1
|
Hackl A, Weber LT. The Ca 2+-actin-cytoskeleton axis in podocytes is an important, non-immunologic target of immunosuppressive therapy in proteinuric kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06670-z. [PMID: 39856247 DOI: 10.1007/s00467-025-06670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immunosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus, mycophenolate mofetil, and rituximab on podocytes by regulation of Ca2+ ion channels and consecutive downstream signaling which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic nephrotic syndrome will be discussed.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Lutz T Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
2
|
Kim EY, Rachubik P, Dryer SE. Dysregulation of Podocyte BK Channels and Nephrosis: Effects of Circulating Factors and Auxiliary β4 Subunits. Cells 2024; 14:22. [PMID: 39791723 PMCID: PMC11719602 DOI: 10.3390/cells14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Podocytes express large-conductance Ca2+-activated K+ channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.1 subunits interact directly with TRPC6 channels and BK channels become active in response to Ca2+ influx through TRPC6. Here, we confirmed that Ca2+ influx through TRPC channels is reduced following the blockade of BK channels by paxilline. The overall abundance of KCa1.1 subunits, as well as that of β4 and γ3 subunits, were increased in glomeruli isolated from Sprague Dawley rats during chronic puromycin aminonucleoside (PAN) nephrosis. Exposing cultured mouse podocytes for 24 h to recombinant TNFα, a circulating factor implicated in pediatric nephrotic syndromes, did not affect the total abundance of KCa1.1, but did evoke significant increases in both β4 and γ3. However, TNFα evoked a marked increase in the surface abundance of KCa1.1 subunits, similar to that of its previously reported effects on TRPC6 channels. The effect of TNFα on the surface expression of KCa1.1 was eliminated following siRNA knockdown of the β4 subunits, suggesting a role for this subunit in KCa1.1 trafficking to the cell surface. By contrast, treating podocytes with suPAR did not affect the total or surface expression of KCa1.1. The coordinated activation of KCa1.1 channels may promote Ca2+ influx through TRPC channels during normal and abnormal podocyte function by maintaining a membrane potential that allows for the efficient permeation of divalent cations through TRPC pores.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (E.Y.K.); (P.R.)
| | - Patrycja Rachubik
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (E.Y.K.); (P.R.)
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Gdansk, Poland
| | - Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (E.Y.K.); (P.R.)
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Ma J, Ren L, Su Q, Lv X, Sun M, Wei Y, Dai L, Bian X. TRPC6 knockdown-mediated ERK1/2 inactivation alleviates podocyte injury in minimal change disease via upregulating Lon peptidase 1. Ren Fail 2024; 46:2431150. [PMID: 39566913 PMCID: PMC11580150 DOI: 10.1080/0886022x.2024.2431150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Minimal change disease (MCD) is a universal primary glomerular disease contributing to nephrotic syndrome. Lon peptidase 1 (LONP1) has been suggested to protect podocytes from damage during the progression of MCD. Accordingly, our research further explored the specific mechanisms of LONP1. Initially, the expressions of TRPC6, p-ERK1/2, and LONP1 in the kidney tissues of MCD patients were detected by immunohistochemistry and Western blot. Human podocytes AB8/13 were serially subjected to transfection with shTRPC6/shNC, and 48-h treatment with 30 µg/ml puromycin aminonucleoside (PAN). The viability, apoptosis, and migration of AB8/13 cells were assessed by cell counting kit-8, flow cytometry, and transwell assays. The mRNA and protein expressions of LONP1 were downregulated while those of TRPC6 were upregulated in the kidney tissues of MCD patients. PAN induced podocyte injury and migration and inhibited LONP1 expression, whereas TRPC6 silencing did oppositely. The phosphorylation level of ERK1/2 was reduced in MCD samples, which was negatively associated with TRPC6 expression and positively associated with LONP1 expression. Furthermore, ERK phosphorylation agonist offset the effects of TRPC6 silencing on mitigating podocyte injury and migration as well as upregulating LONP1 expression. Collectively, TRPC6 knockdown-induced ERK1/2 inactivation can ameliorate podocyte injury in MCD by increasing the expression of LONP1.
Collapse
Affiliation(s)
- Jianwei Ma
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Liling Ren
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Qin Su
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xiuyi Lv
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Min Sun
- Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Yunbo Wei
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Lili Dai
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| | - Xueyan Bian
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo City, Zhejiang Province, China
| |
Collapse
|
4
|
Sheng A, Liu F, Wang Q, Fu H, Mao J. The roles of TRPC6 in renal tubular disorders: a narrative review. Ren Fail 2024; 46:2376929. [PMID: 39022902 PMCID: PMC11259070 DOI: 10.1080/0886022x.2024.2376929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential canonical 6 (TRPC6) channel, a nonselective cation channel that allows the passage of Ca2+, plays an important role in renal diseases. TRPC6 is activated by Ca2+ influx, oxidative stress, and mechanical stress. Studies have shown that in addition to glomerular diseases, TRPC6 can contribute to renal tubular disorders, such as acute kidney injury, renal interstitial fibrosis, and renal cell carcinoma (RCC). However, the tubule-specific physiological functions of TRPC6 have not yet been elucidated. Its pathophysiological role in ischemia/reperfusion (I/R) injury is debatable. Thus, TRPC6 may have dual roles in I/R injury. TRPC6 induces renal fibrosis and immune cell infiltration in a unilateral ureteral obstruction (UUO) mouse model. Additionally, TRPC6 overexpression may modify G2 phase transition, thus altering the DNA damage checkpoint, which can cause genomic instability and RCC tumorigenesis and can control the proliferation of RCC cells. This review highlights the importance of TRPC6 in various conditions of the renal tubular system. To better understand certain renal disorders and ultimately identify new therapeutic targets to improve patient care, the pathophysiology of TRPC6 must be clarified.
Collapse
Affiliation(s)
- Aiqin Sheng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianhui Wang
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Sun AB, Li FH, Zhu L, Zeng XX, Zhu M, Lei QH, Liao YH. TRPC6 Knockout Alleviates Renal Fibrosis through PI3K/AKT/GSK3B Pathway. Curr Med Sci 2024; 44:589-602. [PMID: 38748370 DOI: 10.1007/s11596-024-2869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Renal fibrosis is the ultimate pathway of various forms of acute and chronic kidney damage. Notably, the knockout of transient receptor potential channel 6 (TRPC6) has shown promise in alleviating renal fibrosis. However, the regulatory impact of TRPC6 on renal fibrosis remains unclear. METHODS In vivo, TRPC6 knockout (TRPC6-/-) mice and age-matched 129 SvEv (WT) mice underwent unilateral renal ischemia-reperfusion (uIR) injury surgery on the left renal pedicle or sham operation. Kidneys and serum were collected on days 7, 14, 21, and 28 after euthanasia. In vitro, primary tubular epithelial cells (PTECs) were isolated from TRPC6-/- and WT mice, followed by treatment with transforming growth factor β1 (TGFβ1) for 72 h. The anti-fibrotic effect of TRPC6-/- and the underlying mechanisms were assessed through hematoxylin-eosin staining, Masson staining, immunostaining, qRT-PCR, and Western blotting. RESULTS Increased TRPC6 expression was observed in uIR mice and PTECs treated with TGFβ1. TRPC6-/- alleviated renal fibrosis by reducing the expression of fibrotic markers (Col-1, α-SMA, and vimentin), as well as decreasing the apoptosis and inflammation of PTECs during fibrotic progression both in vivo and in vitro. Additionally, we found that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) signaling pathway, a pivotal player in renal fibrosis, was down-regulated following TRPC6 deletion. CONCLUSION These results suggest that the ablation of TRPC6 may mitigate renal fibrosis by inhibiting the apoptosis and inflammation of PTECs through down-regulation of the PI3K/AKT/GSK3β pathway. Targeting TRPC6 could be a novel therapeutic strategy for preventing chronic kidney disease.
Collapse
Affiliation(s)
- An-Bang Sun
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Hua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Zhu
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Xi Zeng
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-Hua Lei
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- National Basic Medical Teaching Demonstration Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan-Hong Liao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Wang B, Yu W, Zhang W, Zhang M, Niu Y, Jin X, Zhang J, Sun D, Li H, Zhang Z, Luo Q, Cheng X, Niu J, Cai G, Chen X, Chen Y. Enhanced TRPC3 transcription through AT1R/PKA/CREB signaling contributes to mitochondrial dysfunction in renal tubular epithelial cells in D-galactose-induced accelerated aging mice. Aging Cell 2024; 23:e14130. [PMID: 38415902 PMCID: PMC11166371 DOI: 10.1111/acel.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
Aging-associated renal dysfunction promotes the pathogenesis of chronic kidney disease. Mitochondrial dysfunction in renal tubular epithelial cells is a hallmark of senescence and leads to accelerated progression of renal disorders. Dysregulated calcium profiles in mitochondria contribute to aging-associated disorders, but the detailed mechanism of this process is not clear. In this study, modulation of the sirtuin 1/angiotensin II type 1 receptor (Sirt1/AT1R) pathway partially attenuated renal glomerular sclerosis, tubular atrophy, and interstitial fibrosis in D-galactose (D-gal)-induced accelerated aging mice. Moreover, modulation of the Sirt1/AT1R pathway improved mitochondrial dysfunction induced by D-gal treatment. Transient receptor potential channel, subtype C, member 3 (TRPC3) upregulation mediated dysregulated cellular and mitochondrial calcium homeostasis during aging. Furthermore, knockdown or knockout (KO) of Trpc3 in mice ameliorated D-gal-induced mitochondrial reactive oxygen species production, membrane potential deterioration, and energy metabolism disorder. Mechanistically, activation of the AT1R/PKA pathway promoted CREB phosphorylation and nucleation of CRE2 binding to the Trpc3 promoter (-1659 to -1648 bp) to enhance transcription. Trpc3 KO significantly improved the renal disorder and cell senescence in D-gal-induced mice. Taken together, these results indicate that TRPC3 upregulation mediates age-related renal disorder and is associated with mitochondrial calcium overload and dysfunction. TRPC3 is a promising therapeutic target for aging-associated renal disorders.
Collapse
Affiliation(s)
- Bin Wang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Department of Clinical MedicineDazhou Vocational and Technical CollegeDazhouSichuanChina
| | - Weiguang Zhang
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Min Zhang
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yue Niu
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xinye Jin
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Jie Zhang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Ding Sun
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Hao Li
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Zehao Zhang
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Qing Luo
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Xiaowei Cheng
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Jingxue Niu
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
| | - Guangyan Cai
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xiangmei Chen
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yizhi Chen
- Department of Nephrology, The Hainan Academician Team Innovation CenterHainan Hospital of Chinese PLA General HospitalSanyaChina
- Senior Department of Nephrology, The First Medical Center of Chinese PLA General HospitalChinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Drobnik M, Smólski J, Grądalski Ł, Niemirka S, Młynarska E, Rysz J, Franczyk B. Mechanosensitive Cation Channel Piezo1 Is Involved in Renal Fibrosis Induction. Int J Mol Sci 2024; 25:1718. [PMID: 38338996 PMCID: PMC10855652 DOI: 10.3390/ijms25031718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Renal fibrosis, the result of different pathological processes, impairs kidney function and architecture, and usually leads to renal failure development. Piezo1 is a mechanosensitive cation channel highly expressed in kidneys. Activation of Piezo1 by mechanical stimuli increases cations influx into the cell with slight preference of calcium ions. Two different models of Piezo1 activation are considered: force through lipid and force through filament. Expression of Piezo1 on mRNA and protein levels was confirmed within the kidney. Their capacity is increased in the fibrotic kidney. The pharmacological tools for Piezo1 research comprise selective activators of the channels (Yoda1 and Jedi1/2) as well as non-selective inhibitors (spider peptide toxin) GsMTx4. Piezo1 is hypothesized to be the upstream element responsible for the activation of integrin. This pathway (calcium/calpain2/integrin beta1) is suggested to participate in profibrotic response induced by mechanical stimuli. Administration of the Piezo1 unspecific inhibitor or activators to unilateral ureter obstruction (UUO) mice or animals with folic acid-induced fibrosis modulates extracellular matrix deposition and influences kidney function. All in all, according to the recent data Piezo1 plays an important role in kidney fibrosis development. This channel has been selected as the target for pharmacotherapy of renal fibrosis.
Collapse
Affiliation(s)
- Marta Drobnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jakub Smólski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Łukasz Grądalski
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Szymon Niemirka
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (M.D.)
| |
Collapse
|
10
|
Semenikhina M, Fedoriuk M, Stefanenko M, Klemens CA, Cherezova A, Marshall B, Hall G, Levchenko V, Solanki A, Lipschutz JH, Ilatovskaya DV, Staruschenko A, Palygin O. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin Sci (Lond) 2023; 137:1789-1804. [PMID: 38051199 PMCID: PMC11194114 DOI: 10.1042/cs20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine β-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated β-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of β-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the β-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the β-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated β-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Brendan Marshall
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Ashish Solanki
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Joshua H. Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
11
|
Li Y, Fang Y, Liu J. Downregulation of TRPC6 regulates ERK1/2 to prevent sublytic C5b‑9 complement complex‑induced podocyte injury through activating autophagy. Exp Ther Med 2023; 26:576. [PMID: 38023364 PMCID: PMC10652242 DOI: 10.3892/etm.2023.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a common glomerular disease, in which 50-60% of patients can progress to end-stage renal disease within 10-20 years, seriously endangering human health. Podocyte injury is the direct cause of IMN. Sublytic C5b-9 complement complex induces damage in podocytes' structure and function. In sublytic C5b-9 treated podocytes, the expression of canonical transient receptor potential 6 (TRPC6) is increased. However, the specific mechanism of TRPC6 in sublytic C5b-9 treated podocytes is unclear. The present study aimed to reveal the effect and mechanism of TRPC6 on sublytic C5b-9-induced podocytes. Normal human serum was stimulated using zymosan to form C5b-9. A lactate dehydrogenase release assay was used to examine C5b-9 cytotoxicity in podocytes. The RNA and protein expression levels were analyzed using reverse transcription-quantitative PCR, western blotting and immunofluorescent assay, respectively. Cell Counting Kit-8 assay and flow cytometry were carried out to test the viability and apoptosis of podocytes, respectively. Transmission electron microscopy was used to observe autophagic vacuole. F-actin was tested through phalloidin staining. Sublytic C5b-9 was deposited and TRPC6 expression was boosted in podocytes stimulated through zymosan activation serum. Knockdown of TRPC6 raised the viability and reduced the apoptosis rate of sublytic C5b-9-induced podocytes. Meanwhile, transfection of small-interfering (si)TRPC6 facilitated autophagy progression and enhanced the activation of cathepsin B/L in sublytic C5b-9-induced podocytes. The phosphorylation level of ERK1/2 was receded in siTRPC6 and sublytic C5b-9 co-treated podocytes. Moreover, the addition of the ERK1/2 activator partially reversed the effect of TRPC6 inhibition on sublytic C5b-9-induced podocytes. TRPC6 knockdown reduced the damage of sublytic C5b-9 to podocytes by weakening the ERK1/2 phosphorylation level to activate autophagy. These results indicated that targeting TRPC6 reduced the injury of sublytic C5b-9 on podocytes.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| | - Youfu Fang
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| | - Jing Liu
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, Shandong 262550, P.R. China
| |
Collapse
|
12
|
Polat OK, Isaeva E, Sudhini YR, Knott B, Zhu K, Noben M, Suresh Kumar V, Endlich N, Mangos S, Reddy TV, Samelko B, Wei C, Altintas MM, Dryer SE, Sever S, Staruschenko A, Reiser J. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int 2023; 103:1056-1062. [PMID: 36750145 PMCID: PMC10200725 DOI: 10.1016/j.kint.2023.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.
Collapse
Affiliation(s)
- Onur K Polat
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yashwanth R Sudhini
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brenna Knott
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Manuel Noben
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Varsha Suresh Kumar
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany; Center of High-End Imaging, NIPOKA GmbH, Greifswald, Germany
| | - Steve Mangos
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA; Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Hagmann H, Khayyat NH, Matin M, Oezel C, Chen H, Schauss A, Schell C, Benzing T, Dryer S, Brinkkoetter PT. Capsazepine (CPZ) Inhibits TRPC6 Conductance and Is Protective in Adriamycin-Induced Nephropathy and Diabetic Glomerulopathy. Cells 2023; 12:cells12020271. [PMID: 36672207 PMCID: PMC9856956 DOI: 10.3390/cells12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS), which excessively arise in diabetes and systemic inflammatory diseases, modify cellular lipids and cellular lipid composition leading to altered biophysical properties of cellular membranes. The impact of lipid peroxidation on transmembrane signaling routes is not yet well studied. The canonical transient receptor potential channel 6 (TRPC6) is implicated in the pathogenesis of several forms of glomerular diseases. TRPC6 is sensitive to membrane stretch and relies on a distinct lipid environment. This study investigates the effect of oxidative alterations to plasma membrane lipids on TRPC6 activity and the function of the glomerular filter. Knockout of the anti-oxidative, lipid modifying enzyme paraoxonase 2 (PON2) leads to altered biophysical properties of glomerular epithelial cells, which are called podocytes. Cortical stiffness, quantified by atomic force microscopy, was largely increased in PON2-deficient cultured podocytes. PON2 deficiency markedly enhanced TRPC6 channel currents and channel recovery. Treatment with the amphiphilic substance capsazepine in micromolar doses reduced cortical stiffness and abrogated TRPC6 conductance. In in vivo studies, capsazepine reduced the glomerular phenotype in the model of adriamycin-induced nephropathy in PON2 knockout mice and wildtype littermates. In diabetic AKITA mice, the progression of albuminuria and diabetic kidney disease was delayed. In summary, we provide evidence that the modification of membrane characteristics affects TRPC6 signaling. These results could spur future research to investigate modification of the direct lipid environment of TRPC6 as a future therapeutic strategy in glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Mahsa Matin
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Cem Oezel
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - He Chen
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), 50931 Cologne, Germany
- Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
14
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Englisch CN, Paulsen F, Tschernig T. TRPC Channels in the Physiology and Pathophysiology of the Renal Tubular System: What Do We Know? Int J Mol Sci 2022; 24:ijms24010181. [PMID: 36613622 PMCID: PMC9820145 DOI: 10.3390/ijms24010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The study of transient receptor potential (TRP) channels has dramatically increased during the past few years. TRP channels function as sensors and effectors in the cellular adaptation to environmental changes. Here, we review literature investigating the physiological and pathophysiological roles of TRPC channels in the renal tubular system with a focus on TRPC3 and TRPC6. TRPC3 plays a key role in Ca2+ homeostasis and is involved in transcellular Ca2+ reabsorption in the proximal tubule and the collecting duct. TRPC3 also conveys the osmosensitivity of principal cells of the collecting duct and is implicated in vasopressin-induced membrane translocation of AQP-2. Autosomal dominant polycystic kidney disease (ADPKD) can often be attributed to mutations of the PKD2 gene. TRPC3 is supposed to have a detrimental role in ADPKD-like conditions. The tubule-specific physiological functions of TRPC6 have not yet been entirely elucidated. Its pathophysiological role in ischemia-reperfusion injuries is a subject of debate. However, TRPC6 seems to be involved in tumorigenesis of renal cell carcinoma. In summary, TRPC channels are relevant in multiples conditions of the renal tubular system. There is a need to further elucidate their pathophysiology to better understand certain renal disorders and ultimately create new therapeutic targets to improve patient care.
Collapse
Affiliation(s)
- Colya N. Englisch
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
- Correspondence: ; Tel.: +49-6841-1626-100
| |
Collapse
|
16
|
Dryer SE, Kim EY. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease. Biomolecules 2022; 12:1710. [PMID: 36421724 PMCID: PMC9687984 DOI: 10.3390/biom12111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Diseases that induce a loss of renal function affect a substantial portion of the world's population and can range from a slight decline in the glomerular filtration rate or microalbuminuria to complete kidney failure. Kidney disorders can be acute or chronic, but any significant reduction in renal function is associated with increased all-cause morbidity and mortality, especially when the conditions become chronic. There is an urgent need for new therapeutic approaches to slow or halt the progression of kidney disease. One potential target of considerable interest is the canonical transient receptor potential-6 (TRPC6) channel. TRCP6 is a cationic channel with a significant permeability to Ca2+. It is expressed in several tissues, including in multiple cell types of the kidney in glomeruli, microvasculature, and tubules. Here, we will describe TRPC6 channels and their roles in signal transduction, with an emphasis on renal cells, and the studies implicating TRPC6 channels in the progression of inherited and acquired kidney diseases. We then describe studies using TRPC6 knockout mice and rats subjected to treatments that model human diseases, including nephrotic syndromes, diabetic nephropathy, autoimmune glomerulonephritis, and acute kidney injuries induced by renal ischemia and by obstruction of the urinary tract. TRPC6 knockout has been shown to reduce glomerular manifestations of disease in several of these models and reduces renal fibrosis caused by urinary tract obstruction. TRPC6 knockout has proven to be less effective at reducing diabetic nephropathy in mouse and rat models. We also summarize the implications of these studies for drug development.
Collapse
Affiliation(s)
- Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204-5001, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
17
|
Hagmann H, Khayyat NH, Oezel C, Papadakis A, Kuczkowski A, Benzing T, Gulbins E, Dryer S, Brinkkoetter PT. Paraoxonase 2 (PON2) Deficiency Reproduces Lipid Alterations of Diabetic and Inflammatory Glomerular Disease and Affects TRPC6 Signaling. Cells 2022; 11:cells11223625. [PMID: 36429053 PMCID: PMC9688324 DOI: 10.3390/cells11223625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.
Collapse
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Correspondence:
| | | | - Cem Oezel
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Antonios Papadakis
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Alexander Kuczkowski
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), 50931 Cologne, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
18
|
Polydatin Ameliorates High Fructose-Induced Podocyte Oxidative Stress via Suppressing HIF-1α/NOX4 Pathway. Pharmaceutics 2022; 14:pharmaceutics14102202. [PMID: 36297636 PMCID: PMC9609044 DOI: 10.3390/pharmaceutics14102202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Long-term high fructose intake drives oxidative stress, causing glomerular podocyte injury. Polydatin, isolated from Chinese herbal medicine Polygonum cuspidatum, is used as an antioxidant agent that protects kidney function. However, it remains unclear how polydatin prevents oxidative stress-driven podocyte damage. In this study, polydatin attenuated high fructose-induced high expression of HIF-1α, inhibited NOX4-mediated stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4) axis activation, reduced reactive oxygen species (ROS) production in rat glomeruli and cultured podocytes. As a result, polydatin up-regulated nephrin and podocin, down-regulated transient receptor potential cation channel 6 (TRPC6) in these animal and cell models. Moreover, the data from HIF-1α siRNA transfection showed that high fructose increased NOX4 expression and aggravated SDF-1α/CXCR4 axis activation in an HIF-1α-dependent manner, whereas polydatin down-regulated HIF-1α to inhibit NOX4 and suppressed SDF-1α/CXCR4 axis activation, ameliorating high fructose-induced podocyte oxidative stress and injury. These findings demonstrated that high fructose-driven HIF-1α/NOX4 pathway controlled podocyte oxidative stress damage. Intervention of this disturbance by polydatin could help the development of the therapeutic strategy to combat podocyte damage associated with high fructose diet.
Collapse
|
19
|
Wang S, Zhang X, Wang Q, Wang R. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med (Berl) 2022; 100:1373-1386. [PMID: 36040515 DOI: 10.1007/s00109-022-02247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China. .,Department of Nephrology, Shandong Provincial Hospital, Shandong First Medical University, No. 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
20
|
Feng Y, Li M, Wang Y, Yang M, Shi G, Yin D, Xuan Z, Xu F. Activation of TRPC6 by AngⅡ Induces Podocyte Injury and Participates in Proteinuria of Nephrotic Syndrome. Front Pharmacol 2022; 13:915153. [PMID: 35991898 PMCID: PMC9382118 DOI: 10.3389/fphar.2022.915153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Nephrotic syndrome (NS) is a common glomerular disease, and podocyte injury is the character of primary NS, usually caused by minimal change disease and membranous nephropathy. Podocytopathy is primarily associated with glomerular proteinuria. Losartan, an angiotensin receptor blocker (ARB), is commonly used in the treatment of NS, and the AngiotensinⅡ (AngⅡ)–transient receptor potential ion channel 6 (TRPC6) axis has been reported to act on podocytes to regulate proteinuria in NS. Therefore, the purpose of this study was to explore the relationship in between AngⅡ–TRPC6, podocyte injury, and proteinuria based on the adriamycin (ADR) NS rat model.Method: All male rats were divided into three groups: control group, model group, and ARB group. The rats in the model group were induced by ADR, and the rats in the ARB group received losartan after induction of renal injury for 4 weeks. The changes in parameters related to renal dysfunction, and glomerular and podocyte structural damage, such as AngⅡ, AngⅡ type I receptor (AT1R), TRPC6, CaN, Caspase-3, Nephrin, and Podocin, were analyzed. Furthermore, the kidneys were isolated for study via transmission electron microscopy (TEM), immunohistochemistry, and western blot (WB) after the rats were sacrificed. In vitro, immortalized mouse MPC5 podocytes were used to investigate the regulatory effect of flufenamic acid (Flu) and SAR7334 (SAR) on the AngⅡ-TRPC6 signaling axis. Flow cytometry and WB were conducted to determine the relationship between podocyte injury and AngⅡ-TRPC6.Results:In vivo results showed that NS rats developed massive albuminuria and abnormal renal function, accompanied by abnormally increased levels of AngⅡ, TRPC6, AT1R, and CaN and a decreased expression of actin molecules in podocytes, extensive fusion of foot processes (FP), loss of glomerular structural integrity, collapse of podocyte structure, and skeletal reorganization. In vitro experiments indicated that both AngⅡ and Flu (the specific agonist of TRPC6) stimulated the expressions of TRPC6, AT1R, and Caspase-3 in podocytes. The AngⅡ receptor–blocker losartan and TRPC6-specific inhibitor SAR blocked the overexpression of the aforementioned proteins. In addition, SAR also attenuated the degradation of podocyte structural proteins and inhibited the fluorescence intensity of intracellular calcium (Ca2+) and cell apoptosis.Conclusion: The involvement of AngⅡ in the occurrence of NS proteinuria may be related to podocyte injury induced by activated TRPC6.
Collapse
Affiliation(s)
- Ye Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Manman Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Zihua Xuan, ; Fan Xu,
| | - Fan Xu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Zihua Xuan, ; Fan Xu,
| |
Collapse
|
21
|
Kim EY, Dryer SE. TRPC6 Inactivation Reduces Albuminuria Induced by Protein Overload in Sprague Dawley Rats. Cells 2022; 11:1985. [PMID: 35805070 PMCID: PMC9265922 DOI: 10.3390/cells11131985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Canonical transient receptor potential-6 (TRPC6) channels have been implicated in familial and acquired forms of focal and segmental glomerulosclerosis (FSGS), and in renal fibrosis following ureteral obstruction in mice. TRPC6 channels also appear to play a role in driving glomerular disease in aging and in autoimmune glomerulonephritis. In the present study, we examine the role of TRPC6 in the proteinuric state caused by prolonged albumin overload (AO) in Sprague Dawley rats induced by daily injections of exogenous albumin. This was assessed in rats with a global and constitutive inactivation of TRPC6 channels (Trpc6del/del rats) and in wild-type littermates (Trpc6wt/wt rats). AO for 14 and 28 days caused increased urine albumin excretion that was significantly attenuated in Trpc6del/del rats compared to Trpc6wt/wt controls. AO overload did not induce significant glomerulosclerosis or azotemia in either genotype. AO induced mild tubulointerstitial disease characterized by fibrosis, hypercellularity and increased expression of markers of fibrosis and inflammation. Those changes were equally severe in Trpc6wt/wt and Trpc6del/del rats. Immunoblot analysis of renal cortex indicated that AO increased the abundances of TRPC3 and TRPC6, and caused a nearly complete loss of TRPC5 in Trpc6wt/wt rats. The increase in TRPC3 and the loss of TRPC5 occurred to the same extent in Trpc6del/del rats. These data also suggest that TRPC6 plays a role in the normal function of the glomerular filtration barrier. However, whether TRPC6 inactivation protects the tubulointerstitial compartments in Sprague Dawley rats depends on the disease model examined.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
22
|
In Vivo Inhibition of TRPC6 by SH045 Attenuates Renal Fibrosis in a New Zealand Obese (NZO) Mouse Model of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23126870. [PMID: 35743312 PMCID: PMC9224794 DOI: 10.3390/ijms23126870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome is a significant worldwide public health challenge and is inextricably linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological inhibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+ and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome.
Collapse
|
23
|
Chai XN, Ludwig FA, Müglitz A, Gong Y, Schaefer M, Regenthal R, Krügel U. A Pharmacokinetic and Metabolism Study of the TRPC6 Inhibitor SH045 in Mice by LC-MS/MS. Int J Mol Sci 2022; 23:ijms23073635. [PMID: 35408998 PMCID: PMC8998618 DOI: 10.3390/ijms23073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
TRPC6, the sixth member of the family of canonical transient receptor potential (TRP) channels, contributes to a variety of physiological processes and human pathologies. This study extends the knowledge on the newly developed TRPC6 blocker SH045 with respect to its main target organs beyond the description of plasma kinetics. According to the plasma concentration-time course in mice, SH045 is measurable up to 24 h after administration of 20 mg/kg BW (i.v.) and up to 6 h orally. The short plasma half-life and rather low oral bioavailability are contrasted by its reported high potency. Dosage limits were not worked out, but absence of safety concerns for 20 mg/kg BW supports further dose exploration. The disposition of SH045 is described. In particular, a high extravascular distribution, most prominent in lung, and a considerable renal elimination of SH045 were observed. SH045 is a substrate of CYP3A4 and CYP2A6. Hydroxylated and glucuronidated metabolites were identified under optimized LC-MS/MS conditions. The results guide a reasonable selection of dose and application route of SH045 for target-directed preclinical studies in vivo with one of the rare high potent and subtype-selective TRPC6 inhibitors available.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany;
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Yuanyuan Gong
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
- Correspondence:
| |
Collapse
|
24
|
Palygin O. The role of TRPC6 channel in chronic kidney disease. Am J Physiol Renal Physiol 2022; 322:F195-F196. [PMID: 35037467 DOI: 10.1152/ajprenal.00455.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, United States.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
25
|
Zhai Y, Li D, Wang Z, Shao L, Yin N, Li W. Cortex Mori Radicis attenuates streptozotocin-induced diabetic renal injury in mice via regulation of transient receptor potential canonical channel 6. Endocr Metab Immune Disord Drug Targets 2022; 22:862-873. [PMID: 35016601 DOI: 10.2174/1871530322666220110161458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Cortex Mori Radicis (CMR) has been reported to possess anti-pyretic, anti-convulsant, anti-allergic, anti-inflammatory, and anti-diabetic effects. In this study, we aimed to investigate the effect of CMR on streptozotocin (STZ)-induced diabetic renal injury in mice and explore the underlying mechanism. METHODS Mice were gavaged with different doses of CMR for continuous 7 days. Then, STZ (50 mg/kg) was applied to induce renal injury associated with type 1 diabetes. Firstly, blood glucose levels and metabolic parameters were evaluated, including weight, food intake, and excrement. HE and PAS staining were performed to present renal histological changes. Renal inflammation, fibrosis, and oxidative stress were assayed by real time PCR and ELISA, separately. Additionally, podocyte-related markers, such as nephrin and wilms' tumor-1 (WT-1) were detected by immunohistochemical staining and Western blot separately. Lastly, expression of transient receptor potential canonical channel 6 (TRPC6) and activation of MAPK signaling pathways were assayed. RESULTS CMR pretreatment significantly lowered the blood glucose levels, suppressed renal inflammation, fibrosis and oxidative stress, and relieved renal pathological injury, accompanying the inhibition of nephrin and WT-1 expression in STZ-induced diabetic mice. Moreover, CMR decreased the expression of TRPC6 and suppressed phosphorylation of ERK, but not P38 MAPK and JNK. Notably, the application of hyperforin, a specific activator of TRPC6, significantly abrogated the hypoglycemic effect of CMR and reversed the suppression of CMR on TRPC6 expression and ERK activation in the diabetic mice. CONCLUSION Our findings indicated that CMR attenuated early renal injury in STZ-induced diabetic mice through inhibiting ERK signaling via regulation of TRPC6, which suggests that CMR can be considered as a promising candidate for the management of diabetes-related renal complications.
Collapse
Affiliation(s)
- Yi Zhai
- Department of Cardiology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Dan Li
- College of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Luyao Shao
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Weihua Li
- Department of Cardiology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
26
|
Bon RS, Wright DJ, Beech DJ, Sukumar P. Pharmacology of TRPC Channels and Its Potential in Cardiovascular and Metabolic Medicine. Annu Rev Pharmacol Toxicol 2022; 62:427-446. [PMID: 34499525 DOI: 10.1146/annurev-pharmtox-030121-122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Wright
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - Piruthivi Sukumar
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
27
|
Wang Z, Fu Y, do Carmo JM, da Silva AA, Li X, Mouton A, Omoto ACM, Sears J, Hall JE. Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. Am J Physiol Renal Physiol 2022; 322:F76-F88. [PMID: 34866402 PMCID: PMC8742740 DOI: 10.1152/ajprenal.00296.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. In this study, we assessed whether DM and HTN interact synergistically to promote kidney dysfunction and whether transient receptor potential cation channel 6 (TRPC6) contributes to this synergism. In wild-type (WT; B6/129s background) and TRPC6 knockout (KO) mice, DM was induced by streptozotocin injection to increase fasting glucose levels to 250-350 mg/dL. HTN was induced by aorta constriction (AC) between the renal arteries. AC increased blood pressure (BP) by ∼25 mmHg in the right kidney (above AC), whereas BP in the left kidney (below AC) returned to near normal after 8 wk, with both kidneys exposed to the same levels of blood glucose, circulating hormones, and neural influences. Kidneys of WT mice exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion. In contrast, WT kidneys exposed to DM plus HTN (WT-DM + AC mice) for 8 wk had much greater increases in albumin excretion and histological injury. Marked increased apoptosis was also observed in the right kidneys of WT-DM + AC mice. In contrast, in TRPC6 KO mice with DM + AC, right kidneys exposed to the same levels of high BP and high glucose had lower albumin excretion and less glomerular damage and apoptotic cell injury compared with right kidneys of WT-DM + AC mice. Our results suggest that TRPC6 may contribute to the interaction of DM and HTN to promote kidney dysfunction and apoptotic cell injury.NEW & NOTEWORTHY A major new finding of this study is that the combination of moderate diabetes and hypertension promoted marked renal dysfunction, albuminuria, and apoptotic cell injury, and that these effects were greatly ameliorated by transient receptor potential cation channel 6 deficiency. These results suggest that transient receptor potential cation channel 6 may play an important role in contributing to the interaction of diabetes and hypertension to promote kidney injury.
Collapse
MESH Headings
- Albuminuria/metabolism
- Albuminuria/pathology
- Albuminuria/physiopathology
- Animals
- Apoptosis
- Blood Glucose/metabolism
- Blood Pressure
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Female
- Glomerular Filtration Rate
- Hypertension/complications
- Hypertension/metabolism
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Risk Factors
- TRPC6 Cation Channel/genetics
- TRPC6 Cation Channel/metabolism
- Mice
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yiling Fu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alan Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ana Carolina M Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jaylan Sears
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
28
|
GYARMATI GEORGINA, TOMA ILDIKÓ, IZUHARA AUDREY, BURFORD JAMESL, SHROFF URVINIKHIL, PAPADOURI STELLA, DEEPAK SACHIN, PETI-PETERDI JÁNOS. The role of TRPC6 calcium channels and P2 purinergic receptors in podocyte mechanical and metabolic sensing. Physiol Int 2021; 109:2021.00205. [PMID: 34978536 PMCID: PMC9200898 DOI: 10.1556/2060.2021.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.
Collapse
Affiliation(s)
- GEORGINA GYARMATI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - ILDIKÓ TOMA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - AUDREY IZUHARA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JAMES L. BURFORD
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - URVI NIKHIL SHROFF
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - STELLA PAPADOURI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - SACHIN DEEPAK
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JÁNOS PETI-PETERDI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
29
|
Lin B, Liu J, Zhang Y, Wu Y, Chen S, Bai Y, Liu Q, Qin X. Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy. BMC Genomics 2021; 22:852. [PMID: 34819020 PMCID: PMC8613922 DOI: 10.1186/s12864-021-08155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a cause of nephrotic syndrome that is increasing in incidence but has unclear pathogenesis. Urinary peptidomics is a promising technology for elucidating molecular mechanisms underlying diseases. Dysregulation of the proteolytic system is implicated in various diseases. Here, we aimed to conduct urinary peptidomics to identify IMN-related proteases. RESULTS Peptide fingerprints indicated differences in naturally produced urinary peptide components among 20 healthy individuals, 22 patients with IMN, and 15 patients with other kidney diseases. In total, 1,080 peptide-matched proteins were identified, 279 proteins differentially expressed in the urine of IMN patients were screened, and 32 proteases were predicted; 55 of the matched proteins were also differentially expressed in the kidney tissues of IMN patients, and these were mainly involved in the regulation of proteasome-, lysosome-, and actin cytoskeleton-related signaling pathways. The 32 predicted proteases showed abnormal expression in the glomeruli of IMN patients based on Gene Expression Omnibus databases. Western blot revealed abnormal expression of calpain, matrix metalloproteinase 14, and cathepsin S in kidney tissues of patients with IMN. CONCLUSIONS This work shown the calpain/matrix metalloproteinase/cathepsin axis might be dysregulated in IMN. Our study is the first to systematically explore the role of proteases in IMN by urinary peptidomics, which are expected to facilitate discovery of better biomarkers for IMN.
Collapse
Affiliation(s)
- Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yabin Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Shixiao Chen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Qiuying Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China.
| |
Collapse
|
30
|
Yang PL, Li XH, Wang J, Ma XF, Zhou BY, Jiao YF, Wang WH, Cao P, Zhu MX, Li PW, Xiao ZH, Li CZ, Guo CR, Lei YT, Yu Y. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. J Biol Chem 2021; 297:101125. [PMID: 34461094 PMCID: PMC8458982 DOI: 10.1016/j.jbc.2021.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.
Collapse
Affiliation(s)
- Pei-Lin Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue-Fei Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo-Ying Zhou
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Feng Jiao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pei-Wang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhi-Hong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Run Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yun-Tao Lei
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
31
|
Armelloni S, Mattinzoli D, Ikehata M, Alfieri C, Belingheri M, Moroni G, Cresseri D, Passerini P, Cerutti R, Messa P. Urinary mRNA Expression of Glomerular Podocyte Markers in Glomerular Disease and Renal Transplant. Diagnostics (Basel) 2021; 11:1499. [PMID: 34441433 PMCID: PMC8392587 DOI: 10.3390/diagnostics11081499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
The research of novel markers in urinary samples, for the description of renal damage, is of high interest, and several works demonstrated the value of urinary mRNA quantification for the search of events related to renal disease or affecting the outcome of transplant kidneys. In the present pilot study, a comparison of the urine mRNA expression of specific podocyte markers among patients who had undergone clinical indication to renal transplanted (RTx, n = 20) and native (N, n = 18) renal biopsy was performed. The aim of this work was to identify genes involved in podocytes signaling and cytoskeletal regulation (NPHS1, NPHS2, SYNPO, WT1, TRPC6, GRM1, and NEUROD) in respect to glomerular pathology. We considered some genes relevant for podocytes signaling and for the function of the glomerular filter applying an alternative normalization approach. Our results demonstrate the WT1 urinary mRNA increases in both groups and it is helpful for podocyte normalization. Furthermore, an increase in the expression of TRPC6 after all kinds of normalizations was observed. According to our data, WT1 normalization might be considered an alternative approach to correct the expression of urinary mRNA. In addition, our study underlines the importance of slit diaphragm proteins involved in calcium disequilibrium, such as TRPC6.
Collapse
Affiliation(s)
- Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.A.); (D.M.); (M.I.)
| | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Mirco Belingheri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Gabrilella Moroni
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Donata Cresseri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Patrizia Passerini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Roberta Cerutti
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| | - Piergiorgio Messa
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (G.M.); (D.C.); (P.P.); (R.C.)
| |
Collapse
|
32
|
Kim EY, Dryer SE. RAGE and αVβ3-integrin are essential for suPAR signaling in podocytes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166186. [PMID: 34166766 DOI: 10.1016/j.bbadis.2021.166186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in the pathogenesis of kidney diseases including primary and recurrent focal and segmental glomerulosclerosis (FSGS), diabetic nephropathy, and acute kidney injuries (AKI). Elevated serum suPAR concentration is a negative prognostic indicator in multiple critical clinical conditions. This study has examined the initial transduction steps used by suPAR in cultured mouse podocytes. We now report that the receptor for advanced glycation end-products (RAGE) co-immunoprecipitates with αV and β3 integrin subunits, which have been previously shown to initiate suPAR signal transduction at the podocyte cell surface. siRNA knock-down of RAGE attenuated Src phosphorylation evoked by either suPAR or by glycated albumin (AGE-BSA), a prototypical RAGE agonist. suPAR effects on Src phosphorylation were also blocked by the structurally dissimilar RAGE antagonists FPS-ZM1 and azeliragon, as well as by cilengitide, an inhibitor of outside-in signaling through αV-integrins. FPS-ZM1 also blocked Src phosphorylation evoked by AGE-BSA. FPS-ZM1 blocked increases in cell surface TRPC6 abundance, cytosolic reactive oxygen species (ROS) and activation of the small GTPase Rac1 evoked by either suPAR or AGE-BSA. In addition, FPS-ZM1 inhibited Src phosphorylation evoked by serum collected from a patient with recurrent FSGS during a relapse. The magnitude of this inhibition was indistinguishable from the effect produced by a neutralizing antibody against suPAR. These data suggest that orally bioavailable small molecule RAGE antagonists could represent a useful therapeutic strategy for a wide range of clinical conditions associated with elevated serum suPAR, including primary FSGS and AKI.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biomedical Sciences, University of Houston College of Medicine, Houston, TX 77204, USA.
| |
Collapse
|
33
|
Cytoskeleton Rearrangements Modulate TRPC6 Channel Activity in Podocytes. Int J Mol Sci 2021; 22:ijms22094396. [PMID: 33922367 PMCID: PMC8122765 DOI: 10.3390/ijms22094396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.
Collapse
|
34
|
Sabnis RW. Novel Pyridazinones as TRPC5 Inhibitors for Treating Kidney Diseases. ACS Med Chem Lett 2021; 12:526-527. [PMID: 33859787 PMCID: PMC8040034 DOI: 10.1021/acsmedchemlett.1c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell
& Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
35
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
36
|
Sabnis RW. Novel Benzimidazole Derivatives as Transient Receptor Potential Channel 6 (TRPC6) Inhibitors. ACS Med Chem Lett 2021; 12:314-315. [PMID: 33738049 DOI: 10.1021/acsmedchemlett.1c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
37
|
Abstract
TRPC3 is a Ca2+-permeable cation channel commonly activated by the G-protein coupled receptors (GPCR) and mechanical distortion of the plasma membrane. TRPC3-mediated Ca2+ influx has been implicated in a variety of signaling processes in both excitable and non-excitable cells. Kidneys play a commanding role in maintaining whole-body homeostasis and setting blood pressure. TRPC3 is expressed abundantly in the renal vasculature and in epithelial cells, where it is well positioned to mediate signaling and transport functions in response to GPCR-dependent endocrine stimuli. In addition, TRPC3 could be activated by mechanical forces resulting from dynamic changes in the renal tubule fluid flow and osmolarity. This review critically analyzes the available published evidence of the physiological roles of TRPC3 in different parts of the kidney and describes the pathophysiological ramifications of TRPC3 ablation. We also speculate how this evidence could be further translated into the clinic.
Collapse
Affiliation(s)
- Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
38
|
Chaudhari S, Mallet RT, Shotorbani PY, Tao Y, Ma R. Store-operated calcium entry: Pivotal roles in renal physiology and pathophysiology. Exp Biol Med (Maywood) 2020; 246:305-316. [PMID: 33249888 DOI: 10.1177/1535370220975207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Research conducted over the last two decades has dramatically advanced the understanding of store-operated calcium channels (SOCC) and their impact on renal function. Kidneys contain many types of cells, including those specialized for glomerular filtration (fenestrated capillary endothelium, podocytes), water and solute transport (tubular epithelium), and regulation of glomerular filtration and renal blood flow (vascular smooth muscle cells, mesangial cells). The highly integrated function of these myriad cells effects renal control of blood pressure, extracellular fluid volume and osmolality, electrolyte balance, and acid-base homeostasis. Many of these cells are regulated by Ca2+ signaling. Recent evidence demonstrates that SOCCs are major Ca2+ entry portals in several renal cell types. SOCC is activated by depletion of Ca2+ stores in the sarco/endoplasmic reticulum, which communicates with plasma membrane SOCC via the Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Orai1 is recognized as the main pore-forming subunit of SOCC in the plasma membrane. Orai proteins alone can form highly Ca2+ selective SOCC channels. Also, members of the Transient Receptor Potential Canonical (TRPC) channel family are proposed to form heteromeric complexes with Orai1 subunits, forming SOCC with low Ca2+ selectivity. Recently, Ca2+ entry through SOCC, known as store-operated Ca2+ entry (SOCE), was identified in glomerular mesangial cells, tubular epithelium, and renovascular smooth muscle cells. The physiological and pathological relevance and the characterization of SOCC complexes in those cells are still unclear. In this review, we summarize the current knowledge of SOCC and their roles in renal glomerular, tubular and vascular cells, including studies from our laboratory, emphasizing SOCE regulation of fibrotic protein deposition. Understanding the diverse roles of SOCE in different renal cell types is essential, as SOCC and its signaling pathways are emerging targets for treatment of SOCE-related diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
39
|
Golosova D, Palygin O, Bohovyk R, Klemens CA, Levchenko V, Spires DR, Isaeva E, El-Meanawy A, Staruschenko A. Role of opioid signaling in kidney damage during the development of salt-induced hypertension. Life Sci Alliance 2020; 3:3/12/e202000853. [PMID: 33046522 PMCID: PMC7556751 DOI: 10.26508/lsa.202000853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Stimulation of kappa opioid receptors modulates calcium influx via TRPC6 channels in podocytes, which ultimately compromises the integrity of the glomerular filtration barrier and promotes a marked worsening of blood pressure control and renal damage. Opioid use is associated with predictors of poor cardiorenal outcomes. However, little is known about the direct impact of opioids on podocytes and renal function, especially in the context of hypertension and CKD. We hypothesize that stimulation of opioid receptors (ORs) contributes to dysregulation of intracellular calcium ([Ca2+]i) homeostasis in podocytes, thus aggravating the development of renal damage in hypertensive conditions. Herein, freshly isolated glomeruli from Dahl salt-sensitive (SS) rats and human kidneys, as well as immortalized human podocytes, were used to elucidate the contribution of specific ORs to calcium influx. Stimulation of κ-ORs, but not μ-ORs or δ-ORs, evoked a [Ca2+]i transient in podocytes, potentially through the activation of TRPC6 channels. κ-OR agonist BRL52537 was used to assess the long-term effect in SS rats fed a high-salt diet. Hypertensive rats chronically treated with BRL52537 exhibited [Ca2+]i overload in podocytes, nephrinuria, albuminuria, changes in electrolyte balance, and augmented blood pressure. These data demonstrate that the κ-OR/TRPC6 signaling directly influences podocyte calcium handling, provoking the development of kidney injury in the opioid-treated hypertensive cohort.
Collapse
Affiliation(s)
- Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ruslan Bohovyk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashraf El-Meanawy
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
40
|
WEN W, YAO Q, CHEN Y, LI Z, SUN X, LI Y, ZHANG J, SIMAYI Z, XU X. [Correlation between transient receptor potential canonical channel with heart and kidney injure of rat model of obstructive sleep apnea hypopnea syndrome]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:439-446. [PMID: 32985156 PMCID: PMC8800798 DOI: 10.3785/j.issn.1008-9292.2020.04.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate the expression of transient receptor potential canonical channels (TRPCs) in the heart and kidney of rat model of obstructive sleep apnea hypopnea syndrome (OSAHS). METHODS Eighteen male SD rats were randomly assigned to intermittent hypoxia (IH) group (n=9 ) and control group (n=9). In IH group, rats were placed in a chamber and exposed to intermittent hypoxia for 8h (10AM-6PM) daily. The expression of TRPC-related mRNA and protein in the heart and kidney tissue were detected by qRT-PCR and Western blotting, respectively. RESULTS The mRNA expressions of TRPC3/TRPC4/TRPC5 in heart tissues of IH group were increased significantly compared with the control group (all P>0.05); while there were no significant differences in the mRNA expressions of TRPC1/TRPC3/TRPC4/TRPC5/TRPC6/TRPC7 in kidney tissue between two groups (all P<0.05). The mRNA expressions of TRPC4, TRPC5 and TRPC6 in kidney tissues of IH group were lower than that in heart tissues (all P<0.05). The mRNA expression of TRPC7 in kidney tissues of control group was significantly higher than that in heart tissues (P<0.05). The expression of TRPC5 protein in heart tissues of IH group was significantly higher than that in the control group (P<0.05); while there was no significant differences in the expression of TRPC5/TRPC6/TRPC7 protein in kidney tissue between two groups (all P>0.05). CONCLUSIONS The IH rat model shows that TRPC5 channel is likely to be involved in the OSAHS induced pathophysiological changes in the myocardium and may become a target to prevent OSAHS related cardiac damage.
Collapse
Affiliation(s)
| | | | - Yulan CHEN
- 陈玉岚(1972-), 女, 博士, 主任医师, 副教授, 硕士生导师, 主要从事高血压及相关疾病研究; E-mail:
;
https://orcid.org/0000-0001-6806-9897
| | | | | | | | | | | | | |
Collapse
|
41
|
Gu LF, Ge HT, Zhao L, Wang YJ, Zhang F, Tang HT, Cao ZY, Yu BY, Chai CZ. Huangkui Capsule Ameliorates Renal Fibrosis in a Unilateral Ureteral Obstruction Mouse Model Through TRPC6 Dependent Signaling Pathways. Front Pharmacol 2020; 11:996. [PMID: 32719603 PMCID: PMC7350529 DOI: 10.3389/fphar.2020.00996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is the final common pathological manifestation of almost all progressive chronic kidney diseases (CKD). Transient receptor potential canonical (TRPC) channels, especially TRPC3/6, were proposed to be essential therapeutic targets for kidney injury. Huangkui capsule (HKC), an important adjuvant therapy for CKD, showed superior efficacy for CKD at stages 1–2 in clinical practice. However, its anti-fibrotic effect and the underlying mechanisms remain to be investigated. In the present study, we evaluated the efficacy of HKC on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and explored the potential underlying mechanism. Administration of HKC by intragastric gavage dose-dependently suppressed UUO-induced kidney injury and tubulointerstitial fibrosis. Similarly, HKC suppressed the expression level of α-smooth muscle actin (α-SMA), increased the expression of E-cadherin, and suppressed the mRNA expression of a plethora of proinflammatory mediators that are necessary for the progression of renal fibrosis. Mechanistically, HKC suppressed both canonical and non-canonical TGF-β signaling pathways in UUO mice as well as the TRPC6/calcineurin A (CnA)/nuclear factor of activated T cells (NFAT) signaling axis. In addition, TRPC6 knockout mice and HKC treated wild type mice displayed comparable protection on UUO-triggered kidney tubulointerstitial injury, interstitial fibrosis, and α-SMA expression. More importantly, HKC had no additional protective effect on UUO-triggered kidney tubulointerstitial injury and interstitial fibrosis in TRPC6 knockout mouse. Further investigation demonstrated that HKC could directly suppress TRPC3/6 channel activities. Considered together, these data demonstrated that the protective effect of HKC on renal injury and interstitial fibrosis is dependent on TRPC6, possibly through direct inhibition of TRPC6 channel activity and indirect suppression of TRPC6 expression.
Collapse
Affiliation(s)
- Li-Fei Gu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Ge
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Lei Zhao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jing Wang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Tang
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Zheng-Yu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-Yang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Zhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
43
|
Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T, Li P. Role of Transient Receptor Potential Canonical Channel 6 (TRPC6) in Diabetic Kidney Disease by Regulating Podocyte Actin Cytoskeleton Rearrangement. J Diabetes Res 2020; 2020:6897390. [PMID: 31998809 PMCID: PMC6964719 DOI: 10.1155/2020/6897390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
Podocyte injury is an important pathogenesis step causing proteinuric kidney diseases such as diabetic kidney disease (DKD). Actin cytoskeleton rearrangement in podocyte induced by multiple pathogenic factors is believed to be the key process resulting in glomerular injury. Many studies have recently shown that transient receptor potential canonical channel 6 (TRPC6) in podocyte plays a critical role in the development and progression of proteinuric kidney disease by regulating its actin cytoskeleton rearrangement. This review is aimed at summarizing the role of TRPC6 on DKD by regulating the podocyte actin cytoskeleton rearrangement, thereby help further broaden our views and understanding on the mechanism of DKD and provide a theoretic basis for exploring new therapeutic targets for DKD patients.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Jialin Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
44
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
45
|
Hassanzadeh Khayyat N, Kim EY, Dryer SE. TRPC6 inactivation does not protect against diabetic kidney disease in streptozotocin (STZ)-treated Sprague-Dawley rats. FASEB Bioadv 2019; 1:773-782. [PMID: 32123821 PMCID: PMC6996301 DOI: 10.1096/fba.2019-00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the progression of several forms of kidney disease (1). While there is strong evidence that glomerular TRPC6 channels are dysregulated in diabetic nephropathy (DN), there is no consensus as to whether deletion or inactivation of TRPC6 is protective in animal models of DN. A previous study in Dahl salt-sensitive rats suggests that TRPC6 knockout has a modest protective effect in streptozotocin (STZ)-induced DN (2). In the present study, we examined whether inactivation of TRPC6 channels by CRISPR/Cas9 editing (Trpc6 del/del rats) affects progression of STZ-induced DN in Sprague-Dawley rats. Wild-type littermates (Trpc6 wt/wt rats) were used as controls. We observed that a single injection of STZ resulted in severe hyperglycemia that was sustained over a 10-week period, accompanied by a marked reduction in circulating C-peptide, dyslipidemia, and failure to gain weight compared to vehicle-treated animals. Those effects were equally severe in Trpc6 wt/wt and Trpc6 del/del rats. STZ treatment resulted in increased urine albumin excretion at 4, 8, and 10 weeks after injection, and this effect was equally severe in Trpc6 wt/wt and Trpc6 del/del rats. TRPC6 inactivation had no effect on blood urea nitrogen (BUN), plasma creatinine concentration, urine nephrin excretion, or kidney weight:body weight ratio measured 10 weeks after STZ injection. STZ treatment evoked modest and equivalent mesangial expansion in Trpc6 wt/wt and Trpc6 del/del rats. In summary, we observed no protective effect of TRPC6 inactivation on STZ-induced DN in rats on the Sprague-Dawley background.
Collapse
Affiliation(s)
| | - Eun Young Kim
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
| | - Stuart E. Dryer
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
- Department of Biomedical SciencesUniversity of Houston College of MedicineHoustonTXUSA
| |
Collapse
|
46
|
Pablo JL, Greka A. Charting a TRP to Novel Therapeutic Destinations for Kidney Diseases. Trends Pharmacol Sci 2019; 40:911-918. [PMID: 31704171 DOI: 10.1016/j.tips.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022]
Abstract
Ion channels are critical to kidney function, and their dysregulation leads to several distinct kidney diseases. Of the diversity of ion channels in kidney cells, the transient receptor potential (TRP) superfamily of proteins plays important and varied roles in both maintaining homeostasis as well as in causing disease. Recent work showed that TRPC5 blockers could successfully protect critical components of the kidney filter both in vitro and in vivo, thus revealing TRPC5 as a tractable therapeutic target for focal and segmental glomerulosclerosis (FSGS), a common cause of kidney failure. Human genetics point to three additional TRP channels as plausible therapeutic targets: TRPC6 in FSGS, PKD2 in polycystic kidney disease, and TRPM6 in familial hypomagnesemia with secondary hypocalcemia (HSH). We conclude that targeting TRP channels could pave the way for much needed therapies for kidney diseases.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis. PLoS One 2019; 14:e0222948. [PMID: 31581251 PMCID: PMC6776339 DOI: 10.1371/journal.pone.0222948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) accounts for about 40% of all nephrotic syndrome cases in adults. The presence of several potential circulating factors has been suggested in patients with primary FSGS and particularly in patients with recurrent disease after transplant. Irrespectively of the nature of the circulating factors, this study was aimed at identifying early glomerular/podocyte-specific pathways that are activated by the sera of patients affected by FSGS. Kidney biopsies were obtained from patients undergoing kidney transplantation due to primary FSGS. Donor kidneys were biopsied pre-reperfusion (PreR) and a subset 1–2 hours after reperfusion of the kidney (PostR). Thirty-one post reperfusion (PostR) and 36 PreR biopsy samples were analyzed by microarray and gene enrichment KEGG pathway analysis. Data were compared to those obtained from patients with incident primary FSGS enrolled in other cohorts as well as with another cohort to correct for pathways activated by ischemia reperfusion. Using an ex-vivo cell-based assay in which human podocytes were cultured in the presence of sera from patients with recurrent and non recurrent FSGS, the molecular signature of podocytes exposed to sera from patients with REC was compared to the one established from patients with NON REC. We demonstrate that inflammatory pathways, including the TNF pathway, are primarily activated immediately after exposure to the sera of patients with primary FSGS, while phagocytotic pathways are activated when proteinuria becomes clinically evident. The TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS supports prior experimental findings from our group demonstrating a causative role of local TNF in podocyte injury in FSGS. Correlation analysis with clinical and histological parameters of disease was performed and further supported a possible role for TNF pathway activation in FSGS. Additionally, we identified a unique set of genes that is specifically activated in podocytes when cultured in the presence of serum of patients with REC FSGS. This clinical translational study supports our prior experimental findings describing a potential role of the TNF pathway in the pathogenesis of FSGS. Validation of these findings in larger cohorts may lay the ground for the implementation of integrated system biology approaches to risk stratify patients affected by FSGS and to identify novel pathways relevant to podocyte injury.
Collapse
|
48
|
Cassis P, Zoja C, Perico L, Remuzzi G. A preclinical overview of emerging therapeutic targets for glomerular diseases. Expert Opin Ther Targets 2019; 23:593-606. [PMID: 31150308 DOI: 10.1080/14728222.2019.1626827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Animal models have provided significant insights into the mechanisms responsible for the development of glomerular lesions and proteinuria; they have also helped to identify molecules that control the podocyte function as suitable target-specific therapeutics. Areas covered: We discuss putative therapeutic targets for proteinuric glomerular diseases. An exhaustive search for eligible studies was performed in PubMed/MEDLINE. Most of the selected reports were published in the last decade, but we did not exclude older relevant milestone publications. We consider the molecules that regulate podocyte cytoskeletal dynamics and the transcription factors that regulate the expression of slit-diaphragm proteins. There is a focus on SGLT2 and sirtuins which have recently emerged as mediators of podocyte injury and repair. We also examine paracrine signallings involved in the cross-talk of injured podocytes with the neighbouring glomerular endothelial cells and parietal epithelial cells. Expert opinion: There is a need to discover novel therapeutic moleecules with renoprotective effects for those patients with glomerular diseases who do not respond completely to standard therapy. Emerging strategies targeting components of the podocyte cytoskeleton or signallings that regulate cellular communication within the glomerulus are promising avenues for treating glomerular diseases.
Collapse
Affiliation(s)
- Paola Cassis
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Carlamaria Zoja
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Luca Perico
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy
| | - Giuseppe Remuzzi
- a Department of Molecular Medicine , Istituto di Ricerche Farmacologiche Mario Negri IRCCS,Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso , Bergamo , Italy.,b 'L. Sacco' Department of Biomedical and Clinical Sciences , University of Milan , Milan , Italy
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The underlining goal of this review is to offer a concise, detailed look into current knowledge surrounding transient receptor potential canonical channel 6 (TRPC6) in the progression of diabetic kidney disease (DKD). RECENT FINDINGS Mutations and over-activation in TRPC6 channel activity lead to the development of glomeruli injury. Angiotensin II, reactive oxygen species, and other factors in the setting of DKD stimulate drastic increases in calcium influx through the TRPC6 channel, causing podocyte hypertrophy and foot process effacement. Loss of the podocytes further promote deterioration of the glomerular filtration barrier and play a major role in the development of both albuminuria and the renal injury in DKD. Recent genetic manipulation with TRPC6 channels in various rodent models provide additional knowledge about the role of TRPC6 in DKD and are reviewed here. The TRPC6 channel has a pronounced role in the progression of DKD, with deviations in activity yielding detrimental outcomes. The benefits of targeting TRPC6 or its upstream or downstream signaling pathways in DKD are prominent.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|