1
|
Samson JS, Rajagopal K, Parvathi VD. Outlook of SNCA (α-synuclein) transgenic fly models in delineating the sequel of mitochondrial dysfunction in Parkinson's disease. Brain Res 2025; 1852:149505. [PMID: 39954798 DOI: 10.1016/j.brainres.2025.149505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with mechanisms that results in loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Being a complex heterogeneous disorder, there is a requisite in discovering the underlying molecular signatures that could potentially help in resolving challenges associated with diagnosis as well as therapeutic management. SNCA gene that encodes for the protein α-synuclein is widely known for its indispensable role in aggravating the progression of sporadic and familial PD, upon mutations. Likewise, mitochondrial dysfunction is inferred to be playing a central role in both forms of PD. Observations from experimental models and human PD cases displayed strong evidence for disruption of mitochondrial dynamics, inhibition of mitochondrial complex I protein's function and elevation in reactive oxygen species (ROS) by the toxic aggregation of α-synuclein. Further, recent studies have raised the possibility of an underlying relationship, where the α-synuclein toxicity is exacerbated by the mutant mitochondrial complex proteins and vice-versa. In this review, we provide an overview of mechanisms influencing α-synuclein-related neurodegeneration, particularly, emphasizing the role of SNCA (α-synuclein) gene in leading to altered mitochondrial biogenesis during PD. We have described how transgenic Drosophila models were reliable at recapitulating some of the essential characteristics of PD. In addition, we highlight the capability of utilizing transgenic fly models in deciphering the altered α-synuclein toxicity and mitochondrial dysfunction, as induced by defects in the mitochondrial DNA.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | | | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
2
|
Cheon J, Jung H, Kang BY, Kim M. Impact of potential biomarkers, SNRPE, COX7C, and RPS27, on idiopathic Parkinson's disease. Genes Genomics 2025; 47:47-57. [PMID: 39467967 DOI: 10.1007/s13258-024-01591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neuro-degenerative disorder most common in older adults which is associated with impairments in movement and other body functions. Most PD cases are classified as idiopathic PD (IPD), meaning that the etiology remains unidentified. OBJECTIVE To identify key genes and molecular mechanisms to identify biomarkers applicable to IPD. METHODS We applied a bioinformatics approach using a gene expression in whole blood dataset to pinpoint differentially expressed genes (DEGs) and pathways involved in IPD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs were subsequently performed. A protein-protein interaction (PPI) network was then constructed to select hub genes that may influence IPD. We further investigated the levels of differentially methylated regions (DMRs) and differentially expressed microRNA (DEMs) of whole blood of patients with IPD to validate hub genes. Additionally, we examined the hub gene expression patterns in the substantia nigra (STN) using single-cell RNA sequencing datasets. RESULTS In total, we identified 124 DEGs in the blood samples of patients with IPD, with GO and KEGG analyses highlighting their significant enrichment. Analysis of PPI networks revealed three major clusters and hub genes: small nuclear ribonucleoprotein polypeptide E (SNRPE), cytochrome C oxidase subunit 7 C (COX7C), and ribosomal protein S27 (RPS27). DMRs and DEMs analyses revealed hub gene regulation via epigenetic and RNA interference. In particular, SNRPE and RPS27 showed identically regulated gene expression in the STN. CONCLUSION This study suggests that SNRPE, COX7C, and RPS27 in whole-blood samples derived from patients may be useful biomarkers for IPD.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical Science, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarang-ro 815, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Haejin Jung
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea
| | - Byung Yong Kang
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea.
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarang-ro 815, Nowon-gu, Seoul, 01795, Republic of Korea.
- Department of Chemistry & Life Science, Sahmyook University, Hwarang‑ro 815, Nowon‑gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
3
|
Eom JW, Lee JY, Kwon Y, Kim YH. An increase of lysosomes through EGF-triggered endocytosis attenuated zinc-mediated lysosomal membrane permeabilization and neuronal cell death. Cell Death Dis 2024; 15:823. [PMID: 39537601 PMCID: PMC11560978 DOI: 10.1038/s41419-024-07192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In the context of acute brain injuries, where zinc neurotoxicity and oxidative stress are acknowledged contributors to neuronal damage, we investigated the pivotal role of lysosomes as a potential protective mechanism. Our research commenced with an exploration of epidermal growth factor (EGF) and its impact on lysosomal dynamics, particularly its neuroprotective potential against zinc-induced cytotoxicity. Using primary mouse cerebrocortical cultures, we observed the rapid induction of EGFR endocytosis triggered by EGF, resulting in a transient increase in lysosomal vesicles. Furthermore, EGF stimulated lysosomal biogenesis, evident through elevated expression of lysosomal-associated membrane protein 1 (LAMP-1) and the induction and activation of prominent lysosomal proteases, particularly cathepsin B (CTSB). This process of EGFR endocytosis was found to promote lysosomal augmentation, thus conferring protection against zinc-induced lysosomal membrane permeabilization (LMP) and subsequent neuronal death. Notably, the neuroprotective effects and lysosomal enhancement induced by EGF were almost completely reversed by the inhibition of clathrin-mediated and caveolin-mediated endocytosis pathways, along with the disruption of retrograde trafficking. Furthermore, tyrosine kinase inhibition of EGFR nullified EGFR endocytosis, resulting in the abrogation of EGF-induced lysosomal upregulation and neuroprotection. An intriguing aspect of our study is the successful replication of EGF's neuroprotective effects through the overexpression of LAMP-1, which significantly reduced zinc-induced LMP and cell death, demonstrated in both primary mouse cerebrocortical neuronal cultures and human embryonic kidney (HEK) cells. Our research extended beyond zinc-induced neurotoxicity, as we observed EGF's protective effects against other oxidative stressors linked to intracellular zinc release, including hydrogen peroxide (H2O2) and 1-methyl-4-phenylpyridinium ion (MPP+). Collectively, our findings unveil the intricate interplay between EGF-triggered EGFR endocytosis, lysosomal upregulation, an increase in the regulatory capacity for zinc homeostasis, and the subsequent alleviation of zinc-induced neurotoxicity. These results present promising avenues for therapeutic interventions to enhance neuroprotection by targeting lysosomal augmentation.
Collapse
Affiliation(s)
- Jae-Won Eom
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Jin-Yeon Lee
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Yeabin Kwon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
4
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
5
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
6
|
Abdukiyum M, Tang X, Zhao N, Cui Y, Zhang J, Alim T, Zheng Y, Li W, Huang M, Feng X, Yu H, Feng X. Reduced mitochondrial-encoded NADH dehydrogenase 6 gene expression drives inflammatory CD4 +T cells in patients with systemic lupus erythematosus. Free Radic Biol Med 2024; 213:79-89. [PMID: 38242247 DOI: 10.1016/j.freeradbiomed.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Abnormal mitochondrial function has been implicated in the progression of systemic lupus erythematosus (SLE), the prototypical autoimmune disease, yet the underlying cause remains unclear. In this study, mitochondrial-encoded NADH dehydrogenase 6 gene (MT-ND6) was identified as having increased m6A methylation and decreased expression in peripheral blood mononuclear cells of SLE patients by MeRIP-seq analysis. MT-ND6 expression was negatively correlated with SLE disease activity index score and 24-h urine protein level, and lower in patients with positive anti-Sm or anti-dsDNA antibodies. With the reduction of MT-ND6 levels, CD4+ T cells in SLE patients exhibited mitochondrial dysfunction, as evidenced by increased levels of reactive oxygen species (ROS) and mitochondrial ROS and insufficient ATP production. Accordingly, in vitro MT-ND6 silencing induced abnormalities in the above mitochondrial indicators in CD4+ T cells, and promoted the development of both transcription and inflammatory factors in these cells. In contrast, treatment with targeted mitochondrial antioxidants largely counteracted the silencing effect of MT-MD6. Thus, reduced MT-ND6 in SLE patients may lead to mitochondrial dysfunction through ROS overproduction, thereby promoting inflammatory CD4+ T cells.
Collapse
Affiliation(s)
- Miheraiy Abdukiyum
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiyuan Cui
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tohtihan Alim
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuxue Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
7
|
Schmidt S, Stautner C, Vu DT, Heinz A, Regensburger M, Karayel O, Trümbach D, Artati A, Kaltenhäuser S, Nassef MZ, Hembach S, Steinert L, Winner B, Jürgen W, Jastroch M, Luecken MD, Theis FJ, Westmeyer GG, Adamski J, Mann M, Hiller K, Giesert F, Vogt Weisenhorn DM, Wurst W. A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease. Nat Commun 2023; 14:7674. [PMID: 37996418 PMCID: PMC10667251 DOI: 10.1038/s41467-023-42862-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the α-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering, Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Constantin Stautner
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Duc Tung Vu
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Heinz
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ozge Karayel
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sabine Kaltenhäuser
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Sina Hembach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Letyfee Steinert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Winkler Jürgen
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching bei München, Germany
| | - Gil Gregor Westmeyer
- Munich Institute of Biomedical Engineering, Department of Chemistry, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Mann
- Department for Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany.
| |
Collapse
|
8
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
9
|
Han QQ, Le W. NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson's Disease. Neurosci Bull 2023; 39:832-844. [PMID: 36757612 PMCID: PMC10169990 DOI: 10.1007/s12264-023-01023-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.
Collapse
Affiliation(s)
- Qiu-Qin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Weidong Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
10
|
Chang KH, Liu CH, Wang YR, Lo YS, Chang CW, Wu HC, Chen CM. Upregulation of APAF1 and CSF1R in Peripheral Blood Mononuclear Cells of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24087095. [PMID: 37108258 PMCID: PMC10139006 DOI: 10.3390/ijms24087095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Increased oxidative stress and neuroinflammation play a crucial role in the pathogenesis of Parkinson's disease (PD). In this study, the expression levels of 52 genes related to oxidative stress and inflammation were measured in peripheral blood mononuclear cells of the discovery cohort including 48 PD patients and 25 healthy controls. Four genes, including ALDH1A, APAF1, CR1, and CSF1R, were found to be upregulated in PD patients. The expression patterns of these genes were validated in a second cohort of 101 PD patients and 61 healthy controls. The results confirmed the upregulation of APAF1 (PD: 0.34 ± 0.18, control: 0.26 ± 0.11, p < 0.001) and CSF1R (PD: 0.38 ± 0.12, control: 0.33 ± 0.10, p = 0.005) in PD patients. The expression level of APAF1 was correlated with the scores of the Unified Parkinson's Disease Rating Scale (UPDRS, r = 0.235, p = 0.018) and 39-item PD questionnaire (PDQ-39, r = 0.250, p = 0.012). The expression level of CSF1R was negatively correlated with the scores of the mini-mental status examination (MMSE, r = -0.200, p = 0.047) and Montréal Cognitive Assessment (MoCA, r = -0.226, p = 0.023). These results highly suggest that oxidative stress biomarkers in peripheral blood may be useful in monitoring the progression of motor disabilities and cognitive decline in PD patients.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Hsin Liu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Ru Wang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
Korczowska-Łącka I, Hurła M, Banaszek N, Kobylarek D, Szymanowicz O, Kozubski W, Dorszewska J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol Neurobiol 2023; 60:4132-4149. [PMID: 37039942 DOI: 10.1007/s12035-023-03329-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body's weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others' recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Dominik Kobylarek
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland.
| |
Collapse
|
12
|
Meshkini F, Moradi A, Hosseinkhani S. Upregulation of RIPK1 implicates in HEK 293T cell death upon transient transfection of A53T-α-synuclein. Int J Biol Macromol 2023; 230:123216. [PMID: 36634793 DOI: 10.1016/j.ijbiomac.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SN) is the central protein in synucleinopathies including Parkinson's disease. Nevertheless, the molecular mechanisms through which α-SN leads to neuronal death remain unclear. METHODS To elucidate the relationship between α-SN and apoptosis, some indicators of the intrinsic and extrinsic apoptotic cell death were assessed in normal and a stable HEK293T cell line expressing firefly luciferase after transfection with the wild-type (WT) and A53T mutant α-SN. RESULTS Opposite to WT-α-SN, overexpression of A53T-α-SN resulted in enhanced expression of almost two fold for RIPK1 (93.0 %), FADD (45 %), Caspase-8, and Casp-9 activity (52.0 %) in measured time. Transfection of both WT-α-SN and A53T-α-SN showed an increase in the Casp-3/Procasp-3 ratio (WT: 60.5 %; A53T: 41.0 %), Casp-3 activity (WT: 65.0 %; A53T: 20.5 %), and a decrease in luciferase activity (WT: 50 %; A53T: 34.8 %). Overexpression of A53T-α-SN brought about with more cell death percentage compared to WT-α-SN within 36 h. No significant alteration in cytochrome c and reactive oxygen species release into cytosol were observed for both WT-α-SN and A53T-α-SN. CONCLUSION Altogether, these findings highlight the link between disease related mutants of α-SN (like A53T-α-SN) in triggering of RIPK1-dependent extrinsic apoptotic pathway in cell death during neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Bo X, Xie F, Zhang J, Gu R, Li X, Li S, Yuan Z, Cheng J. Deletion of Calhm2 alleviates MPTP-induced Parkinson's disease pathology by inhibiting EFHD2-STAT3 signaling in microglia. Theranostics 2023; 13:1809-1822. [PMID: 37064868 PMCID: PMC10091876 DOI: 10.7150/thno.83082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background: Neuroinflammation is involved in the development of Parkinson's disease (PD). Calhm2 plays an important role in the development of microglial inflammation, but whether Calhm2 is involved in PD and its regulatory mechanisms are unclear. Methods: To study the role of Calhm2 in the development of PD, we utilized conventional Calhm2 knockout mice, microglial Calhm2 knockout mice and neuronal Calhm2 knockout mice, and established the MPTP-induced PD mice model. Moreover, a series of methods including behavioral test, immunohistochemistry, immunofluorescence, real-time polymerase chain reaction, western blot, mass spectrometry analysis and co-immunoprecipitation were utilized to study the regulatory mechanisms. Results: We found that both conventional Calhm2 knockout and microglial Calhm2 knockout significantly reduced dopaminergic neuronal loss, and decreased microglial numbers, thereby improving locomotor performance in PD model mice. Mechanistically, we found that Calhm2 interacted with EFhd2 and regulated downstream STAT3 signaling in microglia. Knockdown of Calhm2 or EFhd2 both inhibited downstream STAT3 signaling and inflammatory cytokine levels in microglia. Conclusion: We demonstrate the important role of Calhm2 in microglial activation and the pathology of PD, thus providing a potential therapeutic target for microglia-mediated neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Xuena Bo
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Fei Xie
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jingdan Zhang
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Runze Gu
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- ✉ Corresponding authors: Jinbo Cheng, PhD. Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China. E-mail: . Zengqiang Yuan, PhD. The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. E-mail: , or
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- ✉ Corresponding authors: Jinbo Cheng, PhD. Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China. E-mail: . Zengqiang Yuan, PhD. The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. E-mail: , or
| |
Collapse
|
14
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
15
|
Sisalli MJ, Della Notte S, Secondo A, Ventra C, Annunziato L, Scorziello A. L-Ornithine L-Aspartate Restores Mitochondrial Function and Modulates Intracellular Calcium Homeostasis in Parkinson's Disease Models. Cells 2022; 11:cells11182909. [PMID: 36139485 PMCID: PMC9496730 DOI: 10.3390/cells11182909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
The altered crosstalk between mitochondrial dysfunction, intracellular Ca2+ homeostasis, and oxidative stress has a central role in the dopaminergic neurodegeneration. In the present study, we investigated the hypothesis that pharmacological strategies able to improve mitochondrial functions might prevent neuronal dysfunction in in vitro models of Parkinson’s disease. To this aim, the attention was focused on the amino acid ornithine due to its ability to cross the blood–brain barrier, to selectively reach and penetrate the mitochondria through the ornithine transporter 1, and to control mitochondrial function. To pursue this issue, experiments were performed in human neuroblastoma cells SH-SY5Y treated with rotenone and 6-hydroxydopamine to investigate the pharmacological profile of the compound L-Ornithine-L-Aspartate (LOLA) as a new potential therapeutic strategy to prevent dopaminergic neurons’ death. In these models, confocal microscopy experiments with fluorescent dyes measuring mitochondrial calcium content, mitochondrial membrane potential, and mitochondrial ROS production, demonstrated that LOLA improved mitochondrial functions. Moreover, by increasing NCXs expression and activity, LOLA also reduced cytosolic [Ca2+] thanks to its ability to modulate NO production. Collectively, these results indicate that LOLA, by interfering with those mitochondrial mechanisms related to ROS and RNS production, promotes mitochondrial functional recovery, thus confirming the tight relationship existing between cytosolic ionic homeostasis and cellular metabolism depending on the type of insult applied.
Collapse
Affiliation(s)
- Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | - Salvatore Della Notte
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | | | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
16
|
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11091780. [PMID: 36139853 PMCID: PMC9495572 DOI: 10.3390/antiox11091780] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | | | | | - Irina Gazaryan
- Pace University, White Plains, NY 10601, USA
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, 111401 Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, 111401 Moscow, Russia
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29406, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29406, USA
- Correspondence:
| |
Collapse
|
17
|
Xin C, Yang N, Ding Y, Han L, Zhou Z, Guo X, Fang Z, Bai H, Peng B, Zhang C, Li L. Mitochondrial‐Targeting Vitamin B
3
Ameliorates the Phenotypes of Parkinson's Disease in vitro and in vivo by Restoring Mitochondrial Function. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
- Department of Central Laboratory of Basic Medicine The First Affiliated Hospital of Yangtze University Jingzhou 421000 China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Yaqi Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Linqi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Chengwu Zhang
- School of Basic Medical Sciences Shanxi Medical University Taiyuan 310003 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE Future Technologies) Xiamen University Fujian 361005 China
| |
Collapse
|
18
|
Huang ML, Yen PL, Chang CH, Liao VHC. Chronic di(2-ethylhexyl) phthalate exposure leads to dopaminergic neuron degeneration through mitochondrial dysfunction in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119574. [PMID: 35671892 DOI: 10.1016/j.envpol.2022.119574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is frequently detected in the environment due to the abundance of its use. These levels might be hazardous to human health and ecosystems. Phthalates have been associated with neurological disorders, yet whether chronic DEHP exposure plays a role in Parkinson's disease (PD) or its underlying mechanisms is unknown. We investigated the effects of chronic DEHP exposure less than an environmentally-relevant dose on PD hallmarks, using Caenorhabditis elegans as a model. We show that developmental stage and exposure timing influence DEHP-induced dopaminergic neuron degeneration. In addition, in response to chronic DEHP exposure at 5 mg/L, mitochondrial fragmentation became significantly elevated, reactive oxygen species (ROS) levels increased, and ATP levels decreased, suggesting that mitochondrial dysfunction occurs. Furthermore, the data show that mitochondrial complex I (nuo-1 and gas-1) and complex II (mev-1) are involved in DEHP-induced dopaminergic neuron toxicity. These results suggest that chronic exposure to DEHP at levels less than an environmentally-relevant dose causes dopaminergic neuron degeneration through mitochondrial dysfunction involving mitochondrial complex I and II. Considering the high level of genetic conservation between C. elegans and mammals, chronic DEHP exposure might elevate the risk of developing PD in humans.
Collapse
Affiliation(s)
- Mei-Lun Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
19
|
Moreno-Valladares M, Moncho-Amor V, Bernal-Simon I, Agirre-Iturrioz E, Álvarez-Satta M, Matheu A. Norovirus Intestinal Infection and Lewy Body Disease in an Older Patient with Acute Cognitive Impairment. Int J Mol Sci 2022; 23:ijms23158376. [PMID: 35955510 PMCID: PMC9368907 DOI: 10.3390/ijms23158376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
We present a case report on an older woman with unspecific symptoms and predominant long-term gastrointestinal disturbances, acute overall health deterioration with loss of autonomy for daily activities, and cognitive impairment. Autopsy revealed the presence of alpha-synuclein deposits spread into intestinal mucosa lesions, enteric plexuses, pelvic and retroperitoneal nerves and ganglia, and other organs as well as Lewy pathology in the central nervous system (CNS). Moreover, we isolated norovirus from the patient, indicating active infection in the colon and detected colocalization of norovirus and alpha-synuclein in different regions of the patient’s brain. In view of this, we report a concomitant norovirus infection with synthesis of alpha-synuclein in the gastrointestinal mucosa and Lewy pathology in the CNS, which might support Braak’s hypothesis about the pathogenic mechanisms underlying synucleinopathies.
Collapse
Affiliation(s)
- Manuel Moreno-Valladares
- Pathology Department, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastian, Spain; (I.B.-S.); (E.A.-I.)
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (V.M.-A.); (M.Á.-S.); (A.M.)
- CIBER on Frailty and Healthy Aging (CIBERfes), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-943007151
| | - Veronica Moncho-Amor
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (V.M.-A.); (M.Á.-S.); (A.M.)
| | - Iraide Bernal-Simon
- Pathology Department, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastian, Spain; (I.B.-S.); (E.A.-I.)
| | - Eñaut Agirre-Iturrioz
- Pathology Department, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastian, Spain; (I.B.-S.); (E.A.-I.)
| | - María Álvarez-Satta
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (V.M.-A.); (M.Á.-S.); (A.M.)
- CIBER on Frailty and Healthy Aging (CIBERfes), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ander Matheu
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (V.M.-A.); (M.Á.-S.); (A.M.)
- CIBER on Frailty and Healthy Aging (CIBERfes), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
20
|
Singh S, Ganguly U, Pal S, Chandan G, Thakur R, Saini RV, Chakrabarti SS, Agrawal BK, Chakrabarti S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson's disease. Eur J Pharmacol 2022; 929:175129. [PMID: 35777442 DOI: 10.1016/j.ejphar.2022.175129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
The development of neuroprotective drugs targeting mitochondria could be an important strategy in combating the progressive clinical course of Parkinson's disease. In the current study, we demonstrated that in SH-SY5Y cells (human dopaminergic neuroblastoma cell line), rotenone caused a dose-dependent (0.25-1 μM) and time-dependent (up to 48 h) loss of cell viability and a loss of cellular ATP content with mitochondrial membrane depolarization and an increased formation of reactive oxygen species; all these processes were markedly prevented by the mitochondrial permeability transition pore blocker cyclosporine A, which did not affect complex I inhibition by rotenone. The nuclear morphology of rotenone-treated cells for 48 h indicated the presence of both necrosis and apoptosis. We then examined the effects of cyclosporine A on the rotenone-induced model of Parkinson's disease in Wistar rats. Cyclosporine A significantly improved the motor deficits and prevented the loss of nigral dopaminergic neurons projecting into the striatum in rotenone-treated rats. Being a marketed immuno-suppressive drug, cyclosporine A should be further evaluated for its putative neuroprotective action in Parkinson's disease.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Soumya Pal
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India; Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Gourav Chandan
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Rahul Thakur
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bimal K Agrawal
- Department of Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India.
| |
Collapse
|
21
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
22
|
Schmidt S, Vogt Weisenhorn DM, Wurst W. Chapter 5 – “Parkinson's disease – A role of non-enzymatic posttranslational modifications in disease onset and progression?”. Mol Aspects Med 2022; 86:101096. [PMID: 35370007 DOI: 10.1016/j.mam.2022.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
|
23
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
24
|
Bougea A, Stefanis L, Chrousos G. Stress system and related biomarkers in Parkinson's disease. Adv Clin Chem 2022; 111:177-215. [DOI: 10.1016/bs.acc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
de Rus Jacquet A, Ambaw A, Tambe MA, Ma SY, Timmers M, Grace MH, Wu QL, Simon JE, McCabe GP, Lila MA, Shi R, Rochet JC. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food Funct 2021; 12:11987-12007. [PMID: 34751296 PMCID: PMC10822195 DOI: 10.1039/d1fo00007a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by nigrostriatal degeneration and the spreading of aggregated forms of the presynaptic protein α-synuclein (aSyn) throughout the brain. PD patients are currently only treated with symptomatic therapies, and strategies to slow or stop the progressive neurodegeneration underlying the disease's motor and cognitive symptoms are greatly needed. The time between the first neurobiochemical alterations and the initial presentation of symptoms is thought to span several years, and early neuroprotective dietary interventions could delay the disease onset or slow PD progression. In this study, we characterized the neuroprotective effects of isoflavones, a class of dietary polyphenols found in soy products and in the medicinal plant red clover (Trifolium pratense). We found that isoflavone-rich extracts and individual isoflavones rescued the loss of dopaminergic neurons and the shortening of neurites in primary mesencephalic cultures exposed to two PD-related insults, the environmental toxin rotenone and an adenovirus encoding the A53T aSyn mutant. The extracts and individual isoflavones also activated the Nrf2-mediated antioxidant response in astrocytes via a mechanism involving inhibition of the ubiquitin-proteasome system, and they alleviated deficits in mitochondrial respiration. Furthermore, an isoflavone-enriched soy extract reduced motor dysfunction exhibited by rats lesioned with the PD-related neurotoxin 6-OHDA. These findings suggest that plant-derived isoflavones could serve as dietary supplements to delay PD onset in at-risk individuals and mitigate neurodegeneration in the brains of patients.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Abeje Ambaw
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Michael Timmers
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Mary H Grace
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - James E Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Kurokin I, Lauer AA, Janitschke D, Winkler J, Theiss EL, Griebsch LV, Pilz SM, Matschke V, van der Laan M, Grimm HS, Hartmann T, Grimm MOW. Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model. Biomedicines 2021; 9:1062. [PMID: 34440266 PMCID: PMC8393816 DOI: 10.3390/biomedicines9081062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the accumulation of Amyloid-β (Aβ) in senile plaques derived from amyloidogenic processing of a precursor protein (APP). Recently, changes in mitochondrial function have become in the focus of the disease. Whereas a link between AD and lipid-homeostasis exists, little is known about potential alterations in the lipid composition of mitochondria. Here, we investigate potential changes in the main mitochondrial phospholipid classes phosphatidylcholine, phosphatidylethanolamine and the corresponding plasmalogens and lyso-phospholipids of a cellular AD-model (SH-SY5Y APPswedish transfected cells), comparing these results with changes in cell-homogenates. Targeted shotgun-lipidomics revealed lipid alterations to be specific for mitochondria and cannot be predicted from total cell analysis. In particular, lipids containing three and four times unsaturated fatty acids (FA X:4), such as arachidonic-acid, are increased, whereas FA X:6 or X:5, such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), are decreased. Additionally, PE plasmalogens are increased in contrast to homogenates. Results were confirmed in another cellular AD model, having a lower affinity to amyloidogenic APP processing. Besides several similarities, differences in particular in PE species exist, demonstrating that differences in APP processing might lead to specific changes in lipid homeostasis in mitochondria. Importantly, the observed lipid alterations are accompanied by changes in the carnitine carrier system, also suggesting an altered mitochondrial functionality.
Collapse
Affiliation(s)
- Irina Kurokin
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, D-44801 Bochum, Germany;
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling PZMS, Saarland University Medical School, 66421 Homburg, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (I.K.); (A.A.L.); (D.J.); (J.W.); (E.L.T.); (L.V.G.); (S.M.P.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| |
Collapse
|
27
|
Nhu NT, Cheng YJ, Lee SD. Effects of Treadmill Exercise on Neural Mitochondrial Functions in Parkinson's Disease: A Systematic Review of Animal Studies. Biomedicines 2021; 9:1011. [PMID: 34440215 PMCID: PMC8394716 DOI: 10.3390/biomedicines9081011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023] Open
Abstract
This systematic review sought to determine the effects of treadmill exercise on the neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease. PubMed, Web of Science, and EMBASE databases were searched through March 2020. The English-published animal studies that mentioned the effects of treadmill exercise on neural mitochondria in Parkinson's disease were included. The CAMARADES checklist was used to assess the methodological quality of the studies. Ten controlled trials were included (median CAMARADES score = 5.7/10) with various treadmill exercise durations (1-18 weeks). Seven studies analyzed the neural mitochondrial respiration, showing that treadmill training attenuated complex I deficits, cytochrome c release, ATP depletion, and complexes II-V abnormalities in Parkinson's disease. Nine studies analyzed the neural mitochondrial quality-control, reporting that treadmill exercise improved mitochondrial biogenesis, mitochondrial fusion, and mitophagy in Parkinson's disease. The review findings supported the hypothesis that treadmill training could attenuate both neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease, suggesting that treadmill training might slow down the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 94117, Vietnam;
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 41354, Taiwan;
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
28
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
29
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
30
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
31
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|
32
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
33
|
Samantaray S, Knaryan VH, M Del Re A, Woodward JJ, Shields DC, Azuma M, Inoue J, Ray SK, Banik NL. Cell-Permeable Calpain Inhibitor SJA6017 Provides Functional Protection to Spinal Motoneurons Exposed to MPP . Neurotox Res 2020; 38:640-649. [PMID: 32761446 PMCID: PMC9453439 DOI: 10.1007/s12640-020-00264-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Extra-nigral central nervous system sites have been found to be affected in Parkinson's disease (PD). In addition to substantia nigra, degeneration of spinal cord motor neurons may play a role in the motor symptoms of PD. To this end, hybrid rodent VSC 4.1 cells differentiated into motoneurons were used as a cell culture model following exposure to Parkinsonian neurotoxicant MPP+. SJA6017, a cell-permeable calpain inhibitor, was tested for its neuroprotective efficacy against the neurotoxicant. SJA6017 attenuated MPP+-induced rise in intracellular free Ca2+ and concomitant increases in the active form of calpain. It also significantly prevented increased levels of proteases and their activities, as shown by reduced levels of 145 kDa calpain-specific and 120 kDa caspase-3-specific spectrin breakdown products. Exposure to MPP+ elevated the levels of reactive oxygen species in VSC 4.1 motoneurons; this was significantly diminished with SJA6017. The motor proteins in spinal motoneurons, i.e., dynein and kinesin, were also impaired following exposure to MPP+ through calpain-mediated mechanisms; this process was partially ameliorated by SJA6017 pretreatment. Cytoprotection provided by SJA6017 against MPP+-induced damage to VSC 4.1 motoneurons was confirmed by restoration of membrane potential via whole-cell patch-clamp assay. This study demonstrates that calpain inhibition is a prospective route for neuroprotection in experimental PD; moreover, calpain inhibitor SJA6017 appears to be an effective neuroprotective agent against MPP+-induced damage in spinal motoneurons.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Varduhi H Knaryan
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Angelo M Del Re
- Division of Neuroscience Research and Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Division of Neuroscience Research and Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, SC, USA
| | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Mitsuyoshi Azuma
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe, 651-2241, Japan
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Jun Inoue
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe, 651-2241, Japan
| | - Swapan K Ray
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA.
| |
Collapse
|
34
|
Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Adv Healthc Mater 2020; 9:e1901589. [PMID: 31854132 DOI: 10.1002/adhm.201901589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Many central nervous system (CNS) diseases are still incurable and only symptomatic treatments are available. Oxidative stress is suggested to be a common hallmark, being able to cause and exacerbate the neuronal cell dysfunctions at the basis of these pathologies, such as mitochondrial impairments, accumulation of misfolded proteins, cell membrane damages, and apoptosis induction. Several antioxidant compounds are tested as potential countermeasures for CNS disorders, but their efficacy is often hindered by the loss of antioxidant properties due to enzymatic degradation, low bioavailability, poor water solubility, and insufficient blood-brain barrier crossing efficiency. To overcome the limitations of antioxidant molecules, exploitation of nanostructures, either for their delivery or with inherent antioxidant properties, is proposed. In this review, after a brief discussion concerning the role of the blood-brain barrier in the CNS and the involvement of oxidative stress in some neurodegenerative diseases, the most interesting research concerning the use of nano-antioxidants is introduced and discussed, focusing on the synthesis procedures, functionalization strategies, in vitro and in vivo tests, and on recent clinical trials.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
35
|
Deus CM, Pereira SP, Cunha-Oliveira T, Pereira FB, Raimundo N, Oliveira PJ. Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson's disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165615. [PMID: 31759069 DOI: 10.1016/j.bbadis.2019.165615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra. The exact mechanism by which dopaminergic neurodegeneration occurs is still unknown; however, mitochondrial dysfunction has long been implicated in PD pathogenesis. To investigate the sub-cellular events that lead to disease progression and to develop personalized interventions, non-neuronal cells which are collected in a minimally invasive manner can be key to test interventions aimed at improving mitochondrial function. We used human skin fibroblasts from sporadic PD (sPD) patients as a cell proxy to detect metabolic and mitochondrial alterations which would also exist in a non-neuronal cell type. In this model, we used a glucose-free/galactose- glutamine- and pyruvate-containing cell culture medium, which forces cells to be more dependent on oxidative phosphorylation (OXPHOS) for energy production, in order to reveal hidden metabolic and mitochondrial alterations present in fibroblasts from sPD patients. We demonstrated that fibroblasts from sPD patients show hyperpolarized and elongated mitochondrial networks and higher mitochondrial ROS concentration, as well as decreased ATP levels and glycolysis-related ECAR. Our results also showed that abnormalities of fibroblasts from sPD patients became more evident when stimulating OXPHOS. Under these culture conditions, fibroblasts from sPD cells presented decreased basal respiration, ATP-linked OCR and maximal respiration, and increased mitochondria-targeting phosphorylation of DRP1 when compared to control cells. Our work validates the relevance of using fibroblasts from sPD patients to study cellular and molecular changes that are characteristic of dopaminergic neurodegeneration of PD, and shows that forcing mitochondrial OXPHOS uncovers metabolic defects that were otherwise hidden.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; LaMetEx - Laboratory of Metabolism and Exercise, Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Francisco B Pereira
- Center for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal; Coimbra Polytechnic - ISEC, 3030-193 Coimbra, Portugal.
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
36
|
Li X, Yang W, Li X, Chen M, Liu C, Li J, Yu S. Alpha-synuclein oligomerization and dopaminergic degeneration occur synchronously in the brain and colon of MPTP-intoxicated parkinsonian monkeys. Neurosci Lett 2019; 716:134640. [PMID: 31759083 DOI: 10.1016/j.neulet.2019.134640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Dopaminergic (DAergic) degeneration and abnormal α-synuclein (α-syn) expression, phosphorylation and aggregation are observed in both the nigrostriatal system (NSS) and enteric nervous system (ENS) of patients with Parkinson's disease (PD). Whether these alterations in α-syn and DAergic neurons occur synchronously in the two nervous systems or follow a process that spreads from the gut to the brain remains a subject of debate. Here, in MPTP-intoxicated cynomolgus monkeys, we showed a parallel DAergic degeneration in the colon as well as in the substantia nigra and striatum (SN/STR), as indicated by reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). In addition, we observed a simultaneous increase in the concentrations of total, phosphorylated, and oligomeric α-syn in the colon and SN/STR. Moreover, we identified that the above changes in α-syn were associated with an increase in the expression of polo-like kinase 2 (PLK2), an enzyme that promotes α-syn phosphorylation, and a decrease in the activity of protein phosphatase 2A (PP2A), an enzyme that facilitates α-syn dephosphorylation. Because the colonic ENS can be readily analyzed using routine biopsies, the shared pathological features between the colonic ENS and the brain NSS found in this study provide useful information for assessing and understanding the neuropathology in PD patients using colonic biopsies.
Collapse
Affiliation(s)
- Xuran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Min Chen
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chengwei Liu
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jie Li
- Department of Neurology, Beijing Daxing District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
37
|
Kim J, Daadi MM. Non-cell autonomous mechanism of Parkinson's disease pathology caused by G2019S LRRK2 mutation in Ashkenazi Jewish patient: Single cell analysis. Brain Res 2019; 1722:146342. [PMID: 31330122 PMCID: PMC8152577 DOI: 10.1016/j.brainres.2019.146342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of the midbrain dopaminergic neurons, which leads to impaired motor and cognitive functions. PD is predominantly an idiopathic disease, however about 5% of cases are linked to hereditary mutations. The most common mutation in both familial and sporadic PD is the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) with high prevalence in Ashkenazi Jewish patients and in North African Berber and Arab patients. It is still not fully understood how this mutation leads to PD pathology. In this study, we derived induced pluripotent stem cells (iPSCs) from an Ashkenazi Jewish patient with G2019S LRRK2 mutation to isolate self-renewable multipotent neural stem cells (NSCs) and to model this form of PD in vitro. To investigate the cellular diversity and disease pathology in the NSCs, we used single cell RNA-seq transcriptomic profiling. The evidence suggests there are three subpopulations within the NSCs: a committed neuronal population, intermediate stage population and undifferentiated stage population. Unbiased single-cell transcriptomic analysis revealed differential expression and dysregulation of genes involved in PD pathology. The significantly affected genes were involved in mitochondrial function, DNA repair, protein degradation, oxidative stress, lysosome biogenesis, ubiquitination, endosome function, autophagy and mitochondrial quality control. The results suggest that G2019S LRRK2 mutation may affect multiple cell types in a non-cell autonomous mechanism of PD pathology and that unbiased single-cell transcriptomics holds promise for personalized medicine.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Department of Cell Systems & Anatomy, TX, United States
| | - Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States; Department of Cell Systems & Anatomy, TX, United States; Department of Radiology, University of Texas Health Science Center at San Antonio, TX, United States.
| |
Collapse
|
38
|
Abstract
Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨ m ) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨ m and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.
Collapse
|
39
|
Ding Y, Kong D, Zhou T, Yang ND, Xin C, Xu J, Wang Q, Zhang H, Wu Q, Lu X, Lim K, Ma B, Zhang C, Li L, Huang W. α-Arbutin Protects Against Parkinson's Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo. Neuromolecular Med 2019; 22:56-67. [PMID: 31401719 DOI: 10.1007/s12017-019-08562-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of dopaminergic neurons in substantia nigra. The underlying mechanisms of PD pathogenesis have not been fully illustrated and currently PD remains incurable. Accumulating evidences suggest that mitochondrial dysfunction plays pivotal role in the dopaminergic neuronal death. Therefore, discovery of novel and safe agent for rescuing mitochondrial dysfunction would benefit PD treatment. Here we demonstrated for the first time that α-Arbutin (Arb), a natural polyphenol extracted from Ericaceae species, displayed significant protective effect on the rotenone (Rot)-induced mitochondrial dysfunction and apoptosis of human neuroblastoma cell (SH-SY5Y). We further found that the neuroprotective effect of Arb was associated with ameliorating oxidative stress, stabilizing of mitochondrial membrane potential, and enhancing adenosine triphosphate production. To investigate the underlying mechanism, we checked the AMP-activated protein kinase and autophagy pathway and we found that both were involved in the neuroprotection of Arb. Moreover, we explored the protective effect of Arb in drosophila PD model and found that Arb rescued parkin deficiency-induced motor function disability and mitochondrial abnormality of drosophila. Taken together, our study demonstrated that Arb got excellent neuroprotective effect on PD models both in vitro and in vivo and Arb might serve as a potent therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Yaqi Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Medical University of Air Force, Xi'an, 710032, People's Republic of China
| | - Tong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Nai-di Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jiajia Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Qi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Kahleong Lim
- Department of Physiology, School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, People's Republic of China
| |
Collapse
|
40
|
Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J, Miranda P, Graham M, Tang J, Boon AJW, Cossu G, Mandemakers W, Bonifati V, Smith PJS, Alavian KN, Jonas EA. Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis 2019; 10:469. [PMID: 31197129 PMCID: PMC6565618 DOI: 10.1038/s41419-019-1679-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022]
Abstract
Familial Parkinson’s disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase β subunit. DJ-1’s interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (β subunit) and c-subunit protein levels. We found that ATP synthase β subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.
Collapse
Affiliation(s)
- Rongmin Chen
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Han-A Park
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA.,Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Yulong Niu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Pawel Licznerski
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Jing Wu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Paige Miranda
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Jack Tang
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J S Smith
- Institute of Life Sciences, University of Southampton, Southampton, England.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Kambiz N Alavian
- Marine Biological Laboratory, Woods Hole, MA, USA.,Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA. .,Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
41
|
Foti SC, Hargreaves I, Carrington S, Kiely AP, Houlden H, Holton JL. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson's disease. Sci Rep 2019; 9:6559. [PMID: 31024027 PMCID: PMC6484105 DOI: 10.1038/s41598-019-42902-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/25/2019] [Indexed: 11/08/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterised by glial cytoplasmic inclusions (GCIs), containing α-synuclein. Mutated COQ2, encoding an enzyme essential for co-enzyme Q10 (CoQ10) biosynthesis, has been associated with MSA. CoQ10 is an electron carrier in the mitochondrial electron transport chain (ETC) and antioxidant. It has been shown to be deficient in MSA brain tissue, thus implicating mitochondrial dysfunction in MSA. To investigate mitochondrial dysfunction in MSA further we examined ETC activity in MSA and control brain tissue, compared with Parkinson's disease (PD) where mitochondrial dysfunction is known to be important. Using cerebellar and occipital white matter ETC complex I, II/III and IV activities were measured spectrophotometrically, selected individual components of the ETC were assessed by immunoblotting and cellular complex IV activity was analysed by enzyme histochemistry. We show decreased complex II/III activity with increased complex I and IV activity in MSA cerebellar white matter. This corresponds with the deficit in CoQ10 previously described in MSA and reflects the high regional pathological burden of GCIs. This study highlights mitochondrial dysfunction in MSA pathogenesis, suggests an influence on selective regional vulnerability to disease and points to shared disease mechanisms in α-synucleinopathies.
Collapse
Affiliation(s)
- Sandrine C Foti
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Iain Hargreaves
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, United Kingdom
- Liverpool John Moores University, School of Pharmacy and Biomedical Sciences, Liverpool, L3 3AF, United Kingdom
| | - Stephanie Carrington
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, United Kingdom
| | - Aoife P Kiely
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, United Kingdom
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
42
|
Selvaraji S, Poh L, Natarajan V, Mallilankaraman K, Arumugam TV. Negative Conditioning of Mitochondrial Dysfunction in Age-related Neurodegenerative Diseases. CONDITIONING MEDICINE 2019; 2:30-39. [PMID: 31058265 PMCID: PMC6497175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mitochondrial dysfunction is regarded as one of the major causes of neuronal injury in age-associated neurodegenerative diseases and stroke. Mitochondrial dysfunction leads to increased reactive oxygen species production, causing mitochondrial DNA mutations, which then results in pathological conditions. Negative conditioning of mitochondrial dysfunction via pharmacological inhibition, phytochemicals, and dietary restriction serve as an avenue for therapeutic intervention to improve mitochondrial quality and function. Here, we focus primarily on mitochondrial biology, evidence for mitochondrial dysfunction in neurodegenerative conditions such as dementia and stroke, and the possibility of using negative conditioning to restore or preserve mitochondrial function in these diseases.
Collapse
Affiliation(s)
- Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Venkateswaran Natarajan
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
43
|
Chernivec E, Cooper J, Naylor K. Exploring the Effect of Rotenone-A Known Inducer of Parkinson's Disease-On Mitochondrial Dynamics in Dictyostelium discoideum. Cells 2018; 7:E201. [PMID: 30413037 PMCID: PMC6262481 DOI: 10.3390/cells7110201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Current treatments for Parkinson's disease (PD) only alleviate symptoms doing little to inhibit the onset and progression of the disease, thus we must research the mechanism of Parkinson's. Rotenone is a known inducer of parkinsonian conditions in rats; we use rotenone to induce parkinsonian cellular conditions in Dictyostelium discoideum. In our model we primarily focus on mitochondrial dynamics. We found that rotenone disrupts the actin and microtubule cytoskeleton but mitochondrial morphology remains intact. Rotenone stimulates mitochondrial velocity while inhibiting mitochondrial fusion, increases reactive oxygen species (ROS) but has no effect on ATP levels. Antioxidants have been shown to decrease some PD symptoms thus we added ascorbic acid to our rotenone treated cells. Ascorbic acid administration suggests that rotenone effects may be specific to the disruption of the cytoskeleton rather than the increase in ROS. Our results imply that D. discoideum may be a valid cellular PD model and that the rotenone induced velocity increase and loss of fusion could prevent mitochondria from effectively providing energy and other mitochondrial products in high demand areas. The combination of these defects in mitochondrial dynamics and increased ROS could result in degeneration of neurons in PD.
Collapse
Affiliation(s)
- Ethan Chernivec
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA.
| | - Jacie Cooper
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA.
| | - Kari Naylor
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA.
| |
Collapse
|
44
|
Supandi F, van Beek JHGM. Computational prediction of changes in brain metabolic fluxes during Parkinson's disease from mRNA expression. PLoS One 2018; 13:e0203687. [PMID: 30208076 PMCID: PMC6135490 DOI: 10.1371/journal.pone.0203687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson’s disease is a widespread neurodegenerative disorder which affects brain metabolism. Although changes in gene expression during disease are often measured, it is difficult to predict metabolic fluxes from gene expression data. Here we explore the hypothesis that changes in gene expression for enzymes tend to parallel flux changes in biochemical reaction pathways in the brain metabolic network. This hypothesis is the basis of a computational method to predict metabolic flux changes from post-mortem gene expression measurements in Parkinson’s disease (PD) brain. Results We use a network model of central metabolism and optimize the correspondence between relative changes in fluxes and in gene expression. To this end we apply the Least-squares with Equalities and Inequalities algorithm integrated with Flux Balance Analysis (Lsei-FBA). We predict for PD (1) decreases in glycolytic rate and oxygen consumption and an increase in lactate production in brain cortex that correspond with measurements (2) relative flux decreases in ATP synthesis, in the malate-aspartate shuttle and midway in the TCA cycle that are substantially larger than relative changes in glucose uptake in the substantia nigra, dopaminergic neurons and most other brain regions (3) shifts in redox shuttles between cytosol and mitochondria (4) in contrast to Alzheimer’s disease: little activation of the gamma-aminobutyric acid shunt pathway in compensation for decreased alpha-ketoglutarate dehydrogenase activity (5) in the globus pallidus internus, metabolic fluxes are increased, reflecting increased functional activity. Conclusion Our method predicts metabolic changes from gene expression data that correspond in direction and order of magnitude with presently available experimental observations during Parkinson’s disease, indicating that the hypothesis may be useful for some biochemical pathways. Lsei-FBA generates predictions of flux distributions in neurons and small brain regions for which accurate metabolic flux measurements are not yet possible.
Collapse
Affiliation(s)
- Farahaniza Supandi
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Johannes H. G. M. van Beek
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, AZ Amsterdam, the Netherlands
| |
Collapse
|
45
|
Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson's Disease. PARKINSON'S DISEASE 2018; 2018:9163040. [PMID: 30245802 PMCID: PMC6139203 DOI: 10.1155/2018/9163040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra. The precise mechanism underlying pathogenesis of PD is not fully understood, but it has been widely accepted that excessive reactive oxygen species (ROS) are the key mediator of PD pathogenesis. The causative factors of PD such as gene mutation, neuroinflammation, and iron accumulation all could induce ROS generation, and the later would mediate the dopaminergic neuron death by causing oxidation protein, lipids, and other macromolecules in the cells. Obviously, it is of mechanistic and therapeutic significance to understand where ROS are derived and how ROS induce dopaminergic neuron damage. In the present review, we try to summarize and discuss the main source of ROS in PD and the key pathways through which ROS mediate DA neuron death.
Collapse
Affiliation(s)
- Minrui Weng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chao Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593
| | - Kah-Leong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593
| | - Cheng-wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
46
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Suh KS, Chon S, Choi EM. Protective effects of piceatannol on methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Free Radic Res 2018; 52:712-723. [DOI: 10.1080/10715762.2018.1467010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
48
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
49
|
S N, Shivanandappa T. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila. Neurotoxicology 2018; 66:160-169. [DOI: 10.1016/j.neuro.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
|
50
|
Dallé E, Mabandla MV. Early Life Stress, Depression And Parkinson's Disease: A New Approach. Mol Brain 2018; 11:18. [PMID: 29551090 PMCID: PMC5858138 DOI: 10.1186/s13041-018-0356-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Collapse
Affiliation(s)
- Ernest Dallé
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Musa V. Mabandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| |
Collapse
|