1
|
Osawa J, Karakawa M, Taniguchi A, Inui Y, Usuki C, Ishida A, Kameshita I, Sueyoshi N. Functional regulation of the protein phosphatase PPM1M by phosphorylation at multiple sites with Ser/Thr-Pro motifs. Arch Biochem Biophys 2024; 753:109887. [PMID: 38224862 DOI: 10.1016/j.abb.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The imbalance in the phosphorylation and the dephosphorylation of proteins leads to various diseases. Therefore, in vivo, the functions of protein kinases and protein phosphatases are strictly regulated. Mg2+/Mn2+-dependent protein phosphatase PPM1M has been implicated in immunity and cancer; however, the regulation mechanism remains unknown. In this study, we show that PPM1M is regulated in different ways by multiple phosphorylation. PPM1M has four Ser/Thr-Pro motifs (Ser27, Ser43, Ser60, and Thr254) that are recognized by proline-directed kinases, and Ser60 was found to be phosphorylated by cyclin-dependent kinase 5 (CDK5) in the cell. The phospho-mimetic mutation of Ser27 and Ser43 in the N-terminal domain suppresses the nuclear localization of PPM1M and promotes its accumulation in the cytoplasm. The phospho-mimetic mutation of Ser60 decreases PPM1M activity; conversely, the phospho-mimetic mutation of Thr254 increases PPM1M activity. These results suggest that the subcellular localization and phosphatase activity of PPM1M are regulated by protein kinases, including CDK5, via phosphorylation at multiple sites. Thus, PPM1M is differentially regulated by proline-directed kinases, including CDK5.
Collapse
Affiliation(s)
- Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Masataka Karakawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Aoi Taniguchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yuiko Inui
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Chika Usuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
2
|
Velasco HM, Ullah E, Martin AM, Hufnagel RB, Prada CE. Novel progressive acrodysostosis-like skeletal dysplasia, cerebellar atrophy, and ichthyosis. Am J Med Genet A 2020; 182:2214-2221. [PMID: 32783359 DOI: 10.1002/ajmg.a.61782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
Acrodysostosis refers to a rare heterogeneous group of bone dysplasias that share skeletal features, hormone resistance, and intellectual disability. Two genes have been associated with acrodysostosis with or without hormone resistance (PRKAR1A and PDE4D). Severe intellectual disability has been reported with acrodysostosis but brain malformations and ichthyosis have not been reported in these syndromes. Here we describe a female patient with acrodysostosis, intellectual disability, cerebellar hypoplasia, and lamellar ichthyosis. The patient has an evolving distinctive facial phenotype and childhood onset ataxia. X-rays showed generalized osteopenia, shortening of middle and distal phalanges, and abnormal distal epiphysis of the ulna and radius. Brain magnetic resonance imaging showed cerebellar atrophy without other brainstem abnormalities. Genetic workup included nondiagnostic chromosomal microarray and skeletal dysplasia molecular panels. These clinical findings are different from any recognized form of acrodysostosis syndrome. Whole exome sequencing did not identify rare or predicted pathogenic variants in genes associated with known acrodysostosis, lamellar ichthyosis, and other overlapping disorders. A broader search for rare alleles absent in healthy population databases and controls identified two heterozygous truncating alleles in FBNL7 and PPM1M genes, and one missense allele in the NPEPPS gene. Identification of additional patients is required to delineate the mechanism of this unique disorder.
Collapse
Affiliation(s)
- Harvy M Velasco
- Master of Science in Human Genetics Program, Department of Morphology, Universidad Nacional de Colombia, Cundinamarca, Colombia
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela M Martin
- Master of Science in Human Genetics Program, Department of Morphology, Universidad Nacional de Colombia, Cundinamarca, Colombia
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Fundación Cardiovascular de Colombia, Bucaramanga, Colombia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
4
|
Foster WH, Langenbacher A, Gao C, Chen J, Wang Y. Nuclear phosphatase PPM1G in cellular survival and neural development. Dev Dyn 2013; 242:1101-9. [PMID: 23723158 DOI: 10.1002/dvdy.23990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PPM1G is a nuclear localized serine/threonine phosphatase implicated to be a regulator of chromatin remodeling, mRNA splicing, and DNA damage. However, its in vivo function is unknown. RESULTS Here we show that ppm1g expression is highly enriched in the central nervous system during mouse and zebrafish development. ppm1g(-/-) mice were embryonic lethal with incomplete penetrance after E12.5. Rostral defects, including neural tube and craniofacial defects were observed in ppm1g(-/-) embryos associated with increased cell death in the neural epithelium. In zebrafish, loss of ppm1g also led to neural defects with aberrant neural marker gene expression. Primary fibroblasts from ppm1g(-/-) embryos failed to grow without immortalization while immortalized ppm1g(-/-) fibroblasts had increased cell death upon oxidative and genotoxic stress when compared to wild type fibroblasts. CONCLUSIONS Our in vivo and in vitro studies revealed a critical role for PPM1G in normal development and cell survival.
Collapse
Affiliation(s)
- William H Foster
- Molecular, Cellular and Integrated Physiology Program, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
5
|
Wynn RM, Li J, Brautigam CA, Chuang JL, Chuang DT. Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. J Biol Chem 2012; 287:9178-92. [PMID: 22291014 DOI: 10.1074/jbc.m111.314963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The branched-chain α-ketoacid dehydrogenase phosphatase (BDP) component of the human branched-chain α-ketoacid dehydrogenase complex (BCKDC) has been expressed in Escherichia coli and purified in the soluble form. The monomeric BDP shows a strict dependence on Mn(2+) ions for phosphatase activity, whereas Mg(2+) and Ca(2+) ions do not support catalysis. Metal binding constants for BDP, determined by competition isothermal titration calorimetry, are 2.4 nm and 10 μm for Mn(2+) and Mg(2+) ions, respectively. Using the phosphorylated decarboxylase component (p-E1b) of BCKDC as a substrate, BDP shows a specific activity of 68 nmol/min/mg. The Ca(2+)-independent binding of BDP to the 24-meric transacylase (dihydrolipoyl transacylase; E2b) core of BCKDC results in a 3-fold increase in the dephosphorylation rate of p-E1b. However, the lipoyl prosthetic group on E2b is not essential for BDP binding or E2b-stimulated phosphatase activity. Acidic residues in the C-terminal linker of the E2b lipoyl domain are essential for the interaction between BDP and E2b. The BDP structure was determined by x-ray crystallography to 2.4 Å resolution. The BDP structure is dominated by a central β-sandwich. There are two protrusions forming a narrow cleft ∼10 Å wide, which constitutes the active site. The carboxylate moieties of acidic residues Asp-109, Asp-207, Asp-298, and Asp-337 in the active-site cleft participate in binding two metal ions. Substitutions of these residues with alanine nullify BDP phosphatase activity. Alteration of the nearby Arg-104 increases the K(m) for p-E1b peptide by 60-fold, suggesting that this residue is critical for the recognition of the native p-E1b protein.
Collapse
Affiliation(s)
- R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038, USA.
| | | | | | | | | |
Collapse
|
6
|
Miyagi T, Kikuchi K, Tamura S. Shigeru Tsuiki: a pioneer in the research fields of complex carbohydrates and protein phosphatases. J Biochem 2011; 150:483-90. [PMID: 22039278 DOI: 10.1093/jb/mvr045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dr Tsuiki made three major contributions during his illustrious career as a biochemist. First, he developed the procedure for mucin isolation from bovine submaxillary glands. His work became the basis for mucin biochemistry. Second, he identified four distinct molecular species of mammalian sialidase. Subsequent studies based on his work led to the discovery that sialidase plays a unique role as an intracellular signalling factor involved in the regulation of a variety of cellular functions. Finally, he established the molecular basis for the diversity of mammalian protein phosphatases through protein purification and molecular cloning. His work prompted the functional studies of protein phosphatases.
Collapse
Affiliation(s)
- Taeko Miyagi
- Department of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
7
|
A mechanism for the suppression of interleukin-1-induced nuclear factor κB activation by protein phosphatase 2Cη-2. Biochem J 2009; 423:71-8. [DOI: 10.1042/bj20090208] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IL-1 (interleukin-1) is a pro-inflammatory cytokine that has a variety of effects during the process of inflammation. Stimulating cells with IL-1 initiates a signalling cascade that includes the activation of NF-κB (nuclear factor κB), and subsequently induces a variety of inflammatory genes. Although the molecular mechanism for the IL-1-induced activation of NF-κB has been well documented, much less is known about the mechanism by which protein phosphatases down-regulate this pathway. Here we show that mouse PP2Cη-2 (protein serine/threonine phosphatase 2Cη-2), a novel member of the protein serine/threonine phosphatase 2C family, inhibits the IL-1–NF-κB signalling pathway. Ectopic expression of PP2Cη-2 in human embryonic kidney HEK293IL-1RI cells inhibited the IL-1-induced activation of NF-κB. TAK1 (transforming-growth-factor-β-activated kinase 1) mediates the IL-1 signalling pathway to NF-κB, and we observed that the TAK1-induced activation of NF-κB was suppressed by PP2Cη-2 expression. Expression of IKKβ [IκB (inhibitory κB) kinase β], which lies downstream of TAK1, activates NF-κB, and this activation was also readily reversed by PP2Cη-2 co-expression. Additionally, PP2Cη-2 knockdown with small interfering RNA further stimulated the IL-1-enhanced phosphorylation of IKKβ and destabilization of IκBα in HeLa cells. PP2Cη-2 knockdown also increased the IL-1-induced expression of IL-6 mRNA. Furthermore, IKKβ was readily dephosphorylated by PP2Cη-2 in vitro. These results suggest that PP2Cη-2 inhibits the IL-1–NF-κB signalling pathway by selectively dephosphorylating IKKβ.
Collapse
|
8
|
Sugiura T, Noguchi Y. Substrate-dependent metal preference of PPM1H, a cancer-associated protein phosphatase 2C: comparison with other family members. Biometals 2009; 22:469-77. [PMID: 19262998 DOI: 10.1007/s10534-009-9204-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/01/2009] [Indexed: 01/07/2023]
Abstract
Protein phosphatase 2C (PP2C) family is characterized by requirement of metal cation for phosphatase activity. We previously established that PPM1H is a cancer-associated member of the PP2C family. Here we further characterized the phosphatase activity of PPM1H, focusing on its dependence on metal cation. PPM1H possesses the potential to dephosphorylate p-nitrophenyl phosphate (pNPP), casein and phosphopeptides. Interestingly, PPM1H shows the metal preference that is varied depending on the substrate (substrate-dependent metal preference); PPM1H prefers Mn(2+) when pNPP or phosphopeptides is used as a substrate. Meanwhile, a preference for Mg(2+) is displayed by PPM1H with casein as a substrate. When both cations are added to the reaction, the degree of the effect is always closer to that with Mn(2+) alone, irrespective of the substrate. This preponderance of Mn(2+) is explained by its greater affinity for PPM1H than Mg(2+). From the literature the substrate-dependent metal preference appears to be shared by other PP2Cs. According to the crystal structure, a binuclear metal center of PP2C plays an important role for coordinating the substrate and nucleophilic waters in the active site. Therefore, the differences in the size, preferred geometry and coordination requirements between two metals, in relation to the substrate, may be responsible for this intriguing property.
Collapse
Affiliation(s)
- Takeyuki Sugiura
- Discovery Research Laboratory, Tokyo R&D Center, Daiichi Pharmaceutical Co., Ltd., Daiichi-Sankyo Group, Tokyo, Japan.
| | | |
Collapse
|
9
|
Awano K, Amano K, Nagaura Y, Kanno SI, Echigo S, Tamura S, Kobayashi T. Phosphorylation of Protein Phosphatase 2Cζ by c-Jun NH2-Terminal Kinase at Ser92 Attenuates Its Phosphatase Activity. Biochemistry 2008; 47:7248-55. [DOI: 10.1021/bi800067p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenjiro Awano
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazutaka Amano
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuko Nagaura
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shin-ichiro Kanno
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Seishi Echigo
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinri Tamura
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takayasu Kobayashi
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
10
|
Lammers T, Lavi S. Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol 2008; 42:437-61. [PMID: 18066953 DOI: 10.1080/10409230701693342] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of interesting features, phenotypes, and potential clinical applications have recently been ascribed to the type 2C family of protein phosphatases. Thus far, 16 different PP2C genes have been identified in the human genome, encoding (by means of alternative splicing) for at least 22 different isozymes. Virtually ever since their discovery, type 2C phosphatases have been predominantly linked to cell growth and to cellular stress signaling. Here, we provide an overview of the involvement of type 2C phosphatases in these two processes, and we show that four of them (PP2Calpha, PP2Cbeta, ILKAP, and PHLPP) can be expected to function as tumor suppressor proteins, and one as an oncoprotein (PP2Cdelta /Wip1). In addition, we demonstrate that in virtually all cases in which they have been linked to the stress response, PP2Cs act as inhibitors of cellular stress signaling. Based on the vast amount of experimental evidence obtained thus far, it therefore seems justified to conclude that type 2C protein phosphatases are important physiological regulators of cell growth and of cellular stress signaling.
Collapse
Affiliation(s)
- Twan Lammers
- Department of Innovative Cancer Diagnosis and Therapy, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
11
|
Saito JI, Toriumi S, Awano K, Ichijo H, Sasaki K, Kobayashi T, Tamura S. Regulation of apoptosis signal-regulating kinase 1 by protein phosphatase 2Cepsilon. Biochem J 2007; 405:591-6. [PMID: 17456047 PMCID: PMC2267319 DOI: 10.1042/bj20070231] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.
Collapse
Affiliation(s)
- Jun-ichi Saito
- *Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- †Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinnosuke Toriumi
- *Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- ‡Division of Periodontology and Endodontology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Kenjiro Awano
- *Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- §Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidenori Ichijo
- ∥Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Keiichi Sasaki
- †Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Takayasu Kobayashi
- *Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinri Tamura
- *Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Moorhead GBG, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 2007; 8:234-44. [PMID: 17318227 DOI: 10.1038/nrm2126] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phosphorylation state of any protein represents a balance of the actions of specific protein kinases and protein phosphatases. Many protein phosphatases are highly enriched in, or exclusive to, the nuclear compartment, where they dephosphorylate key substrates to regulate various nuclear processes. In this review we will discuss recent findings that define the role of nuclear protein phosphatases in controlling transforming growth factor-beta (TGFbeta) and bone-morphogenetic protein (BMP) signalling, the DNA-damage response, RNA processing, cell-cycle progression and gene transcription.
Collapse
Affiliation(s)
- Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary Alberta, Canada T2N 1N4.
| | | | | |
Collapse
|
13
|
Joshi M, Jeoung NH, Popov KM, Harris RA. Identification of a novel PP2C-type mitochondrial phosphatase. Biochem Biophys Res Commun 2007; 356:38-44. [PMID: 17336929 PMCID: PMC1876681 DOI: 10.1016/j.bbrc.2007.02.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/14/2007] [Indexed: 12/18/2022]
Abstract
A novel phosphatase has been cloned and partially characterized. It has a mitochondrial leader sequence and its amino acid sequence places it in the PP2C family like two known mitochondrial phosphatases. Western blot analysis of subcellular fractions and confocal microscopy of 3T3L1 preadipocytes expressing the GFP-tagged protein confirm its mitochondrial localization. Western blot analysis indicates that the protein is expressed in several mouse tissues, with highest expression in brain, heart, liver, and kidney. The recombinant protein exhibits Mn(2+)-dependent phosphoserine phosphatase activity against the branched-chain alpha-keto acid dehydrogenase complex, suggesting the enzyme may play a role in regulation of branched chain amino acid catabolism. Whether there are other mitochondrial substrates for the enzyme is not known.
Collapse
Affiliation(s)
- Mandar Joshi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | - Nam Ho Jeoung
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | - Kirill M. Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-1150, USA
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
- * Corresponding author: Robert A. Harris, Ph.D., Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1345 W 16 Street, Indianapolis, IN 46202-5122 USA, TEL: +1 317 274 1586.,FAX: +1 317 278 9739., E-mail address:
| |
Collapse
|
14
|
Stern A, Privman E, Rasis M, Lavi S, Pupko T. Evolution of the Metazoan Protein Phosphatase 2C Superfamily. J Mol Evol 2006; 64:61-70. [PMID: 17160364 DOI: 10.1007/s00239-006-0033-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 10/04/2006] [Indexed: 01/22/2023]
Abstract
Members of the protein phosphatase 2C (PP2C) superfamily are Mg(2+)/Mn(2+)-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family.
Collapse
Affiliation(s)
- Adi Stern
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
15
|
Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. EUKARYOTIC CELL 2006; 6:73-83. [PMID: 17085638 PMCID: PMC1800361 DOI: 10.1128/ec.00309-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.
Collapse
Affiliation(s)
- Luke A Gilbert
- Department of Microbiology, Immunology and Molecular Genetics, University of California--Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
16
|
Schwarz S, Hufnagel B, Dworak M, Klumpp S, Krieglstein J. Protein phosphatase type 2Calpha and 2Cbeta are involved in fatty acid-induced apoptosis of neuronal and endothelial cells. Apoptosis 2006; 11:1111-9. [PMID: 16699958 DOI: 10.1007/s10495-006-6982-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Unsaturated fatty acids with special structural features have been shown to activate serine/threonine protein phosphatase type 2C (PP2C) isoforms alpha and beta at physiological Mg(2+)-concentrations in vitro. These compounds also induce apoptosis in neuronal and endothelial cells. In this study we further analysed this striking correlation and tried to elucidate whether or not there is a causative relationship between activation of PP2C and induction of apoptosis. We employed RNA interference to simultaneously knock down PP2Calpha and PP2Cbeta in SH-SY5Y cells or HUVECs, respectively. This downregulation was transient. Treatment of SH-SY5Y cells or HUVECs with oleic acid (18:1,cis-Delta(9)) caused apoptosis in a time- and concentration-dependent manner. In both cases, cells with reduced PP2C-levels were less susceptible to oleic acid-induced cell damage. In conclusion, our results demonstrate that PP2C activation by unsaturated fatty acids actually causes apoptosis in neuronal and endothelial cells.
Collapse
Affiliation(s)
- Stephanie Schwarz
- Institut für Pharmakologie und Toxikologie, Philipps-Universität, Ketzerbach 63, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Tamura S, Toriumi S, Saito JI, Awano K, Kudo TA, Kobayashi T. PP2C family members play key roles in regulation of cell survival and apoptosis. Cancer Sci 2006; 97:563-7. [PMID: 16827794 PMCID: PMC11159723 DOI: 10.1111/j.1349-7006.2006.00219.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although unlimited proliferation of cancer cells is supported by multiple signaling pathways involved in the regulation of proliferation, survival, and apoptosis, the molecular mechanisms coordinating these different pathways to promote the proliferation and survival of cancer cells have remained unclear. SAPK and integrin-ILK signaling pathways play key roles in the promotion of apoptosis and cell proliferation/survival, respectively. Studies of TNFalpha- and H2O2-induced apoptosis revealed that ASK1, a component of the SAPK system, mediates the TNFalpha and H2O2 signaling of apoptosis. ASK1 is activated by autophosphorylation of a specific threonine residue (T845) following TNFalpha stimulation. Our recent studies indicate that PP2Cepsilon, a member of the PP2C family, associates with and inactivates ASK1 by dephosphorylating T845. In contrast, PP2Cdelta/ILKAP, a second PP2C family member, activates ASK1 by enhancing cellular phosphorylation of T845. PP2Cdelta/ILKAP also forms a complex with ILK1 to inhibit the GSK3beta-mediated integrin-ILK1 signaling in vivo, inhibiting cell cycle progression. These observations raise the possibility that PP2Cdelta/ILKAP acts to control the cross-talk between integrin-induced and TNFalpha-induced signaling pathways, inhibiting the former and stimulating the latter, thereby inhibiting proliferation and survival and promoting the apoptosis of cancer cells.
Collapse
Affiliation(s)
- Shinri Tamura
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|