1
|
Yan C, He B, Wang C, Li W, Tao S, Chen J, Wang Y, Yang L, Wu Y, Wu Z, Liu N, Qin Y. Methionine in embryonic development: metabolism, redox homeostasis, epigenetic modification and signaling pathway. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40237424 DOI: 10.1080/10408398.2025.2491638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Methionine, an essential sulfur-containing amino acid, plays a critical role in methyl metabolism, folate metabolism, polyamine synthesis, redox homeostasis maintenance, epigenetic modification and signaling pathway regulation, particularly during embryonic development. Animal and human studies have increasingly documented that methionine deficiency or excess can negatively impact metabolic processes, translation, epigenetics, and signaling pathways, with ultimate detrimental effects on pregnancy outcomes. However, the underlying mechanisms by which methionine precisely regulates epigenetic modifications and affects signaling pathways remain to be elucidated. In this review, we discuss methionine and the metabolism of its metabolites, the influence of folate-mediated carbon metabolism, redox reactions, DNA and RNA methylation, and histone modifications, as well as the mammalian rapamycin complex and silent information regulator 1-MYC signaling pathway. This review also summarizes our present understanding of the contribution of methionine to these processes, and current nutritional and pharmaceutical strategies for the prevention and treatment of developmental defects in embryos.
Collapse
Affiliation(s)
- Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Biyan He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chenjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Wanzhen Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yuquan Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Mohagheghi M, Navid A, Mossington T, Ye C, Coleman MA, Hoang-Phou S. Developing a media formulation to sustain ex vivo chloroplast function. Front Bioeng Biotechnol 2025; 13:1560200. [PMID: 40271349 PMCID: PMC12014621 DOI: 10.3389/fbioe.2025.1560200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Chloroplasts are critical organelles in plants and algae responsible for accumulating biomass through photosynthetic carbon fixation and cellular maintenance through metabolism in the cell. Chloroplasts are increasingly appreciated for their role in biomanufacturing, as they can produce many useful molecules, and a deeper understanding of chloroplast regulation and function would provide more insight for the biotechnological applications of these organelles. However, traditional genetic approaches to manipulate chloroplasts are slow, and generation of transgenic organisms to study their function can take weeks to months, significantly delaying the pace of research. To develop chloroplasts themselves as a quicker and more defined platform, we isolated chloroplasts from the green algae, Chlamydomonas reinhardtii, and examined their photosynthetic function after extraction. Combined with a metabolic modeling approach using flux-balance analysis, we identified key metabolic reactions essential to chloroplast function and leveraged this information into reagents that can be used in a "chloroplast media" capable of maintaining chloroplast photosynthetic function over time ex vivo compared to buffer alone. We envision this could serve as a model platform to enable more rapid design-build-test-learn cycles to study and improve chloroplast function in combination with genetic modifications and potentially as a starting point for the bottom-up design of a synthetic organelle-containing cell.
Collapse
Affiliation(s)
- Mariam Mohagheghi
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Ali Navid
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Thomas Mossington
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Congwang Ye
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Steven Hoang-Phou
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
3
|
Zaman A, Noor S, Ahmad I, Shehroz M, Alhajri N, Ahmed S, Nishan U, Sheheryar S, Ullah R, Shahat AA, Dib H, Shah M. Exploring cotton plant compounds for novel treatments against brain-eating Naegleria fowleri: An In-silico approach. PLoS One 2025; 20:e0319032. [PMID: 39992954 PMCID: PMC11849825 DOI: 10.1371/journal.pone.0319032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
To find potential inhibitors of Naegleria fowleri S-adenosyl-L-homocysteine hydrolase (NfSAHH), a brain-eating parasite, structure-based drug design was adopted. N. fowlerica causes primary amebic meningoencephalitis (PAM), a fatal central nervous system (CNS) disorder if untreated. NfSAHH protein (PDB ID: 5v96), involved in parasite growth and gene regulation, was targeted and screened against 163 metabolites from Gossypium hirsutum (cotton plant). With the aid of different software and web tools, the metabolites were subjected to several analyses. The RMSD was evaluated to validate our molecular docking strategy. Neplanocin A, a common anti-parasitic medication, was used as a reference to select top ligands for post-docking studies. Significant interactions were observed with residues THR-198, HIS-395, and MET-400. The drug-likeness of the top fifty hits was analyzed using Lipinski, Ghose, Veber, Egan, and Muegge rules. The top ten compounds following Lipinski's RO5 were studied regarding medicinal chemistry, pharmacokinetic simulation, and Swiss target prediction. Advanced strategies, including molecular dynamic simulations, binding energy calculations, and principal component analysis, were employed for the top three hits, namely curcumin, heliocide H2, and piceid, which indicated that heliocide H2 is the most promising candidate, while curcumin and piceid may need further optimization to improve their stability. Overall, the top ten phytochemicals, dotriacontanol, melissic acid, curcumin, 6,6'-dimethoxygossypol, phytosphingosine 2, methyl stearate, stearic acid, piceid, heliocide H2, and 6-methoxygossypol, reported in our study, are worthy enough to be subjected to in vivo and in vitro experimentation to find a novel drug to treat PAM.
Collapse
Affiliation(s)
- Aqal Zaman
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Noor
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Nour Alhajri
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Puerto Rico China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
4
|
Fryar-Williams S, Tucker G, Clements P, Strobel J. Gene Variant Related Neurological and Molecular Biomarkers Predict Psychosis Progression, with Potential for Monitoring and Prevention. Int J Mol Sci 2024; 25:13348. [PMID: 39769114 PMCID: PMC11677369 DOI: 10.3390/ijms252413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
The (MTHFR) C677T gene polymorphism is associated with neurological disorders and schizophrenia. Patients diagnosed with schizophrenia and schizoaffective disorder and controls (n 134) had data collected for risk factors, molecular and neuro-sensory variables, symptoms, and functional outcomes. Promising gene variant-related predictive biomarkers were identified for diagnosis by Receiver Operating Characteristics and for illness duration by linear regression. These were then analyzed using Spearman's correlation in relation to the duration of illness. Significant correlations were ranked by strength and plotted on graphs for each MTHFR C677T variant. Homozygous MTHFR 677 TT carriers displayed a mid-illness switch to depression, with suicidality and a late-phase shift from lower to higher methylation, with activated psychosis symptoms. MTHFR 677 CC variant carriers displayed significant premorbid correlates for family history, developmental disorder, learning disorder, and head injury. These findings align with those of low methylation, oxidative stress, multiple neuro-sensory processing deficits, and disability outcomes. Heterozygous MTHFR 677 CT carriers displayed multiple shifts in mood and methylation with multiple adverse outcomes. The graphically presented ranked biomarker correlates for illness duration allow a perspective of psychosis development across gene variants, with the potential for phase of illness monitoring and new therapeutic insights to prevent or delay psychosis and its adverse outcomes.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- Department of Medical Specialities, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Gawel M, Malecki PH, Sliwiak J, Stepniewska M, Imiolczyk B, Czyrko-Horczak J, Jakubczyk D, Marczak Ł, Plonska-Brzezinska ME, Brzezinski K. A closer look at molecular mechanisms underlying inhibition of S-adenosyl-L-homocysteine hydrolase by transition metal cations. Chem Commun (Camb) 2024; 60:11504-11507. [PMID: 39230573 DOI: 10.1039/d4cc03143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report biochemical and structural studies on inhibiting bacterial S-adenosyl-L-homocysteine hydrolase by transition metal cations. Our results revealed diverse molecular mechanisms of enzyme inactivation. Depending on the cation, the mechanism is based on arresting the enzyme in its closed, inactive conformation, disulfide bond formation within the active site or oxidation of the intermediate form of a cofactor.
Collapse
Affiliation(s)
- Magdalena Gawel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Piotr H Malecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Marlena Stepniewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Justyna Czyrko-Horczak
- Provincial Sanitary-Epidemiological Station in Bialystok, Legionowa 8, 15-099, Bialystok, Poland
| | - Dorota Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | - Krzysztof Brzezinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
6
|
Tehlivets O, Almer G, Brunner MS, Lechleitner M, Sommer G, Kolb D, Leitinger G, Diwoky C, Wolinski H, Habisch H, Opriessnig P, Bogoni F, Pernitsch D, Kavertseva M, Bourgeois B, Kukilo J, Tehlivets YG, Schwarz AN, Züllig T, Bubalo V, Schauer S, Groselj-Strele A, Hoefler G, Rechberger GN, Herrmann M, Eller K, Rosenkranz AR, Madl T, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G. Homocysteine contributes to atherogenic transformation of the aorta in rabbits in the absence of hypercholesterolemia. Biomed Pharmacother 2024; 178:117244. [PMID: 39116783 DOI: 10.1016/j.biopha.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Francesca Bogoni
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dominique Pernitsch
- Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Maria Kavertseva
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Jelena Kukilo
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Yuriy G Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Prigent M, Jean-Jacques H, Naquin D, Chédin S, Cuif MH, Legouis R, Kuras L. Sulfur starvation-induced autophagy in Saccharomyces cerevisiae involves SAM-dependent signaling and transcription activator Met4. Nat Commun 2024; 15:6927. [PMID: 39138175 PMCID: PMC11322535 DOI: 10.1038/s41467-024-51309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a key lysosomal degradative mechanism allowing a prosurvival response to stresses, especially nutrient starvation. Here we investigate the mechanism of autophagy induction in response to sulfur starvation in Saccharomyces cerevisiae. We found that sulfur deprivation leads to rapid and widespread transcriptional induction of autophagy-related (ATG) genes in ways not seen under nitrogen starvation. This distinctive response depends mainly on the transcription activator of sulfur metabolism Met4. Consistently, Met4 is essential for autophagy under sulfur starvation. Depletion of either cysteine, methionine or SAM induces autophagy flux. However, only SAM depletion can trigger strong transcriptional induction of ATG genes and a fully functional autophagic response. Furthermore, combined inactivation of Met4 and Atg1 causes a dramatic decrease in cell survival under sulfur starvation, highlighting the interplay between sulfur metabolism and autophagy to maintain cell viability. Thus, we describe a pathway of sulfur starvation-induced autophagy depending on Met4 and involving SAM as signaling sulfur metabolite.
Collapse
Affiliation(s)
- Magali Prigent
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- INSERM U1280, 91198, Gif-sur-Yvette, France
| | - Hélène Jean-Jacques
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Chédin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marie-Hélène Cuif
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- INSERM U1280, 91198, Gif-sur-Yvette, France
| | - Renaud Legouis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- INSERM U1280, 91198, Gif-sur-Yvette, France
| | - Laurent Kuras
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Nakanishi M, Hino M, Nomoto H. Trypanosoma brucei proliferates normally even after losing all S-adenosylhomocysteine hydrolase genes. Biochem Biophys Res Commun 2023; 686:149152. [PMID: 37926042 DOI: 10.1016/j.bbrc.2023.149152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
S-adenosylhomocysteine (SAH) hydrolase is the enzyme responsible for breaking down SAH into adenosine and homocysteine. It has long been believed that a deficiency of this enzyme leads to SAH accumulation, subsequently inhibiting methyltransferases responsible for nucleic acids and proteins, which severely affects cell proliferation. To investigate whether targeting this enzyme could be a viable strategy to combat Trypanosoma brucei, the causative agent of human African trypanosomiasis, we created a null mutant of the SAH hydrolase gene in T. brucei using the Cre/loxP system and conducted a phenotype analysis. Surprisingly, the null mutant, where all five SAH hydrolase gene loci were deleted, exhibited normal proliferation despite the observed SAH accumulation. These findings suggest that inhibiting SAH hydrolase may not be an effective approach to suppressing T. brucei proliferation, making the enzyme a less promising target for antitrypanosome drug development.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| | - Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
9
|
Wang J, Zhou J, Shao Z, Chen X, Yu Z, Zhao W. Association between serum uric acid and homocysteine levels among adults in the United States: a cross-sectional study. BMC Cardiovasc Disord 2023; 23:599. [PMID: 38066416 PMCID: PMC10704836 DOI: 10.1186/s12872-023-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Many studies have shown that both elevated serum uric acid (SUA) levels and hyperhomocysteinemia are risk factors for atherosclerosis. However, the relationship between the two has not been thoroughly investigated. OBJECTIVE This study aimed to explore the possible link between SUA levels and homocysteine (Hcy) levels. METHODS In this cross-sectional study, 17,692 adults aged > 19 years in National Health and Nutrition Examination Survey from 1999 to 2006 were analyzed. Multivariable linear regression analysis was performed to assess the association between SUA and Hcy levels. In addition, smooth curve fitting (penalized spline method) and threshold effect analysis were performed. RESULTS Multivariable linear analysis showed that Hcy levels increased by 0.48 µmol/L (β = 0.48, 95%CI: 0.43-0.53) for every 1 mg/dL increase in SUA levels. We found a nonlinear relationship between SUA and Hcy levels. The results of threshold effect analysis showed that the inflection point for SUA levels was 7.1 mg/dL (β = 0.29, 95% CI: 0.23-0.36 and β = 1.05, 95% CI: 0.67-1.43 on the left and right sides of the inflection point, respectively). The p-values was less than 0.001 when using the log likelihood ratio test. This nonlinear relationship was also found in both sexes. The inflection point for SUA levels was 5.4 mg/dL in males and 7.3 mg/dL in females, respectively. CONCLUSIONS This cross-sectional study showed that the SUA levels were positively correlated with Hcy levels. And we found a nonlinear relationship between SUA and Hcy levels.
Collapse
Affiliation(s)
- Jiangsha Wang
- Department of Cardiology, Jiande Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Jie Zhou
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zhengping Shao
- Department of Cardiology, Jiande Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Xi Chen
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zhenhai Yu
- Department of Neurosurgery, De Qing People's Hospital, Deqing, Zhejiang, China.
| | - Wenyan Zhao
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
10
|
Ashokan M, Jayanthi KV, Elango K, Sneha K, Ramesha KP, Reshma RS, Saravanan KA, Naveen KGS. Biological methylation: redefining the link between genotype and phenotype. Anim Biotechnol 2023; 34:3174-3186. [PMID: 35468300 DOI: 10.1080/10495398.2022.2065999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The central dogma of molecular biology is responsible for the crucial flow of genetic information from DNA to protein through the transcription and translation process. Although the sequence of DNA is constant in all organs, the difference in protein and variation in the phenotype is mainly due to the quality and quantity of tissue-specific gene expression and methylation pattern. The term methylation has been defined and redefined by various scientists in the last fifty years. There is always huge excitement around this field because the inheritance of something is beyond its DNA sequence. Advanced gene methylation studies have redefined molecular genetics and these tools are considered de novo in alleviating challenges of animal disease and production. Recent emerging evidence has shown that the impact of DNA, RNA, and protein methylation is crucial for embryonic development, cell proliferation, cell differentiation, and phenotype production. Currently, many researchers are focusing their work on methylation to understand its significant role in expression, disease-resistant traits, productivity, and longevity. The main aim of the present review is to provide an overview of DNA, RNA, and protein methylation, current research output from different sources, methodologies, factors responsible for methylation of genes, and future prospects in animal genetics.
Collapse
Affiliation(s)
- M Ashokan
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K V Jayanthi
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Raj S Reshma
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumar G S Naveen
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| |
Collapse
|
11
|
Fryar-Williams S, Tucker G, Strobel J, Huang Y, Clements P. Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment. Int J Mol Sci 2023; 24:15845. [PMID: 37958826 PMCID: PMC10650772 DOI: 10.3390/ijms242115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman's correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Department of Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Jörg Strobel
- Department of Psychiatry, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Yichao Huang
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Peter Clements
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
- Department of Paediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
12
|
Ramos EI, Veerapandian R, Das K, Chacon JA, Gadad SS, Dhandayuthapani S. Pathogenic mycoplasmas of humans regulate the long noncoding RNAs in epithelial cells. Noncoding RNA Res 2023; 8:282-293. [PMID: 36970372 PMCID: PMC10031284 DOI: 10.1016/j.ncrna.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A. Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
| |
Collapse
|
13
|
Yamada F, Mori E, Yamaoka I. Methionine supplementation spares body protein by regulating the expression of mTORC1 downstream factors in rats fed a soy protein diet with sufficient sulfur amino acids: a pilot study. Amino Acids 2023; 55:1039-1048. [PMID: 37326859 DOI: 10.1007/s00726-023-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Dietary supplementation with methionine and threonine spares body protein in rats fed a low protein diet, but the effect is not observed for other essential amino acids. Although the requirement for sulfur amino acids is relatively high in rodents, the precise mechanisms underlying protein retention are not fully understood. The aim of this study was to explore whether the activation of mammalian target of rapamycin complex 1 (mTORC1) downstream factors in skeletal muscle by supplementation with threonine and/or methionine contributes to protein retention under sufficient cystine requirement. Male Sprague-Dawley rats were freely fed a 0% protein diet for 2 weeks. These experimental rats were then fed a restricted diet (14.5 g/day) containing 12% soy protein supplemented with both cystine and, methionine and threonine (MT), methionine (M), threonine (T), or neither (NA) (n = 8) for an additional 12 days. Two additional groups were freely fed a diet containing 0% protein or 20% casein as controls (n = 6). Body weight and gastrocnemius muscle weight were higher, and blood urea nitrogen and urinary nitrogen excretion were lower, in the M and MT groups than in the T and NA groups, respectively. p70 S6 kinase 1 abundance was higher, and eukaryotic translation initiation factor 4E-binding protein 1 abundance and mRNA levels were lower, in the skeletal muscles of the M and MT groups. These results suggest that methionine regulates mTORC1 downstream factors in skeletal muscle, leading to spare body protein in rats fed a low protein diet meeting cystine requirements.
Collapse
Affiliation(s)
- Fumiyo Yamada
- OS-1 Division, Medical Foods Research Institute, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-Cho, Naruto, Tokushima, 772-8601, Japan.
| | - Erika Mori
- OS-1 Division, Medical Foods Research Institute, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-Cho, Naruto, Tokushima, 772-8601, Japan
| | - Ippei Yamaoka
- OS-1 Division, Medical Foods Research Institute, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-Cho, Naruto, Tokushima, 772-8601, Japan
| |
Collapse
|
14
|
Wozniak K, Brzezinski K. Biological Catalysis and Information Storage Have Relied on N-Glycosyl Derivatives of β-D-Ribofuranose since the Origins of Life. Biomolecules 2023; 13:biom13050782. [PMID: 37238652 DOI: 10.3390/biom13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Most naturally occurring nucleotides and nucleosides are N-glycosyl derivatives of β-d-ribose. These N-ribosides are involved in most metabolic processes that occur in cells. They are essential components of nucleic acids, forming the basis for genetic information storage and flow. Moreover, these compounds are involved in numerous catalytic processes, including chemical energy production and storage, in which they serve as cofactors or coribozymes. From a chemical point of view, the overall structure of nucleotides and nucleosides is very similar and simple. However, their unique chemical and structural features render these compounds versatile building blocks that are crucial for life processes in all known organisms. Notably, the universal function of these compounds in encoding genetic information and cellular catalysis strongly suggests their essential role in the origins of life. In this review, we summarize major issues related to the role of N-ribosides in biological systems, especially in the context of the origin of life and its further evolution, through the RNA-based World(s), toward the life we observe today. We also discuss possible reasons why life has arisen from derivatives of β-d-ribofuranose instead of compounds based on other sugar moieties.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| |
Collapse
|
15
|
Lipaeva P, Karkossa I, Bedulina D, Schubert K, Luckenbach T. Cold-adapted amphipod species upon heat stress: Proteomic responses and their correlation with transcriptomic responses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101048. [PMID: 36525778 DOI: 10.1016/j.cbd.2022.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The cellular heat shock response (HSR) comprises transcriptomic and proteomic reactions to thermal stress. It was here addressed, how the proteomic, together with the transcriptomic HSR, relate to the thermal sensitivities of three cold-adapted but differently thermo-sensitive freshwater amphipod species. The proteomes of thermosensitive Eulimnogammarus verrucosus and thermotolerant Eulimnogammarus cyaneus, both endemic to Lake Baikal, and of thermotolerant Holarctic Gammarus lacustris were investigated upon 24 h exposure to the species-specific 10 % lethal temperatures (LT10). Furthermore, correlations of heat stress induced changes in proteomes (this study) and transcriptomes (previous study with identical experimental design) were examined. Proteomes indicated that the HSR activated processes encompassed (i) proteostasis maintenance, (ii) maintenance of cell adhesion, (iii) oxygen transport, (iv) antioxidant response, and (v) regulation of protein synthesis. Thermo-sensitive E. verrucosus showed the most pronounced proteomic HSR and the lowest correlation of transcriptomic and proteomic HSRs. For proteins related to translation (ribosomal proteins, elongation factors), transcriptomic and proteomic changes were inconsistent: transcripts were downregulated in many cases, with levels of corresponding proteins remaining unchanged. In the Eulimnogammarus species, levels of hemocyanin protein but not transcript were increased upon heat stress, suggesting a HSR also directed to enhance oxygen transport. Thermosensitive E. verrucosus showed the most pronounced relocation of transcription/translation activity to proteostasis maintenance, which may indicate that the general species-specific stability of protein structure could be a fundamental determinant of thermotolerance. By combining transcriptomic and proteomic response data, this study provides a comprehensive picture of the cellular HSR components in the studied amphipods.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
16
|
Xie J, Sun Y, Li Y, Zhang X, Hao P, Han L, Cao Y, Ding B, Chang Y, Yin D, Ding J. TMT-based proteomics analysis of growth advantage of triploid Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101043. [PMID: 36493631 DOI: 10.1016/j.cbd.2022.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Polyploid breeding can produce new species with a faster growth rate, higher disease resistance, and higher survival rate, and has achieved significant economic benefits. This study investigated the protein differences in the body wall of triploid Apostichopus japonicus and diploid A. japonicus using isotope-labeled relative and absolute quantitative Tandem Mass Tag technology. A total of 21,096 independent peptides and 4621 proteins were identified. Among them, there were 723 proteins with significant expression differences, including 413 up-regulated proteins and 310 down-regulated proteins. The differentially expressed proteins (DEPs) were enriched in 4519 Gene Ontology enrichment pathways and 320 Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Twenty-two key DEPs related to important functions such as growth and immunity of triploid A. japonicus were screened from the results, among which 20 were up-regulated, such as cathepsin L2 cysteine protease and fibrinogen-like protein A. Arylsulfatase A and zonadhesin were down-regulated. The up-regulated proteins were mainly involved in oxidative stress response, innate immune response, and collagen synthesis in triploid A. japonicus, and the down-regulated proteins were mainly associated with the sterility of triploid A. japonicus. In addition, the transcriptome and proteome were analyzed jointly to support proteome data. In this study, the differences in protein composition between triploid and diploid A. japonicus were analyzed for the first time, and the results revealed the underlying reasons for the growth advantage of triploid A. japonicus.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
17
|
Filip N, Cojocaru E, Badulescu OV, Clim A, Pinzariu AC, Bordeianu G, Jehac AE, Iancu CE, Filip C, Maranduca MA, Sova IA, Serban IL. SARS-CoV-2 Infection: What Is Currently Known about Homocysteine Involvement? Diagnostics (Basel) 2022; 13:10. [PMID: 36611302 PMCID: PMC9818222 DOI: 10.3390/diagnostics13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world causing health, social and economic instability. The severity and prognosis of patients with SARS-CoV-2 infection are associated with the presence of comorbidities such as cardiovascular disease, hypertension, chronic lung disease, cerebrovascular disease, diabetes, chronic kidney disease, and malignancy. Thrombosis is one of the most serious complications that can occur in patients with COVID-19. Homocysteine is a non-proteinogenic α-amino acid considered a potential marker of thrombotic diseases. Our review aims to provide an updated analysis of the data on the involvement of homocysteine in COVID-19 to highlight the correlation of this amino acid with disease severity and the possible mechanisms by which it intervenes.
Collapse
Affiliation(s)
- Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morpho-Functional Sciences (I), Discipline of Morphopathology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Viola Badulescu
- Department of Morpho-Functional Sciences (II), Discipline of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Elena Jehac
- Department of Dentoalveolar and Maxillofacial Surgery, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Elena Iancu
- Department of Biochemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristiana Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ivona Andreea Sova
- IOSUD Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
18
|
Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Tanwar UK, Floryszak-Wieczorek J. Plant homocysteine, a methionine precursor and plant's hallmark of metabolic disorders. FRONTIERS IN PLANT SCIENCE 2022; 13:1044944. [PMID: 36570932 PMCID: PMC9773845 DOI: 10.3389/fpls.2022.1044944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid, which arises from redox-sensitive methionine metabolism. In plants, Hcy synthesis involves both cystathionine β-lyase and S-adenosylhomocysteine hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis and S-adenosylmethionine recycling, influencing the formation of ethylene, polyamines, and nicotianamine. Research on mammalian cells has shown biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress and the associated lipid peroxidation process. In addition, the presence of highly reactive groups induces Hcy and Hcy derivatives to modify proteins by changing their structure and function. Currently, Hcy is recognized as a critical, independent hallmark of many degenerative metabolic diseases. Research results indicate that an enhanced Hcy level is also toxic to yeast and bacteria cells. In contrast, in the case of plants the metabolic status of Hcy remains poorly examined and understood. However, the presence of the toxic Hcy metabolites and Hcy over-accumulation during the development of an infectious disease seem to suggest harmful effects of this amino acid also in plant cells. The review highlights potential implications of Hcy metabolism in plant physiological disorders caused by environmental stresses. Moreover, recent research advances emphasize that recognizing the Hcy mode of action in various plant systems facilitates verification of the potential status of Hcy metabolites as bioindicators of metabolism disorders and thus may constitute an element of broadly understood biomonitoring.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
19
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
20
|
Kaleem Ullah RM, Gökçe A, Bakhsh A, Salim M, Wu HY, Naqqash MN. Insights into the Use of Eco-Friendly Synergists in Resistance Management of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). INSECTS 2022; 13:insects13090846. [PMID: 36135547 PMCID: PMC9500713 DOI: 10.3390/insects13090846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/31/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most notorious insect pest of potato globally. Injudicious use of insecticides for management of this pest has resulted in resistance to all major groups of insecticides along with many human, animal health, and environmental concerns. Additionally, the input cost of insecticide development/discovery is markedly increasing because each year thousands of chemicals are produced and tested for their insecticidal properties, requiring billions of dollars. For the management of resistance in insect pests, synergists can play a pivotal role by reducing the application dose of most insecticides. These eco-friendly synergists can be classified into two types: plant-based synergists and RNAi-based synergists. The use of plant-based and RNAi-based synergists in resistance management of insect pests can give promising results with lesser environmental side effects. This review summarizes the resistance status of CPB and discusses the potential advantage of plant-based and RNAi-based synergists for CPB resistance management. It will motivate researchers to further investigate the techniques of using plant- and RNAi-based synergists in combination with insecticides.
Collapse
Affiliation(s)
- Rana Muhammad Kaleem Ullah
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning 530004, China
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Allah Bakhsh
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Muhammad Salim
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
| | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College of Guangxi University, Nanning 530004, China
| | - Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Faculty of Agricultural Sciences and Technologies, Niğ de Omer Halisdemir University, Niğde 51200, Turkey
- Institute of Plant Protection, MNS—University of Agriculture Multan Pakistan, Multan 60000, Pakistan
| |
Collapse
|
21
|
Malecki PH, Imiolczyk B, Barciszewski J, Czyrko-Horczak J, Sliwiak J, Gawel M, Wozniak K, Jaskolski M, Brzezinski K. Biochemical and structural insights into an unusual, alkali-metal-independent S-adenosyl- L-homocysteine hydrolase from Synechocystis sp. PCC 6803. Acta Crystallogr D Struct Biol 2022; 78:865-882. [DOI: 10.1107/s2059798322005605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
The mesophilic cyanobacterium Synechocystis sp. PCC 6803 encodes an S-adenosyl-L-homocysteine hydrolase (SAHase) of archaeal origin in its genome. SAHases are essential enzymes involved in the regulation of cellular S-adenosyl-L-methionine (SAM)-dependent methylation reactions. They are usually active as homotetramers or, less commonly, as homodimers. A SAHase subunit is composed of two major domains: a cofactor (NAD+)-binding domain and a substrate (S-adenosyl-L-homocysteine)-binding domain. These are connected by a hinge element that is also a coordination site for an alkali-metal cation that influences domain movement during the catalytic cycle. Typically, the highest activity and strongest substrate binding of bacterial SAHases are observed in the presence of K+ ions. The SAHase from Synechocystis (SynSAHase) is an exception in this respect. Enzymatic and isothermal titration calorimetry studies demonstrated that in contrast to K+-dependent SAHases, the activity and ligand binding of SynSAHase are not affected by the presence of any particular alkali ion. Moreover, in contrast to other SAHases, the cyanobacterial enzyme is in an equilibrium of two distinct oligomeric states corresponding to its dimeric and tetrameric forms in solution. To explain these phenomena, crystal structures of SynSAHase were determined for the enzyme crystallized in the presence of adenosine (a reaction byproduct or substrate) and sodium or rubidium cations. The structural data confirm that while SynSAHase shares common structural features with other SAHases, no alkali metal is coordinated by the cyanobacterial enzyme as a result of a different organization of the macromolecular environment of the site that is normally supposed to coordinate the metal cation. This inspired the generation of SynSAHase mutants that bind alkali-metal cations analogously to K+-dependent SAHases, as confirmed by crystallographic studies. Structural comparisons of the crystal structure of SynSAHase with other experimental models of SAHases suggest a possible explanation for the occurrence of the cyanobacterial enzyme in the tetrameric state. On the other hand, the reason for the existence of SynSAHase in the dimeric state in solution remains elusive.
Collapse
|
22
|
Fanelli G, Gevi F, Zarletti G, Tiberi M, De Molfetta V, Scapigliati G, Timperio AM. An Altered Metabolism in Leukocytes Showing in vitro igG Memory From SARS-CoV-2-Infected Patients. Front Mol Biosci 2022; 9:894207. [PMID: 35847976 PMCID: PMC9280710 DOI: 10.3389/fmolb.2022.894207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID 19) is a systemic infection that exerts a significant impact on cell metabolism. In this study we performed metabolomic profiling of 41 in vitro cultures of peripheral blood mononuclear cells (PBMC), 17 of which displayed IgG memory for spike-S1 antigen 60–90 days after infection. By using mass spectrometry analysis, a significant up-regulation of S-adenosyl-Homocysteine, Sarcosine and Arginine was found in leukocytes showing IgG memory. These metabolites are known to be involved in physiological recovery from viral infections and immune activities, and our findings might represent a novel and easy measure that could be of help in understanding SARS-Cov-2 effects on leukocytes.
Collapse
Affiliation(s)
- G. Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - F. Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - G. Zarletti
- Department of Innovativative Biology, Agro-food, and Forestry, University of Tuscia, Viterbo, Italy
| | - M. Tiberi
- Department of Innovativative Biology, Agro-food, and Forestry, University of Tuscia, Viterbo, Italy
| | - V. De Molfetta
- Department of Innovativative Biology, Agro-food, and Forestry, University of Tuscia, Viterbo, Italy
| | - G. Scapigliati
- Department of Innovativative Biology, Agro-food, and Forestry, University of Tuscia, Viterbo, Italy
- *Correspondence: G. Scapigliati, ; A. M. Timperio,
| | - A. M. Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- *Correspondence: G. Scapigliati, ; A. M. Timperio,
| |
Collapse
|
23
|
Zhang JH, Li HH, Zhang GJ, Zhang YH, Liu B, Huang S, Guyader J, Zhong RZ. Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs. Anim Biosci 2022; 35:1556-1565. [PMID: 35507854 PMCID: PMC9449378 DOI: 10.5713/ab.22.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
|
24
|
DNMT3B System Dysregulation Contributes to the Hypomethylated State in Ischaemic Human Hearts. Biomedicines 2022; 10:biomedicines10040866. [PMID: 35453616 PMCID: PMC9029641 DOI: 10.3390/biomedicines10040866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
A controversial understanding of the state of the DNA methylation machinery exists in ischaemic cardiomyopathy (ICM). Moreover, its relationship to other epigenetic alterations is incomplete. Therefore, we carried out an in-depth study of the DNA methylation process in human cardiac tissue. We showed a dysregulation of the DNA methylation machinery accordingly with the genome-wide hypomethylation that we observed: specifically, an overexpression of main genes involved in the elimination of methyl groups (TET1, SMUG1), and underexpression of molecules implicated in the maintenance of methylation (MBD2, UHRF1). By contrast, we found DNMT3B upregulation, a key molecule in the addition of methyl residues in DNA, and an underexpression of miR-133a-3p, an inhibitor of DNMT3B transcription. However, we found many relevant alterations that would counteract the upregulation observed, such as the overexpression of TRAF6, responsible for Dnmt3b degradation. Furthermore, we showed that molecules regulating Dnmts activity were altered; specifically, SAM/SAH ratio reduction. All these results are in concordance with the Dnmts normal function that we show. Our analysis revealed genome-wide hypomethylation along with dysregulation in the mechanisms of addition, elimination and maintenance of methyl groups in the DNA of ICM. We describe relevant alterations in the DNMT3B system, which promote a normal Dnmt3b function despite its upregulation.
Collapse
|
25
|
Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs. Sci Rep 2022; 12:4863. [PMID: 35318410 PMCID: PMC8941097 DOI: 10.1038/s41598-022-08933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status.
Collapse
|
26
|
Chen H, Chu JSC, Chen J, Luo Q, Wang H, Lu R, Zhu Z, Yuan G, Yi X, Mao Y, Lu C, Wang Z, Gu D, Jin Z, Zhang C, Weng Z, Li S, Yan X, Yang R. Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of Neoporphyra haitanensis. Mol Biol Evol 2022; 39:msab315. [PMID: 34730826 PMCID: PMC8752119 DOI: 10.1093/molbev/msab315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colonization of land from marine environments was a major transition for biological life on Earth, and intertidal adaptation was a key evolutionary event in the transition from marine- to land-based lifestyles. Multicellular intertidal red algae exhibit the earliest, systematic, and successful adaptation to intertidal environments, with Porphyra sensu lato (Bangiales, Rhodophyta) being a typical example. Here, a chromosome-level 49.67 Mb genome for Neoporphyra haitanensis comprising 9,496 gene loci is described based on metagenome-Hi-C-assisted whole-genome assembly, which allowed the isolation of epiphytic bacterial genome sequences from a seaweed genome for the first time. The compact, function-rich N. haitanensis genome revealed that ancestral lineages of red algae share common horizontal gene transfer events and close relationships with epiphytic bacterial populations. Specifically, the ancestor of N. haitanensis obtained unique lipoxygenase family genes from bacteria for complex chemical defense, carbonic anhydrases for survival in shell-borne conchocelis lifestyle stages, and numerous genes involved in stress tolerance. Combined proteomic, transcriptomic, and metabolomic analyses revealed complex regulation of rapid responses to intertidal dehydration/rehydration cycling within N. haitanensis. These adaptations include rapid regulation of its photosynthetic system, a readily available capacity to utilize ribosomal stores, increased methylation activity to rapidly synthesize proteins, and a strong anti-oxidation system to dissipate excess redox energy upon exposure to air. These novel insights into the unique adaptations of red algae to intertidal lifestyles inform our understanding of adaptations to intertidal ecosystems and the unique evolutionary steps required for intertidal colonization by biological life.
Collapse
Affiliation(s)
- Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | | | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Qijun Luo
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Zhujun Zhu
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Gaigai Yuan
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Xinxin Yi
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Youzhi Mao
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, China
| | - Caiping Lu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zekai Wang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Denghui Gu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zhen Jin
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Caixia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ziyu Weng
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Shuang Li
- Ningbo Customs Technology Center, Ningbo, China
| | - Xiaojun Yan
- Marine Drugs and Biological Products Department, Ningbo Institute of Oceanography, Ningbo, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Knežević S, Ognjanović M, Gavrović Jankulović M, Đurašinović T, Antić B, Djurić SV, Stanković DM. S‐Adenosyl‐L‐Homocysteine Hydrolase Immobilized on Citric Acid‐capped Gallium Oxyhydroxide on SWCNTs Modified Electrode for AdoHcy Impedimetric Sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry University of Belgrade Studentski Trg 12–16 11000 Belgrade Serbia
| | - Miloš Ognjanović
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | | | - Tatjana Đurašinović
- Institute of Medical Biochemistry Military Medical Academy Crnotravska 17 11000 Belgrade Serbia
| | - Bratislav Antić
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | - Sanja Vranješ Djurić
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| | - Dalibor M. Stanković
- Faculty of Chemistry University of Belgrade Studentski Trg 12–16 11000 Belgrade Serbia
- “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia University of Belgrade Mike Petrovića Alasa 12–14 11000 Belgrade Serbia
| |
Collapse
|
28
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
29
|
Spinelli M, Boucard C, Ornaghi S, Schoeberlein A, Irene K, Coman D, Hyder F, Zhang L, Haesler V, Bordey A, Barnea E, Paidas M, Surbek D, Mueller M. Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight 2021; 6:132335. [PMID: 34676826 PMCID: PMC8564895 DOI: 10.1172/jci.insight.132335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned.
Collapse
Affiliation(s)
- Marialuigia Spinelli
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Celiné Boucard
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Sara Ornaghi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Keller Irene
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging.,Department of Biomedical Engineering
| | - Longbo Zhang
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Valérie Haesler
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelique Bordey
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eytan Barnea
- Department of Research, BioIncept LLC, New York, New York, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Surbek
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int 2021; 42:403-412. [PMID: 34586473 DOI: 10.1007/s00296-021-05007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Humans do not produce uricase, an enzyme responsible for degrading uric acid. However, some bacteria residing in the gut can degrade one-third of the dietary and endogenous uric acid generated daily. New insights based on metagenomic and metabolomic approaches provide a new interest in exploring the involvement of gut microbiota in gout. Nevertheless, the exact mechanisms underlying this association are complex and have not been widely discussed. In this study, we aimed to review the evidence that suggests uric acid extrarenal excretion and gut microbiome are potential risk factors for developing gout. A literature search was performed in PubMed, Web of Science, and Google Scholar using several keywords, including "gut microbiome AND gout". A remarkable intestinal dysbiosis and shifts in abundance of certain bacterial taxa in gout patients have been consistently reported among different studies. Under this condition, bacteria might have developed adaptive mechanisms for de novo biosynthesis and salvage of purines, and thus, a concomitant alteration in uric acid metabolism. Moreover, gut microbiota can produce substrates that might cross the portal vein so the liver can generate de novo purinogenic amino acids, as well as uric acid. Therefore, the extrarenal excretion of uric acid needs to be considered as a factor in gout development. Nevertheless, further studies are needed to fully understand the role of gut microbiome in uric acid production and its extrarenal excretion, and to point out possible bacteria or bacterial enzymes that could be used as probiotic coadjutant treatment in gout patients.
Collapse
Affiliation(s)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Arenal de Guadalupe, 14389, Mexico City, Mexico.
| |
Collapse
|
31
|
Parsons RB, Facey PD. Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)evolution. Biomolecules 2021; 11:1418. [PMID: 34680055 PMCID: PMC8533529 DOI: 10.3390/biom11101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) has progressed from being considered merely a Phase II metabolic enzyme to one with a central role in cell function and energy metabolism. Over the last three decades, a significant body of evidence has accumulated which clearly demonstrates a central role for NNMT in cancer survival, metastasis, and drug resistance. In this review, we discuss the evidence supporting a role for NNMT in the progression of the cancer phenotype and how it achieves this by driving the activity of pro-oncogenic NAD+-consuming enzymes. We also describe how increased NNMT activity supports the Warburg effect and how it promotes oncogenic changes in gene expression. We discuss the regulation of NNMT activity in cancer cells by both post-translational modification of the enzyme and transcription factor binding to the NNMT gene, and describe for the first time three long non-coding RNAs which may play a role in the regulation of NNMT transcription. We complete the review by discussing the development of novel anti-cancer therapeutics which target NNMT and provide insight into how NNMT-based therapies may be best employed clinically.
Collapse
Affiliation(s)
- Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D. Facey
- Singleton Park Campus, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
32
|
Shi D, Zhang Y, Wang J, Ren W, Zhang J, Mbadianya JI, Zhu Y, Chen C, Ma H. S-adenosyl-L-homocysteine hydrolase FgSah1 is required for fungal development and virulence in Fusarium graminearum. Virulence 2021; 12:2171-2185. [PMID: 34424830 PMCID: PMC8386609 DOI: 10.1080/21505594.2021.1965821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The S-adenosyl-L-homocysteine hydrolase (Sah1) plays a crucial role in methylation and lipid metabolism in yeast and mammals, yet its function remains elusive in filamentous fungi. In this study, we characterized Sah1 in the phytopathogenic fungus F. graminearum by generating knockout and knockout-complemented strains of FgSAH1. We found that the FgSah1-GFP fusion protein was localized to the cytoplasm, and that deletion of FgSAH1 resulted in defects in vegetative growth, asexual and sexual reproduction, stress responses, virulence, lipid metabolism, and tolerance against fungicides. Moreover, the accumulations of S-adenosyl-L-homocysteine (AdoHcy) and S-adenosyl-L-methionine (AdoMet) (the methyl group donor in most methyl transfer reactions) in ΔFgSah1 were seven- and ninefold higher than those in the wild-type strain, respectively. All of these defective phenotypes in ΔFgSah1 mutants were rescued by target gene complementation. Taken together, these results demonstrate that FgSah1 plays essential roles in methylation metabolism, fungal development, full virulence, multiple stress responses, lipid metabolism, and fungicide sensitivity in F. graminearum. To our knowledge, this is the first report on the systematic functional characterization of Sah1 in F. graminearum.
Collapse
Affiliation(s)
- Dongya Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Jin Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weichao Ren
- Department of Plant Pathology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jane Ifunanya Mbadianya
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanye Zhu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Changjun Chen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Ma
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Ardalan M, Miesner MD, Reinhardt CD, Thomson DU, Armendariz CK, Smith JS, Titgemeyer EC. Effects of guanidinoacetic acid supplementation on nitrogen retention and methionine flux in cattle. J Anim Sci 2021; 99:6308973. [PMID: 34165572 DOI: 10.1093/jas/skab172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Creatine stores high-energy phosphate bonds in muscle and is synthesized in the liver through methylation of guanidinoacetic acid (GAA). Supplementation of GAA may therefore increase methyl group requirements, and this may affect methyl group utilization. Our experiment evaluated the metabolic responses of growing cattle to postruminal supplementation of GAA, in a model where methionine (Met) was deficient, with and without Met supplementation. Seven ruminally cannulated Holstein steers (161 kg initial body weight [BW]) were limit-fed a soybean hull-based diet (2.7 kg/d dry matter) and received continuous abomasal infusions of an essential amino acid (AA) mixture devoid of Met to ensure that no AA besides Met limited animal performance. To provide energy without increasing the microbial protein supply, all steers received ruminal infusions of 200 g/d acetic acid, 200 g/d propionic acid, and 50 g/d butyric acid, as well as abomasal infusions of 300 g/d glucose. Treatments, provided abomasally, were arranged as a 2 × 3 factorial in a split-plot design, and included 0 or 6 g/d of l-Met and 0, 7.5, and 15 g/d of GAA. The experiment included six 10-d periods. Whole body Met flux was measured using continuous jugular infusion of 1-13C-l-Met and methyl-2H3-l-Met. Nitrogen retention was elevated by Met supplementation (P < 0.01). Supplementation with GAA tended to increase N retention when it was supplemented along with Met, but not when it was supplemented without Met. Supplementing GAA linearly increased plasma concentrations of GAA and creatine (P < 0.001), but treatments did not affect urinary excretion of GAA, creatine, or creatinine. Supplementation with Met decreased plasma homocysteine (P < 0.01). Supplementation of GAA tended (P = 0.10) to increase plasma homocysteine when no Met was supplemented, but not when 6 g/d Met was provided. Protein synthesis and protein degradation were both increased by GAA supplementation when no Met was supplemented, but decreased by GAA supplementation when 6 g/d Met were provided. Loss of Met through transsulfuration was increased by Met supplementation, whereas synthesis of Met from remethylation of homocysteine was decreased by Met supplementation. No differences in transmethylation, transsulfuration, or remethylation reactions were observed in response to GAA supplementation. The administration of GAA, when methyl groups are not limiting, has the potential to improve lean tissue deposition and cattle growth.
Collapse
Affiliation(s)
- Mehrnaz Ardalan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Matt D Miesner
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Christopher D Reinhardt
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel U Thomson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheryl K Armendariz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - J Scott Smith
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
34
|
Hsu CL, Lo YC, Kao CF. H3K4 Methylation in Aging and Metabolism. EPIGENOMES 2021; 5:14. [PMID: 34968301 PMCID: PMC8594702 DOI: 10.3390/epigenomes5020014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
35
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Obesity Prevents S-Adenosylmethionine-Mediated Improvements in Age-Related Peripheral and Hippocampal Outcomes. Nutrients 2021; 13:nu13041201. [PMID: 33917279 PMCID: PMC8067411 DOI: 10.3390/nu13041201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Age predisposes individuals to a myriad of disorders involving inflammation; this includes stress-related neuropsychiatric disorders such as depression and anxiety, and neurodegenerative diseases. Obesity can further exacerbate these effects in the brain. We investigated whether an inexpensive dietary supplement, s-adenosylmethionine (SAMe), could improve age- and/or obesity-related inflammatory and affective measures in the hippocampus. Methods: Mice were placed on their diets at six weeks of age and then aged to 14 months, receiving SAMe (0.1 g/kg of food) for the final six weeks of the experiment. Prior to tissue collection, mice were tested for anxiety-like behaviors in the open field test and for metabolic outcomes related to type 2 diabetes. Results: SAMe treatment significantly improved outcomes in aged control mice, where fasting glucose decreased, liver glutathione levels increased, and hippocampal microglia morphology improved. SAMe increased transforming growth factor β-1 mRNA in both control mice, potentially accounting for improved microglial outcomes. Obese mice demonstrated increased anxiety-like behavior, where SAMe improved some, but not all, open field measures. Conclusions: In summary, SAMe boosted antioxidant levels, improved diabetic measures, and hippocampal inflammatory and behavioral outcomes in aged mice. The effects of SAMe in obese mice were more subdued, but it could still provide some positive outcomes for obese individuals dealing with anxiety and having difficulty changing their behaviors to improve health outcomes.
Collapse
|
37
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
38
|
Naegleria fowleri: Protein structures to facilitate drug discovery for the deadly, pathogenic free-living amoeba. PLoS One 2021; 16:e0241738. [PMID: 33760815 PMCID: PMC7990177 DOI: 10.1371/journal.pone.0241738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain’s frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen’s high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.
Collapse
|
39
|
Borrego SL, Fahrmann J, Hou J, Lin DW, Tromberg BJ, Fiehn O, Kaiser P. Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res 2021; 62:100056. [PMID: 33647277 PMCID: PMC8042402 DOI: 10.1016/j.jlr.2021.100056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as "methionine dependence", "methionine stress sensitivity", or the Hoffman effect. The response of lipids to Met stress, however, is not well-understood. Using mass spectroscopy, label-free vibrational microscopy, and next-generation sequencing, we characterize the response of lipids to Met stress in the triple-negative breast cancer cell line MDA-MB-468 and its Met stress insensitive derivative, MDA-MB-468res-R8. Lipidome analysis identified an immediate, global decrease in lipid abundances with the exception of triglycerides and an increase in lipid droplets in response to Met stress specifically in MDA-MB-468 cells. Furthermore, specific gene expression changes were observed as a secondary response to Met stress in MDA-MB-468, resulting in a downregulation of fatty acid metabolic genes and an upregulation of genes in the unfolded protein response pathway. We conclude that the extensive changes in lipid abundance during Met stress is a direct consequence of the modified metabolic profile previously described in Met stress-sensitive cells. The changes in lipid abundance likely results in changes in membrane composition inducing the unfolded protein response we observe.
Collapse
Affiliation(s)
- Stacey L Borrego
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Johannes Fahrmann
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA; Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jue Hou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Da-Wei Lin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Bruce J Tromberg
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
40
|
Li T, Wei Z, Kuang H. UPLC-orbitrap-MS-based metabolic profiling of HaCaT cells exposed to withanolides extracted from Datura metel.L: Insights from an untargeted metabolomics. J Pharm Biomed Anal 2021; 199:113979. [PMID: 33845385 DOI: 10.1016/j.jpba.2021.113979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, more and more attention to the withanolides extracted from Datura metel.L has been paid due to their anti-psoriatic effects. Withanolides have also been reported to exhibit anti-inflammatory and anti-proliferative properties. Thus, withanolides have been considered as a promising candidate of anti-psoriatic drug. The aim of this study was to investigated the metabolic network of HaCaT cells after exposure to withanolides to identify anti-psoriatic mechanism induced by withanolides on skin cells. In this experiment, our results demonstrated that exposure to withanolides at concentrations beyond 50 μg/mL inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner. In addition, withanolides-induced reactive oxygen species (ROS) generation and mitochondrial depolarization in HaCaT cells. In this research, ultra-high performance liquid chromatography coupled with orbitrap mass spectrometry (UPLC-orbitrap-MS) method was applied to profile metabolite changes in HaCaT cells exposed to withanolides. In total, significant variations in 38 differential metabolites were identified between withanolides exposure and untreated groups. The exposure of HaCaT cells to withanolides at the dose of 200 μg/mL for 24 h was revealed by the disturbance of energy metabolism, amino acid metabolism, lipid metabolism and nucleic acid metabolism. UPLC-orbitrap-MS-based cell metabolomics provided a comprehensive method for the identification of withanolides' anti-psoriasis mechanisms in vitro. And above metabolic disorders also reflected potential therapeutic targets for treating psoriasis.
Collapse
Affiliation(s)
- Tingting Li
- Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005, China; Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Zheng Wei
- Ganzhou City People's Hospital, 18 Mei-guan Avenue, Ganzhou, 341000, China.
| | - Haixue Kuang
- Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| |
Collapse
|
41
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
42
|
Paternal Dietary Methionine Supplementation Improves Carcass Traits and Meat Quality of Chicken Progeny. Animals (Basel) 2021; 11:ani11020325. [PMID: 33525477 PMCID: PMC7911529 DOI: 10.3390/ani11020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
The effects that maternal dietary methionine have on progeny have been reported on broilers. However, the paternal effects are not known, so the current study was conducted to explore the influences of paternal dietary methionine (Met) have on progeny carcass traits, meat quality, and related gene expressions. A total of 192 hens and 24 roosters from Ross parent stock at 36 weeks of age were selected. From week 37 to 46, the roosters were allocated to two groups with three replicates of 4 cocks each, (control, 0.28% Met), and methionine group (MET group, 0.28% Met + 0.1% coated Met). The results revealed that, although the heavier live body weight in progeny at day 49 of control group compared to MET group (p < 0.05), the relative eviscerated yield and relative thigh muscle yield were higher in MET group (p < 0.05); but the relative abdominal fat was lower (p < 0.05). In thigh and breast muscles, a positive response of pH24 h value, shear force (g) and drip loss (%) were observed in MET group (p < 0.05). The lightness (L) and redness (a) were increased (p < 0.05) in breast muscles of MET group, while only the redness (a*24 h) and yellowness (b*24 h) were increased (p < 0.05) in thigh muscles of MET group. The gender has a significant (p < 0.05) effect on carcass traits and muscle redness (a*), where these traits improved in males, and no interaction between treatments and gender were observed for these results. The expression levels of PRKAG2 and PRDX4 supported the changes in muscle pH, with these up-regulated in thigh and breast muscles of MET group, the PPP1R3A gene supported the changes in pH value being down-regulated (p < 0.01) in these same muscles. The BCO1 gene expression was consistent with the changes in meat color and was up-regulated (p < 0.01) in thigh muscles of MET group, consistent with the changes in b* color values. Finally, it was concluded that the supplementation of 0.1% Met to rooster diets could improve carcass characteristics and meat quality of progeny.
Collapse
|
43
|
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 2020; 10:22329. [PMID: 33339840 PMCID: PMC7749138 DOI: 10.1038/s41598-020-77846-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
Affiliation(s)
- Tânia Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
44
|
Zhao L, Chen X, Zhou S, Lin Z, Yu X, Huang Y. DNA methylation of AHCY may increase the risk of ischemic stroke. Bosn J Basic Med Sci 2020; 20:471-476. [PMID: 32020847 PMCID: PMC7664786 DOI: 10.17305/bjbms.2020.4535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of ischemic stroke. Of these, epigenetic modifications provide a new direction for the study of ischemic stroke pathogenesis. This study aimed to determine the correlation between DNA methylation of the gene encoding S-adenosylhomocysteine hydrolase (AHCY) and the risk of ischemic stroke in 64 ischemic stroke patients and 138 patients with traumatic brain injury (control group). The methylation level of AHCY was analyzed using quantitative methylation-specific polymerase chain reaction. Statistically significant differences in AHCY methylation levels were observed between the case group [medians (interquartile range): 0.13% (0.09%, 0.27%)] and the control group [0.06% (0.00%, 0.17%), p < 0.0001], and these associations remained significant in both male (p = 0.003) and female (p = 0.0005) subjects. A subgroup analysis by age revealed a considerably higher percentage of methylated AHCY in the case group than the control group in all age groups (age < 60 years, p = 0.007; age ≥ 60 years, p < 0.0001). A receiver operating characteristic (ROC) curve analysis revealed a trend toward a role for AHCY methylation as an indicator of risk in all ischemic patients [area under the curve (AUC) = 0.70, p = 0.0001], male patients (AUC = 0.67, p = 0.004), and female patients (AUC = 0.75, p = 0.0002). Our study confirmed a significant association between the AHCY DNA methylation level and the risk of ischemic stroke, suggesting that this gene methylation pattern may be a potential diagnostic marker of ischemic stroke.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiaosheng Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xi Yu
- Key Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| |
Collapse
|
45
|
Kumari A, Bhawal S, Kapila S, Yadav H, Kapila R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Crit Rev Food Sci Nutr 2020; 62:619-639. [PMID: 33081489 DOI: 10.1080/10408398.2020.1825286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epigenome is an overall epigenetic state of an organism, which is as important as that of the genome for normal development and functioning of an individual. Epigenetics involves heritable but reversible changes in gene expression through alterations in DNA methylation, histone modifications and regulation of non-coding RNAs in cells, without any change in the DNA sequence. Epigenetic changes are owned by various environmental factors including pollution, microbiota and diet, which have profound effects on epigenetic modifiers. The bioactive compounds present in the diet mainly include curcumin, resveratrol, catechins, quercetin, genistein, sulforaphane, epigallocatechin-3-gallate, alkaloids, vitamins, and peptides. Bioactive compounds released during fermentation by the action of microbes also have a significant effect on the host epigenome. Besides, recent studies have explored the new insights in vitamin's functions through epigenetic regulation. These bioactive compounds exert synergistic, preventive and therapeutic effects when combined as well as when used with chemotherapeutic agents. Therefore, these compounds have potential of therapeutic agents that could be used as "Epidrug" to treat many inflammatory diseases and various cancers where chemotherapy results have many side effects. In this review, the effect of diet derived bioactive compounds through epigenetic modulations on in vitro and in vivo models is discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Shalaka Bhawal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
46
|
Ward LC, McCue HV, Carnell AJ. Carboxyl Methyltransferases: Natural Functions and Potential Applications in Industrial Biotechnology. ChemCatChem 2020. [DOI: 10.1002/cctc.202001316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lucy C. Ward
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Hannah V. McCue
- GeneMill, Institute of Integrative Biology University of Liverpool Crown Street Liverpool L69 7ZB United Kingdom
| | - Andrew J. Carnell
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| |
Collapse
|
47
|
Neveu G, Beri D, Kafsack BF. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr Opin Microbiol 2020; 58:93-98. [PMID: 33053503 DOI: 10.1016/j.mib.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
For malaria parasites regulating sexual commitment, the frequency with which asexual bloodstream forms differentiate into non-replicative male and female gametocytes, is critical because asexual replication is required to maintain a persistent infection of the human host while gametocytes are essential for infection of the mosquito vector and transmission. Here, we describe recent advances in understanding of the regulatory mechanisms controlling this key developmental decision. These include new insights into the mechanistic roles of the transcriptional master switch AP2-G and the epigenetic modulator GDV1, as well as the identification of defined metabolic signals that modulate their activity. Many of these metabolites are linked to parasite phospholipid biogenesis and we propose a model linking this pathway to the epigenetic regulation underlying sexual commitment in P. falciparum.
Collapse
Affiliation(s)
- Gaelle Neveu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA
| | - Divya Beri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA
| | - Björn Fc Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065 USA.
| |
Collapse
|
48
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
49
|
Ardalan M, Batista ED, Titgemeyer EC. Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. J Anim Sci 2020; 98:5802328. [PMID: 32152623 PMCID: PMC7097713 DOI: 10.1093/jas/skaa072] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Creatine stores high-energy phosphate bonds in muscle, which is critical for muscle activity. In animals, creatine is synthesized in the liver from guanidinoacetic acid (GAA) with methylation by S-adenosylmethionine. Because methyl groups are used for the conversion of GAA to creatine, methyl group deficiency may occur as a result of GAA supplementation. With this study, the metabolic responses of cattle to post-ruminal supplementation of GAA were evaluated with and without methionine (Met) supplementation as a source of methyl groups. Six ruminally cannulated Holstein heifers (520 kg) were used in a split-plot design with treatments arranged as a 2 × 5 factorial. The main plot treatments were 0 or 12 g/d of l-Met arranged in a completely randomized design; three heifers received each main plot treatment throughout the entire experiment. Subplot treatments were 0, 10, 20, 30, and 40 g/d of GAA, with GAA treatments provided in sequence from lowest to highest over five 6-d periods. Treatments were infused continuously to the abomasum. Heifers were limit-fed twice daily a diet consisting of (dry matter basis) 5.3 kg/d rolled corn, 3.6 kg/d alfalfa hay, and 50 g/d trace-mineralized salt. Plasma Met increased (P < 0.01) when Met was supplemented, but it was not affected by supplemental GAA. Supplementing GAA linearly increased plasma arginine (% of total amino acids) and plasma concentrations of GAA and creatinine (P < 0.001). Plasma creatine was increased at all levels of GAA except when 40 g/d of GAA was supplemented with no Met (GAA-quadratic × Met, P = 0.07). Plasma homocysteine was not affected by GAA supplementation when heifers received 12 g/d Met, but it was increased when 30 or 40 g/d of GAA was supplemented without Met (GAA-linear × Met, P = 0.003); increases were modest and did not suggest a dangerous hyperhomocysteinemia. Urinary concentrations of GAA and creatine were increased by all levels of GAA when 12 g/d Met was supplemented; increasing GAA supplementation up to 30 g/d without Met increased urinary GAA and creatine concentrations, but 40 g/d GAA did not affect urine concentrations of GAA and creatine when no Met was supplemented. Overall, post-ruminal GAA supplementation increased creatine supply to cattle. A methyl group deficiency, demonstrated by modest increases in plasma homocysteine, became apparent when 30 or 40 g/d of GAA was supplemented, but it was ameliorated by 12 g/d Met.
Collapse
Affiliation(s)
- Mehrnaz Ardalan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Erick D Batista
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| |
Collapse
|
50
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|