1
|
Ma F, Zhang Q, Shi J, Li S, Wu L, Zhang H. Risk factors for cognitive dysfunction and glycemic management in older adults with type 2 diabetes mellitus: a retrospective study. BMC Endocr Disord 2023; 23:220. [PMID: 37821909 PMCID: PMC10565992 DOI: 10.1186/s12902-023-01476-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Epidemiological evidence shows a robust relationship between cognitive dysfunction and type 2 diabetes mellitus (T2DM). This study identified major risk factors that might prevent or ameliorate T2DM-associated cognitive dysfunction in the realm of clinical practice. METHODS Using Mini-mental State Examination (MMSE) in the light of education level, we identified older adults with T2DM on admission aged 50 and above. We conducted this case-control study when eligible participants were divided into Cognitively Normal (CN) group and Cognitively Impaired (CI) group. Analytical data referred to demographic characteristics, clinical features, fluid biomarkers, and scale tests. RESULTS Of 596 records screened, 504 cases were included in the final analysis. Modified multivariate logistic regression analysis verified that homocysteine (OR = 2.048, 95%CI = 1.129-3.713), brain infarction (OR = 1.963, 95%CI = 1.197-3.218), dementia (OR = 9.430, 95%CI = 2.113-42.093), education level (OR = 0.605, 95%CI = 0.367-0.997), severity of dependence (OR = 1.996, 95%CI = 1.397-2.851), creatine kinase (OR = 0.514, 95%CI = 0.271-0.974) were significant risk factors of incident T2DM-related cognitive dysfunction in patients of advanced age. CONCLUSION Our study supported a robust relationship between T2DM and cognitive dysfunction. Our results provide clinicians with major risk factors for T2DM-related cognitive dysfunction, in particular the protective role of creatine kinase.
Collapse
Affiliation(s)
- Fanyuan Ma
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Juan Shi
- Department of Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, China
| | - Shuaifeng Li
- Department of Spine Surgery, General Hospital of PLA Tibet Military Area Command, Lhasa, 850007, China
| | - Liping Wu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Li S, Cheng C, Lu L, Ma X, Zhang X, Li A, Chen J, Qian X, Gao X. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9:716300. [PMID: 34458270 PMCID: PMC8385440 DOI: 10.3389/fcell.2021.716300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide, which is projected to reach 900 million by 2050. Its histological characteristics are lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological disorders cover a wide range of diseases affecting the nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), autism spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders manifest with hearing loss, in addition to typical nervous symptoms. The prevalence, manifestations, and neuropathological mechanisms underlying vary among different diseases. In this review, we discuss the relevant literature, from clinical trials to research mice models, to provide an overview of auditory dysfunctions in the most common neurological disorders, particularly those associated with hearing loss, and to explain their underlying pathological and molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoli Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
4
|
Iannuzzi F, Frisardi V, Annunziato L, Matrone C. Might Fibroblasts from Patients with Alzheimer's Disease Reflect the Brain Pathology? A Focus on the Increased Phosphorylation of Amyloid Precursor Protein Tyr 682 Residue. Brain Sci 2021; 11:103. [PMID: 33466666 PMCID: PMC7828817 DOI: 10.3390/brainsci11010103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no cure and no effective diagnostic criteria. The greatest challenge in effectively treating AD is identifying biomarkers specific for each patient when neurodegenerative processes have not yet begun, an outcome that would allow the design of a personalised therapeutic approach for each patient and the monitoring of the therapeutic response during the treatment. We found that the excessive phosphorylation of the amyloid precursor protein (APP) Tyr682 residue on the APP 682YENPTY687 motif precedes amyloid β accumulation and leads to neuronal degeneration in AD neurons. We proved that Fyn tyrosine kinase elicits APP phosphorylation on Tyr682 residue, and we reported increased levels of APP Tyr682 and Fyn overactivation in AD neurons. Here, we want to contemplate the possibility of using fibroblasts as tools to assess APP Tyr682 phosphorylation in AD patients, thus making the changes in APP Tyr682 phosphorylation levels a potential diagnostic strategy to detect early pathological alterations present in the peripheral cells of AD patients' AD brains.
Collapse
Affiliation(s)
- Filomena Iannuzzi
- Department of Biomedicine, University of Aarhus, Bartholins Allé, 8000 Aarhus, Denmark;
| | - Vincenza Frisardi
- Geriatric and Neuro Rehabilitation Department, Clinical Center for Nutrition in the Elderly, AUSL-IRCCS Reggio Emilia, Giovanni Amendola Street, 42122 Reggio Emilia, Italy;
| | - Lucio Annunziato
- SDN Research Institute Diagnostics and Nuclear (IRCCS SDN), Gianturco, 80131 Naples, Italy;
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
5
|
Dash SR, Kundu CN. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 2020; 14:253-260. [PMID: 32463015 PMCID: PMC8676294 DOI: 10.1049/iet-nbt.2019.0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 09/29/2023] Open
Abstract
The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India.
| |
Collapse
|
6
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Nacul L, de Barros B, Kingdon CC, Cliff JM, Clark TG, Mudie K, Dockrell HM, Lacerda EM. Evidence of Clinical Pathology Abnormalities in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) from an Analytic Cross-Sectional Study. Diagnostics (Basel) 2019; 9:E41. [PMID: 30974900 PMCID: PMC6627354 DOI: 10.3390/diagnostics9020041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease presenting with extreme fatigue, post-exertional malaise, and other symptoms. In the absence of a diagnostic biomarker, ME/CFS is diagnosed clinically, although laboratory tests are routinely used to exclude alternative diagnoses. In this analytical cross-sectional study, we aimed to explore potential haematological and biochemical markers for ME/CFS, and disease severity. We reviewed laboratory test results from 272 people with ME/CFS and 136 healthy controls participating in the UK ME/CFS Biobank (UKMEB). After corrections for multiple comparisons, most results were within the normal range, but people with severe ME/CFS presented with lower median values (p < 0.001) of serum creatine kinase (CK; median = 54 U/L), compared to healthy controls (HCs; median = 101.5 U/L) and non-severe ME/CFS (median = 84 U/L). The differences in CK concentrations persisted after adjusting for sex, age, body mass index, muscle mass, disease duration, and activity levels (odds ratio (OR) for being a severe case = 0.05 (95% confidence interval (CI) = 0.02-0.15) compared to controls, and OR = 0.16 (95% CI = 0.07-0.40), compared to mild cases). This is the first report that serum CK concentrations are markedly reduced in severe ME/CFS, and these results suggest that serum CK merits further investigation as a biomarker for severe ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Barbara de Barros
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Caroline C Kingdon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Jacqueline M Cliff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London,WC1E 7HT, UK.
| | - Kathleen Mudie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Eliana M Lacerda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
8
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Abstract
Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
10
|
Chang KH, Wu YR, Chen CM. Down-regulation of miR-9* in the peripheral leukocytes of Huntington's disease patients. Orphanet J Rare Dis 2017; 12:185. [PMID: 29258536 PMCID: PMC5737985 DOI: 10.1186/s13023-017-0742-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Huntington’s disease (HD), caused by expansion of a polyglutamine tract within HUNTINGTIN (HTT) protein, is an autosomal dominant neurodegenerative disease associated with a progressive neurodegeneration of striatum and cerebral cortex. Although a few studies have identified substantial microRNA (miRNA) alterations in central nervous tissues from HD patients, it will be more accessible to employ these molecular changes in peripheral tissues as biomarkers for HD. Methods We examined the expression levels of 13 miRNAs (miR-1, mirR-9, miR-9*, miR-10b, miR-29a, miR-29b, miR-124a, miR-132, miR-155, miR-196a, miR-196b, miR-330 and miR-615), 10 of which previously demonstrated alterations and 3 of which are potential regulators of differentially-expressed genes in brains of HD patients, in the peripheral leukocytes of 36 HD patients, 8 pre-symptomatic HD carriers and 28 healthy controls. Results We found expression levels of miR-9* was significantly lower in HD patients compared with those in healthy controls, while other miRNAs did not show significant difference between these two groups. However, there was no significant correlation between Unified Huntington’s Disease Rating Scales (UHDRS) and levels of miR-9* in peripheral leukocytes of HD patients. Conclusion Our findings indicate the potential of miR-9* in peripheral leukocyte as a signature of neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Altered Aconitase 2 Activity in Huntington's Disease Peripheral Blood Cells and Mouse Model Striatum. Int J Mol Sci 2017; 18:ijms18112480. [PMID: 29160844 PMCID: PMC5713446 DOI: 10.3390/ijms18112480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is caused by an unstable cytosine adenine guanine (CAG) trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin protein. Previously, we identified several up- and down-regulated protein molecules in the striatum of the Hdh(CAG)150 knock-in mice at 16 months of age, a mouse model which is modeling the early human HD stage. Among those molecules, aconitase 2 (Aco2) located in the mitochondrial matrix is involved in the energy generation and susceptible to increased oxidative stress that would lead to inactivation of Aco2 activity. In this study, we demonstrate decreased Aco2 protein level and activity in the brain of both Hdh(CAG)150 and R6/2 mice. Aco2 activity was decreased in striatum of Hdh(CAG)150 mice at 16 months of age as well as R6/2 mice at 7 to 13 weeks of age. Aco2 activity in the striatum of R6/2 mice could be restored by the anti-oxidant, N-acetyl-l-cysteine, supporting that decreased Aco2 activity in HD is probably caused by increased oxidative damage. Decreased Aco2 activity was further found in the peripheral blood mononuclear cells (PBMC) of both HD patients and pre-symptomatic HD mutation (PreHD) carriers, while the decreased Aco2 protein level of PBMC was only present in HD patients. Aco2 activity correlated significantly with motor score, independence scale, and functional capacity of the Unified Huntington’s Disease Rating Scale as well as disease duration. Our study provides a potential biomarker to assess the disease status of HD patients and PreHD carriers.
Collapse
|
12
|
Hsu YT, Chang YG, Chang CP, Siew JJ, Chen HM, Tsai CH, Chern Y. Altered behavioral responses to gamma-aminobutyric acid pharmacological agents in a mouse model of Huntington's disease. Mov Disord 2017; 32:1600-1609. [PMID: 28782830 DOI: 10.1002/mds.27107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Disruptions in gamma-aminobutyric (GABA) acid signaling are believed to be involved in Huntington's disease pathogenesis, but the regulation of GABAergic signaling remains elusive. Here we evaluated GABAergic signaling by examining the function of GABAergic drugs in Huntington's disease and the expression of GABAergic molecules using mouse models and human brain tissues from Huntington's disease. METHODS We treated wild-type and R6/2 mice (a transgenic Huntington's disease mouse model) acutely with vehicle, diazepam, or gaboxadol (drugs that selectively target synaptic or extrasynaptic GABAA receptors) and monitored their locomotor activity. The expression levels of GABAA receptors and a major neuron-specific chloride extruder (potassium-chloride cotransporter-2) were analyzed by real-time quantitative polymerase chain reaction, Western blot, and immunocytochemistry. RESULTS The R6/2 mice were less sensitive to the sedative effects of both drugs, suggesting reduced function of GABAA receptors. Consistently, the expression levels of α1/α2 and δ subunits were lower in the cortex and striatum of R6/2 mice. Similar results were also found in 2 other mouse models of Huntington's disease and in Huntington's disease patients. Moreover, the interaction and expression levels of potassium-chloride cotransporter-2 and its activator (brain-type creatine kinase) were decreased in Huntington's disease neurons. These findings collectively suggest impaired chloride homeostasis, which further dampens GABAA receptor-mediated inhibitory signaling in Huntington's disease brains. CONCLUSIONS The dysregulated GABAergic responses and altered expression levels of GABAA receptors and potassium-chloride cotransporter-2 in Huntington's disease mice appear to be authentic and may contribute to the clinical manifestations of Huntington's disease patients. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chon-Haw Tsai
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Yijuang Chern
- Ph.D. Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Lou S, Lepak VC, Eberly LE, Roth B, Cui W, Zhu XH, Öz G, Dubinsky JM. Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Hum Mol Genet 2016; 25:2813-2826. [PMID: 27193167 DOI: 10.1093/hmg/ddw138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023] Open
Abstract
In vivo evidence for brain mitochondrial dysfunction in animal models of Huntington disease (HD) is scarce. We applied the novel 17O magnetic resonance spectroscopy (MRS) technique on R6/2 mice to directly determine rates of oxygen consumption (CMRO2) and assess mitochondrial function in vivo Basal respiration and maximal CMRO2 in the presence of the mitochondrial uncoupler dinitrophenol (DNP) were compared using 16.4 T in isoflurane anesthetized wild type (WT) and HD mice at 9 weeks. At rest, striatal CMRO2 of R6/2 mice was equivalent to that of WT, indicating comparable mitochondrial output despite onset of motor symptoms in R6/2. After DNP injection, the maximal CMRO2 in both striatum and cortex of R6/2 mice was significantly lower than that of WT, indicating less spare energy generating capacity. In a separate set of mice, oligomycin injection to block ATP generation decreased CMRO2 equally in brains of R6/2 and WT mice, suggesting oxidative phosphorylation capacity and respiratory coupling were equivalent at rest. Expression levels of representative mitochondrial proteins were compared from harvested tissue samples. Significant differences between R6/2 and WT included: in striatum, lower VDAC and the mitochondrially encoded cytochrome oxidase subunit I relative to actin; in cortex, lower tricarboxylic acid cycle enzyme aconitase and higher protein carbonyls; in both, lower glycolytic enzyme enolase. Therefore in R6/2 striatum, lowered CMRO2 may be attributed to a decrease in mitochondria while the cortical CMRO2 decrease may result from constraints upstream in energetic pathways, suggesting regionally specific changes and possibly rates of metabolic impairment.
Collapse
Affiliation(s)
| | | | | | | | - Weina Cui
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Xiao-Hong Zhu
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
14
|
Rakhmetov AD, Pil LS, Ostapchenko LI, Zoon CH. Prx II and CKBB proteins interaction under physiologic al and thermal stress conditions in A549 and HeLa cells. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:61-8. [PMID: 29227081 DOI: 10.15407/ubj88.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxiredoxins (Prxs) are versatile enzymes that demonstrate various cell functions as peroxidases,
protein chaperones, functions of signal modulators and binding partners. It is well established that Prxs can
interact with multiple proteins in cells, such as ASK1, Cdk5-p35, JNK, MIF, PDGF, TK R4 and others. In this
study, we attempted to evaluate a possible association between ubiquitous Prx II and ATP/ADP buffering
enzyme - brain-type creatine kinase (CK BB). Our co-immunoprecipitation (Co-IP) results from the A549
and HeLa cell lysates with overexpressed HA-Prx II and Flag-CK BB have demonstrated strong association
between two proteins under non-stressed conditions. This protein interaction was enhanced by the heat treatment
with further HA-Prx II precipitation to the immobilized Flag-CK BB depending on the temperature increase.
Temperature induced oligomerization of Prx II may contribute to the formation of Prx II conglomerates,
which in turn, can associate with CK BB and increase signal intensities on the blotted membranes. Thus,
such association and oligomerization of Prx II could take part in recovery and protection of the CK BB enzyme
activity from inactivation during heat-induced stress.
Collapse
|
15
|
Kim SY, Choi ES, Lee HJ, Moon C, Kim E. Transthyretin as a new transporter of nanoparticles for receptor-mediated transcytosis in rat brain microvessels. Colloids Surf B Biointerfaces 2015; 136:989-96. [DOI: 10.1016/j.colsurfb.2015.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
|
16
|
Smith RN, Agharkar AS, Gonzales EB. A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Res 2014; 3:222. [PMID: 25664170 PMCID: PMC4304302 DOI: 10.12688/f1000research.5218.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.
Collapse
Affiliation(s)
- Rachel N. Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Amruta S. Agharkar
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| | - Eric B. Gonzales
- Department of Pharmacology & Neuroscience, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Institute for Aging and Alzheimer’s Disease Research, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
- Cardiovascular Research Institute, UNT Health Science Center, Fort Worth, TX, TX, 76107, USA
| |
Collapse
|
17
|
Mochly-Rosen D, Disatnik MH, Qi X. The challenge in translating basic research discoveries to treatment of Huntington disease. Rare Dis 2014; 2:e28637. [PMID: 25054095 PMCID: PMC4091548 DOI: 10.4161/rdis.28637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/03/2014] [Accepted: 03/24/2014] [Indexed: 01/05/2023] Open
Abstract
Huntington disease is a rare neurodegenerative disease resulting from insertion and/or expansion of a polyglutamine repeats close to the N-terminal of the huntingtin protein. Although unequivocal genetic tests have been available for about 20 years, current pharmacological treatments do not prevent or slow down disease progression. Recent basic research identified potential novel drug targets for the treatment of Huntington disease. However, there are clear challenges in translating these discoveries into treatment strategies for these patients. The following is a brief discussion of these challenges using our recent experience as an example.
Collapse
Affiliation(s)
- Daria Mochly-Rosen
- Department of Chemical and Systems Biology; Stanford University School of Medicine; Stanford, CA USA
| | - Marie-Helene Disatnik
- Department of Chemical and Systems Biology; Stanford University School of Medicine; Stanford, CA USA
| | - Xin Qi
- Department of Physiology & Biophysics; Center of Mitochondrial Disease; Case Western Reserve University School of Medicine; Cleveland, OH USA
| |
Collapse
|
18
|
Lowe MTJ, Kim EH, Faull RLM, Christie DL, Waldvogel HJ. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab 2013; 33:1295-306. [PMID: 23715059 PMCID: PMC3734782 DOI: 10.1038/jcbfm.2013.84] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 01/27/2023]
Abstract
The phosphocreatine/creatine kinase (PCr/CK) system in the brain is defined by the expression of two CK isozymes: the cytosolic brain-type CK (BCK) and the ubiquitous mitochondrial CK (uMtCK). The system plays an important role in supporting cellular energy metabolism by buffering adenosine triphosphate (ATP) consumption and improving the flux of high-energy phosphoryls around the cell. This system is well defined in muscle tissue, but there have been few detailed studies of this system in the brain, especially in humans. Creatine is known to be important for neurologic function, and its loss from the brain during development can lead to mental retardation. This study provides the first detailed immunohistochemical study of the expression pattern of BCK and uMtCK in the human brain. A strikingly dissociated pattern of expression was found: uMtCK was found to be ubiquitously and exclusively expressed in neuronal populations, whereas BCK was dominantly expressed in astrocytes, with a low and selective expression in neurons. This pattern indicates that the two CK isozymes are not widely coexpressed in the human brain, but rather are selectively expressed depending on the cell type. These results suggest that the brain cells may use only certain properties of the PCr/CK system depending on their energetic requirements.
Collapse
Affiliation(s)
- Matthew TJ Lowe
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Eric H Kim
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Richard LM Faull
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - David L Christie
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- School of Biological Science, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Lin YS, Cheng TH, Chang CP, Chen HM, Chern Y. Enhancement of brain-type creatine kinase activity ameliorates neuronal deficits in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:742-53. [DOI: 10.1016/j.bbadis.2013.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/27/2022]
|
20
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
21
|
Ju TC, Lin YS, Chern Y. Energy dysfunction in Huntington's disease: insights from PGC-1α, AMPK, and CKB. Cell Mol Life Sci 2012; 69:4107-20. [PMID: 22627493 PMCID: PMC11115139 DOI: 10.1007/s00018-012-1025-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/16/2012] [Accepted: 05/02/2012] [Indexed: 12/23/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. When the number of CAG repeats exceeds 36, the translated polyglutamine-expanded Htt protein interferes with the normal functions of many types of cellular machinery and causes cytotoxicity. Clinical symptoms include progressive involuntary movement disorders, psychiatric signs, cognitive decline, dementia, and a shortened lifespan. The most severe brain atrophy is observed in the striatum and cortex. Besides the well-characterized neuronal defects, recent studies showed that the functions of mitochondria and several key players in energy homeostasis are abnormally regulated during HD progression. Energy dysregulation thus is now recognized as an important pathogenic pathway of HD. This review focuses on the importance of three key molecular determinants (peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase, and creatine kinase B) of cellular energy homeostasis and their possible involvement in HD pathogenesis.
Collapse
Affiliation(s)
- Tz-Chuen Ju
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - Yow-Sien Lin
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 11529 Taiwan
| |
Collapse
|
22
|
Abstract
Impairment of energy metabolism is a key feature of Huntington disease (HD). Recently, we reported longitudinal neurochemical changes in R6/2 mice measured by in-vivo proton magnetic resonance spectroscopy ((1)H MRS; Zacharoff et al, 2012). Here, we present similar (1)H MRS measurements at an early stage in the milder Q111 mouse model. In addition, we measured the concentration of ATP and inorganic phosphate (P(i)), key energy metabolites not accessible with (1)H MRS, using (31)P MRS both in Q111 and in R6/2 mice. Significant changes in striatal creatine and phosphocreatine were observed in Q111 mice at 6 weeks relative to control, and these changes were largely reversed at 13 weeks. No significant change was detected in ATP concentration, in either HD mouse, compared with control. Calculated values of [ADP], phosphorylation potential, relative rate of ATP synthase (v/V(max)(ATP)), and relative rate of creatine kinase (v/V(max)(CK)) were calculated from the measured data. ADP concentration and v/V(max)(ATP) were increased in Q111 mice at 6 weeks, and returned close to normal at 13 weeks. In contrast, these parameters were normal in R6/2 mice. These results suggest that early changes in brain energy metabolism are followed by compensatory shifts to maintain energetic homeostasis from early ages through manifest disease.
Collapse
|
23
|
Chang KH, Chen YC, Wu YR, Lee WF, Chen CM. Downregulation of genes involved in metabolism and oxidative stress in the peripheral leukocytes of Huntington's disease patients. PLoS One 2012; 7:e46492. [PMID: 23029535 PMCID: PMC3459918 DOI: 10.1371/journal.pone.0046492] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein. A number of differentially-expressed protein molecules have been identified in striatum of HD animal models. Here we examined if the expression changes could be visualized in the peripheral leukocytes of HD patients and pre-symptomatic HD (PreHD) carriers. METHODS AND FINDINGS The expression levels of 17 candidate genes that differentially expressed in striatum between transgenic HD and wild-type mice in literature were measured in the peripheral leukocytes of 4 PreHD carriers, 16 HD patients and 20 healthy controls. Four genes majorly involved in metabolism and oxidative stress response, including AHCY1, ACO2, OXCT1 and CAP1, demonstrated consistent downregulation in peripheral leukocytes of both PreHD carriers and HD patients, while UCP2 was only down-regulated in HD patients. CONCLUSION These results provide potential peripheral biomarkers to indicate disease onset in preclinical stage, and to monitor the efficacy of early treatment. Further studies of a large series of preHD carriers and symptomatic HD patients will be warranted to verify the findings and examine if these markers correlate with clinical features.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Chen S, Lu FF, Seeman P, Liu F. Quantitative proteomic analysis of human substantia nigra in Alzheimer's disease, Huntington's disease and Multiple sclerosis. Neurochem Res 2012; 37:2805-13. [PMID: 22926577 DOI: 10.1007/s11064-012-0874-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson's disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer's disease, Huntington's disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer's diseases, Huntington's disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | | | | | | |
Collapse
|
25
|
Mochel F, N'Guyen TM, Deelchand D, Rinaldi D, Valabregue R, Wary C, Carlier PG, Durr A, Henry PG. Abnormal response to cortical activation in early stages of Huntington disease. Mov Disord 2012; 27:907-10. [PMID: 22517114 DOI: 10.1002/mds.25009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/14/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND We wished to identify noninvasive in vivo biomarkers of brain energy deficit in Huntington disease. METHODS We studied 15 early affected patients (mean motor United Huntington Disease Rating Scale, 18 ± 9) and 15 age- and sex-matched controls. We coupled (31)phosphorus nuclear magnetic resonance spectroscopy with activation of the occipital cortex in order to measure the relative concentrations of adenosine triphosphate, phosphocreatine, and inorganic phosphate before, during, and after visual stimulation. RESULTS In controls, we observed an 11% increase in the inorganic phosphate/phosphocreatine ratio (P = .024) and a 13% increase in the inorganic phosphate/adenosine triphosphate ratio (P = .016) during brain activation, reflecting increased adenosine diphosphate concentrations. Subsequently, controls had a return to baseline levels during recovery (P = .012 and .022, respectively). In contrast, both ratios were unchanged in patients during and after visual stimulation. CONCLUSIONS (31)Phosphorus nuclear magnetic resonance spectroscopy could provide functional biomarkers of brain energy deficit to monitor therapeutic efficacy in Huntington disease.
Collapse
Affiliation(s)
- Fanny Mochel
- INSERM UMR S975, Institut du Cerveau et de la Moelle, Hôpital La Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Naia L, Ribeiro MJ, Rego AC. Mitochondrial and metabolic-based protective strategies in Huntington's disease: the case of creatine and coenzyme Q. Rev Neurosci 2011; 23:13-28. [PMID: 22150069 DOI: 10.1515/rns.2011.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/26/2011] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion of CAG repeats in the HD gene encoding for huntingtin (Htt), resulting in progressive death of striatal neurons, with clinical symptoms of chorea, dementia and dramatic weight loss. Metabolic and mitochondrial dysfunction caused by the expanded polyglutamine sequence have been described along with other mechanisms of neurodegeneration previously described in human tissues and animal models of HD. In this review, we focus on mitochondrial and metabolic disturbances affecting both the central nervous system and peripheral cells, including mitochondrial DNA damage, mitochondrial complexes defects, loss of calcium homeostasis and transcriptional deregulation. Glucose abnormalities have also been described in peripheral tissues of HD patients and in HD animal and cellular models. Moreover, there are no effective neuroprotective treatments available in HD. Thus, we briefly discuss the role of creatine and coenzyme Q10 that target mitochondrial dysfunction and impaired bioenergetics and have been previously used in HD clinical trials.
Collapse
Affiliation(s)
- Luana Naia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | |
Collapse
|
27
|
Mochel F, Durant B, Meng X, O'Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A. Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 2011; 287:1361-70. [PMID: 22123819 DOI: 10.1074/jbc.m111.309849] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain energy deficit has been a suggested cause of Huntington disease (HD), but ATP depletion has not reliably been shown in preclinical models, possibly because of the immediate post-mortem changes in cellular energy metabolism. To examine a potential role of a low energy state in HD, we measured, for the first time in a neurodegenerative model, brain levels of high energy phosphates using microwave fixation, which instantaneously inactivates brain enzymatic activities and preserves in vivo levels of analytes. We studied HD transgenic R6/2 mice at ages 4, 8, and 12 weeks. We found significantly increased creatine and phosphocreatine, present as early as 4 weeks for phosphocreatine, preceding motor system deficits and decreased ATP levels in striatum, hippocampus, and frontal cortex of R6/2 mice. ATP and phosphocreatine concentrations were inversely correlated with the number of CAG repeats. Conversely, in mice injected with 3-nitroproprionic acid, an acute model of brain energy deficit, both ATP and phosphocreatine were significantly reduced. Increased creatine and phosphocreatine in R6/2 mice was associated with decreased guanidinoacetate N-methyltransferase and creatine kinase, both at the protein and RNA levels, and increased phosphorylated AMP-dependent protein kinase (pAMPK) over AMPK ratio. In addition, in 4-month-old knock-in Hdh(Q111/+) mice, the earliest metabolic alterations consisted of increased phosphocreatine in the frontal cortex and increased the pAMPK/AMPK ratio. Altogether, this study provides the first direct evidence of chronic alteration in homeostasis of high energy phosphates in HD models in the earliest stages of the disease, indicating possible reduced utilization of the brain phosphocreatine pool.
Collapse
Affiliation(s)
- Fanny Mochel
- INSERM UMR S975 and Assistance-Publique des Hôpitaux de Paris, Department of Genetics, Hôpital La Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wyse ATS, Netto CA. Behavioral and neurochemical effects of proline. Metab Brain Dis 2011; 26:159-72. [PMID: 21643764 DOI: 10.1007/s11011-011-9246-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/12/2011] [Indexed: 12/11/2022]
Abstract
Proline is an amino acid with an essential role for primary metabolism and physiologic functions. Hyperprolinemia results from the deficiency of specific enzymes for proline catabolism, leading to tissue accumulation of this amino acid. Hyperprolinemic patients can present neurological symptoms and brain abnormalities, whose aetiopathogenesis is poorly understood. This review addresses some of the findings obtained, mainly from animal studies, indicating that high proline levels may be associated to neuropathophysiology of some disorders. In this context, it has been suggested that energy metabolism deficit, Na(+),K(+)-ATPase, kinase creatine, oxidative stress, excitotoxicity, lipid content, as well as purinergic and cholinergic systems are involved in the effect of proline on brain damage and spatial memory deficit. The discussion focuses on the relatively low antioxidant defenses of the brain and the vulnerability of neural tissue to reactive species. This offers new perspectives for potential therapeutic strategies for this condition, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on special diets poor in proline.
Collapse
Affiliation(s)
- Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | | |
Collapse
|
29
|
Abstract
Huntington's disease is an autosomal dominant, progressive neurodegenerative disorder, for which there is no disease-modifying treatment. By use of predictive genetic testing, it is possible to identify individuals who carry the gene defect before the onset of symptoms, providing a window of opportunity for intervention aimed at preventing or delaying disease onset. However, without robust and practical measures of disease progression (ie, biomarkers), the efficacy of therapeutic interventions in this premanifest Huntington's disease population cannot be readily assessed. Current progress in the development of biomarkers might enable evaluation of disease progression in individuals at the premanifest stage of the disease; these biomarkers could be useful in defining endpoints in clinical trials in this population. Clinical, cognitive, neuroimaging, and biochemical biomarkers are being investigated for their potential in clinical use and their value in the development of future treatments for patients with Huntington's disease.
Collapse
Affiliation(s)
- David W Weir
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
30
|
Johri A, Starkov AA, Chandra A, Hennessey T, Sharma A, Orobello S, Squitieri F, Yang L, Beal MF. Truncated peroxisome proliferator-activated receptor-γ coactivator 1α splice variant is severely altered in Huntington's disease. NEURODEGENER DIS 2011; 8:496-503. [PMID: 21757867 DOI: 10.1159/000327910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/29/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Reduced peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) gene expression has been observed in striatal cell lines, transgenic mouse models of Huntington's disease (HD), and brain tissue from HD patients. As this protein is a key transcription regulator of the expression of many mitochondrial proteins, these observations strongly support the role of aberrant mitochondrial function in the pathogenesis of HD. The PGC1α protein undergoes posttranslational modifications that affect its transcriptional activity. The N-truncated splice variant of PGC1α (NT-PGC1α) is produced in tissues, but the role of truncated splice variants of PGC1α in HD and in the regulation of mitochondrial gene expression has not been elucidated. OBJECTIVE To examine the expression and modulation of expression of NT-PGC1α levels in HD. METHODS AND RESULTS We found that the NT-PGC1α protein, a splice variant of ∼38 kDa, but not full-length PGC1α is severely and consistently altered in human HD brain, human HD myoblasts, mouse HD models, and HD striatal cells. NT-PGC1α levels were significantly upregulated in HD cells and mouse brown fat by physiologically relevant stimuli that are known to upregulate PGC1α gene expression. This resulted in an increase in mitochondrial gene expression and cytochrome c content. CONCLUSION Our data suggest that NT-PGC1α is an important component of the PGC1α transcriptional network, which plays a significant role in the pathogenesis of HD.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA. asj2002 @ med.cornell.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin YS, Wang CH, Chern Y. Besides Huntington's disease, does brain-type creatine kinase play a role in other forms of hearing impairment resulting from a common pathological cause? Aging (Albany NY) 2011; 3:657-662. [PMID: 21685512 PMCID: PMC3164373 DOI: 10.18632/aging.100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 05/30/2023]
Abstract
Hearing impairment following cochlear damage due to noise trauma, ototoxicity caused by aminoglycoside antibiotics, or age-related cochlear degeneration was linked to a common pathogenesis involving the formation of reactive oxygen species (ROS). Cochleae are more vulnerable to oxidative stress than other organs because of the high metabolic demands of their mechanosensory hair cells in response to sound stimulation. We recently showed that patients and mice with Huntington's disease (HD) have hearing impairment and that the dysregulated phosphocreatine (PCr)-creatine kinase (CK) system may account for this auditory dysfunction. Given the importance of noninvasive biomarkers and the easy access of hearing tests, the symptom of hearing loss in HD patients may serve as a useful clinical indicator of disease onset and progression of HD. We also showed that dietary creatine supplementation rescued the impaired PCr-CK system and improved the expression of cochlear brain-type creatine kinase (CKB) in HD mice, thereby restoring their hearing. Because creatine is an antioxidant, we postulated that creatine might enhance expression of CKB by reducing oxidative stress. In addition to HD-related hearing impairment, inferior CKB expression and/or an impaired PCr-CK system may also play an important role in other hearing impairments caused by elevated levels of ROS. Most importantly, dietary supplements may be beneficial to patients with these hearing deficiencies.
Collapse
Affiliation(s)
- Yow-Sien Lin
- Molecular Medicine Program, National Yang-Ming University, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming University; Taipei, Taiwan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yijuang Chern
- Molecular Medicine Program, National Yang-Ming University, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming University; Taipei, Taiwan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
D’Anci KE, Allen PJ, Kanarek RB. A Potential Role for Creatine in Drug Abuse? Mol Neurobiol 2011; 44:136-41. [DOI: 10.1007/s12035-011-8176-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/16/2011] [Indexed: 11/29/2022]
|
33
|
Experimental Models of HD and Reflection on Therapeutic Strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:419-81. [DOI: 10.1016/b978-0-12-381328-2.00016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA. Impaired brain creatine kinase activity in Huntington's disease. NEURODEGENER DIS 2010; 8:194-201. [PMID: 21124007 DOI: 10.1159/000321681] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is associated with impaired energy metabolism in the brain. Creatine kinase (CK) catalyzes ATP-dependent phosphorylation of creatine (Cr) into phosphocreatine (PCr), thereby serving as readily available high-capacity spatial and temporal ATP buffering. OBJECTIVE Substantial evidence supports a specific role of the Cr/PCr system in neurodegenerative diseases. In the brain, the Cr/PCr ATP-buffering system is established by a concerted operation of the brain-specific cytosolic enzyme BB-CK and ubiquitous mitochondrial uMt-CK. It is not yet established whether the activity of these CK isoenzymes is impaired in HD. METHODS We measured PCr, Cr, ATP and ADP in brain extracts of 3 mouse models of HD - R6/2 mice, N171-82Q and HdhQ(111) mice - and the activity of CK in cytosolic and mitochondrial brain fractions from the same mice. RESULTS The PCr was significantly increased in mouse HD brain extracts as compared to nontransgenic littermates. We also found an approximately 27% decrease in CK activity in both cytosolic and mitochondrial fractions of R6/2 and N171-82Q mice, and an approximately 25% decrease in the mitochondria from HdhQ(111) mice. Moreover, uMt-CK and BB-CK activities were approximately 63% lower in HD human brain samples as compared to nondiseased controls. CONCLUSION Our findings lend strong support to the role of impaired energy metabolism in HD, and point out the potential importance of impairment of the CK-catalyzed ATP-buffering system in the etiology of HD.
Collapse
Affiliation(s)
- S F Zhang
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|