jafc.5b00228] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ametoctradin is a new Oomycete-specific fungicide under development by BASF. It is a potent inhibitor of the bc1 complex in mitochondrial respiration. However, its detailed action mechanism remains unknown. In the present work, the binding mode of ametoctradin was first uncovered by integrating molecular docking, MD simulations, and MM/PBSA calculations, which showed that ametoctradin should be a Q(o) site inhibitor of bc1 complex. Subsequently, a series of new 1,2,4-triazolo[1,5-a]pyrimidine derivatives were designed and synthesized to further understand the substituent effects on the 5- and 6-position of 1,2,4-triazolo[1,5-a]pyrimidine. The calculated binding free energies (ΔG(cal)) of newly synthesized analogues as Qo site inhibitors correlated very well (R(2) = 0.96) with their experimental binding free energies (ΔG(exp)). Two compounds (4a and 4c) with higher inhibitory activity against porcine SQR than ametoctradin were successfully identified. The structural and mechanistic insights obtained from the present study will provide a valuable clue for future designing of a new promising bc1 inhibitor.
Collapse
Affiliation(s)
- Xiaolei Zhu
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Mengmeng Zhang
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Jingjing Liu
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Jingming Ge
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Guangfu Yang
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, P.R.China
| |
Collapse
|
7
|
Kang PT, Chen CL, Ren P, Guarini G, Chen YR. BCNU-induced gR2 defect mediates S-glutathionylation of Complex I and respiratory uncoupling in myocardium. Biochem Pharmacol 2014; 89:490-502. [PMID: 24704251 DOI: 10.1016/j.bcp.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
A deficiency of mitochondrial glutathione reductase (or GR2) is capable of adversely affecting the reduction of GSSG and increasing mitochondrial oxidative stress. BCNU [1,3-bis (2-chloroethyl)-1-nitrosourea] is an anticancer agent and known inhibitor of cytosolic GR ex vivo and in vivo. Here we tested the hypothesis that a BCNU-induced GR2 defect contributes to mitochondrial dysfunction and subsequent impairment of heart function. Intraperitoneal administration of BCNU (40 mg/kg) specifically inhibited GR2 activity by 79.8 ± 2.7% in the mitochondria of rat heart. However, BCNU treatment modestly enhanced the activities of mitochondrial Complex I and other ETC components. The cardiac function of BCNU-treated rats was analyzed by echocardiography, revealing a systolic dysfunction associated with decreased ejection fraction, decreased cardiac output, and an increase in left ventricular internal dimension and left ventricular volume in systole. The respiratory control index of isolated mitochondria from the myocardium was moderately decreased after BCNU treatment, whereas NADH-linked uncoupling of oxygen consumption was significantly enhanced. Extracellular flux analysis to measure the fatty acid oxidation of myocytes indicated a 20% enhancement after BCNU treatment. When the mitochondria were immunoblotted with antibodies against GSH and UCP3, both protein S-glutathionylation of Complex I and expression of UCP3 were significantly up-regulated. Overexpression of SOD2 in the myocardium significantly reversed BCNU-induced GR2 inhibition and mitochondrial impairment. In conclusion, BCNU-mediated cardiotoxicity is characterized by the GR2 deficiency that negatively regulates heart function by impairing mitochondrial integrity, increasing oxidative stress with Complex I S-glutathionylation, and enhancing uncoupling of mitochondrial respiration.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Alkylating/adverse effects
- Antineoplastic Agents, Alkylating/pharmacology
- Cardiotoxins/adverse effects
- Cardiotoxins/pharmacology
- Carmustine/adverse effects
- Carmustine/pharmacology
- Cattle
- Cell Line
- Electron Transport Complex I/chemistry
- Electron Transport Complex I/metabolism
- Fatty Acids, Nonesterified/metabolism
- Glutathione/metabolism
- Glutathione Reductase/antagonists & inhibitors
- Glutathione Reductase/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Ion Channels/metabolism
- Male
- Mice
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondrial Proteins/metabolism
- Oxidative Stress/drug effects
- Protein Processing, Post-Translational/drug effects
- Rats
- Rats, Sprague-Dawley
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Uncoupling Protein 3
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Pei Ren
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Giacinta Guarini
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
8
|
Giedt RJ, Yang C, Zweier JL, Matzavinos A, Alevriadou BR. Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radic Biol Med 2012; 52:348-56. [PMID: 22100972 PMCID: PMC3253175 DOI: 10.1016/j.freeradbiomed.2011.10.491] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/25/2011] [Accepted: 10/25/2011] [Indexed: 01/11/2023]
Abstract
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to be due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network and the mechanisms behind those changes. Because shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10dyn/cm(2)). By exposing ECs to shear stress, H, H/reoxygenation (RO), or simulated I/RP and employing MitoTracker staining, we assessed the differential effects of changes in mechanical forces and/or O(2) levels on the mitochondrial network. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor, or an inhibitor of the fission protein dynamin-related protein 1 (Drp1) and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.
Collapse
Affiliation(s)
- Randy J. Giedt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Department of Internal Medicine, Cardiovascular Medicine Division, The Ohio State University, Columbus, OH 43210, USA
| | - Changjun Yang
- Davis Heart and Lung Research Institute, Department of Internal Medicine, Cardiovascular Medicine Division, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, Department of Internal Medicine, Cardiovascular Medicine Division, The Ohio State University, Columbus, OH 43210, USA
| | | | - B. Rita Alevriadou
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Department of Internal Medicine, Cardiovascular Medicine Division, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Fax: (614) 247 7799., or (B.R. Alevriadou)
| |
Collapse
|