1
|
Moon S, Derakhshani B, Gho YS, Kim EJ, Lee SK, Jiang X, Lee C, Jung KH. PRX102 Participates in Root Hairs Tip Growth of Rice. RICE (NEW YORK, N.Y.) 2023; 16:51. [PMID: 37971600 PMCID: PMC10654324 DOI: 10.1186/s12284-023-00668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cytoplasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs and regulating reactive oxygen species homeostasis. RNA-seq analysis using prx102 root hairs revealed that 87 genes including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase as a player in the delivery of substances to the tips of growing root hairs.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Behnam Derakhshani
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yun Shil Gho
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Su Kyoung Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Choonseok Lee
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
2
|
Hanlon MT, Vejchasarn P, Fonta JE, Schneider HM, McCouch SR, Brown KM. Genome wide association analysis of root hair traits in rice reveals novel genomic regions controlling epidermal cell differentiation. BMC PLANT BIOLOGY 2023; 23:6. [PMID: 36597029 PMCID: PMC9811729 DOI: 10.1186/s12870-022-04026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus, indica, temperate japonica, and tropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets. RESULTS We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice and Arabidopsis. CONCLUSIONS Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.
Collapse
Affiliation(s)
- Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Phanchita Vejchasarn
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Rice Department, Ministry of Agriculture, Ubon Ratchathani Rice Research Center, Ubon Ratchathani, 34000, Thailand
| | - Jenna E Fonta
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, the Netherlands
| | - Susan R McCouch
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY, 14853-1901, USA
- Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
4
|
Liao W, Li S, Lu C, Peng M. Tau GSTs involved in regulation of leaf abscission by comparison the gene profiling of MeGSTs in various abscission-promoting treatments in cassava abscission zones. BMC Genet 2018; 19:45. [PMID: 30005656 PMCID: PMC6043963 DOI: 10.1186/s12863-018-0627-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/13/2018] [Indexed: 01/04/2023] Open
Abstract
Background Glutathione S-transferases (GSTs) have been reported to regulate the plant tolerance to environmental stresses. Many plant GSTs exhibited the roles on promoting tolerance to drought stress, oxidative stress and plant hormones. The biological function of GSTs has been well characterized in Arabidopsis thaliana in response to exogenous environmental stresses. However, their regulation function under exogenous environmental stresses regulating leaf abscission in cassava (Manihot esculenta Crantz) remained unknown. Results Here, 83 GSTs were identified from tropical plant cassava. The amino acid motifs and phylogenetic analyses indicated that MeGSTs were divided into 9 classes. The global expression analyses were carried out to analyze the gene expression patterns of MeGST in cassava abscission zones by comparing the MeGST genes expression patterns in both ethylene and drought induced cassava leaf abscission. Totally, 34 GSTs were detected to express in both ethylene and drought induced leaf abscission in cassava abscission zones. Comparison of GST expression profiling between ethylene and drought induced leaf abscission suggested that Tau GST genes showed with the similar expression in both treatments induced leaf abscission in cassava abscission zone. GO annotation indicated that all 17 Tau GST genes participated in the pathway of toxin catabolism (GO: 0009407). The expression levels of 17 Tau MeGST genes were analyzed in two cassava cultivars, ‘SC124’ and ‘Arg7’, the two cultivars exhibit different levels of leaf abscission when suffered from the same environmental stress. Higher expression levels of Tau MeGSTs were detected in the precocious abscission Arg7 cultivar, while lower expression levels in delayed abscission SC124 cultivar. All the results indicated that Tau MeGSTs have the function in regulation the cassava leaf abscission under environmental stresses. Conclusion Analysis of the expression patterns of GSTs in various abscission-promoting treatments in cassava abscission zones helps us to understand the possible roles of GSTs in cassava leaf abscission. Electronic supplementary material The online version of this article (10.1186/s12863-018-0627-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101.
| | - Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101
| | - Cheng Lu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, ITBB, CATAS, Xueyuan Rd No 4, Haikou City, Hainan Province, People's Republic of China, 571101.
| |
Collapse
|
5
|
Li D, Xu L, Pang S, Liu Z, Zhao W, Wang C. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1847-1853. [PMID: 28221787 DOI: 10.1021/acs.jafc.7b00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Science, China Agricultural University , No. 2 of Yuan Ming Yuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Li Xu
- College of Science, China Agricultural University , No. 2 of Yuan Ming Yuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Sen Pang
- College of Science, China Agricultural University , No. 2 of Yuan Ming Yuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhiqian Liu
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBioscience, La Trobe University , 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Weisong Zhao
- College of Science, China Agricultural University , No. 2 of Yuan Ming Yuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Chengju Wang
- College of Science, China Agricultural University , No. 2 of Yuan Ming Yuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
6
|
Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep 2016; 6:36867. [PMID: 27845361 PMCID: PMC5109278 DOI: 10.1038/srep36867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
The involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione. Microarray experiment revealed the differential regulation of about 2313 and 4131 transcripts in ein2 (ethylene insensitive mutant) and aba1.6 (abscisic acid mutant) respectively. Functional analysis exposed common down-regulated stress and defence, secondary metabolite biosynthesis viz. phenylpropanoid, lignin and flavonols, redox and transcription factors related genes in ein2, aba1.6 and pad2.1 (glutathione mutant) in response to combined stress treatment. The reduced glutathione content was less in stress treated mutants in comparison to Col-0. Again, selective down-regulated transcripts in stress treated mutants were noted up-regulated after glutathione feeding. Some of the important differentially expressed genes were also validated by comparative proteomics analysis of stress treated mutants. In summary, our results suggested the role of ethylene and abscisic acid in inducing stress-responsive genes and proteins by activating glutathione biosynthesis to combat abiotic stress conditions in plant system.
Collapse
|
7
|
Abstract
The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not "glutathione transferase" activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies.
Collapse
Affiliation(s)
- David P. Dixon
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Robert Edwards
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Address correspondence to
| |
Collapse
|
8
|
Halusková L, Valentovicová K, Huttová J, Mistrík I, Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1069-74. [PMID: 19733091 DOI: 10.1016/j.plaphy.2009.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/08/2009] [Accepted: 08/14/2009] [Indexed: 05/21/2023]
Abstract
In the present work we investigated the activity of glutathione S-transferase (GST) and glutathione peroxidase (GPX) in barley root tip and their relation to root growth inhibition induced by different abiotic stresses. Cadmium-induced root growth inhibition is strongly correlated with increased GST and GPX activity. Similarly, strong induction of GPX and GST activity was observed in Hg-treated root tips, where also the highest root growth inhibition was detected. Relationship between increased GST activity and root growth inhibition was also observed during other heavy metal treatments. On the other hand, only a slight increase of GPX activity was observed after application of Pb, Ni, and Zn, while Co did not affect GPX activity. Similarly to Hg and Cd, Cu treatment caused a strong increase in GPX activity. GPX activity in barley root tips was not affected by cold, heat or drought treatment and only a slight increase was observed after salt or H(2)O(2) treatment. Apart from salt treatment, only a weak increase in GST activity was observed during heat, drought and H(2)O(2) stresses, while during cold treatment its activity slightly decreased. Some detected differences in the spatial distribution of GST and GPX activity along the root tip suggests that at least two proteins are responsible for these activities. These proteins play a crucial role not only during stresses, but also in unstressed seedlings in the differentiation processes of root tip. The application of different inhibitors suggests that the main proportion of these activities detected in barley root tip are probably catalysed by GSTs possessing also GPX activity.
Collapse
Affiliation(s)
- L'ubica Halusková
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-84523 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
9
|
Couldridge C, Newbury HJ, Ford-Lloyd B, Bale J, Pritchard J. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression. BULLETIN OF ENTOMOLOGICAL RESEARCH 2007; 97:523-32. [PMID: 17916270 DOI: 10.1017/s0007485307005160] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this study was to determine which Arabidopsis thaliana (L.) genes had significantly altered expression following 2-36 h of infestation by the aphid Myzus persicae (Sulzer). Six biological replicates were performed for both control and treatment at each time point, allowing rigorous statistical analysis of any changes. Only two genes showed altered expression after 2 h (one up- and one down-regulated) while two were down-regulated and twenty three were up-regulated at 36 h. The transcript annotation allowed classification of the significantly altered genes into a number of classes, including those involved in cell wall modification, carbon metabolism and signalling. Additionally, a number of genes were implicated in oxidative stress and defence against other pathogens. Five genes could not currently be assigned any function. The changes in gene expression are discussed in relation to current models of plant-insect interactions.
Collapse
Affiliation(s)
- C Couldridge
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
10
|
Basantani M, Srivastava A. Plant glutathione transferases — a decade falls short. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glutathione transferase (GST) superfamily in plants has been subdivided into eight classes, seven of which (phi, tau, zeta, theta, lambda, dehydroascorbate reductase, and tetrachlorohydroquinone dehalogenase) are soluble and one is microsomal. Since their identification in plants in 1970, these enzymes have been well established as phase II detoxification enzymes that perform several other essential functions in plant growth and development. These enzymes catalyze nucleophilic conjugation of the reduced form of the tripeptide glutathione to a wide variety of hydrophobic, electrophilic, and usually cytotoxic substrates. In plants, the conjugated product is either sequestered in the vacuole or transferred to the apoplast. The GSTs of phi and tau classes, which are plant-specific and the most abundant, are chiefly involved in xenobiotic metabolism. Zeta- and theta-class GSTs have very restricted activities towards xenobiotics. Theta-class GSTs are glutathione peroxidases and are involved in oxidative-stress metabolism, whereas zeta-class GSTs act as glutathione-dependent isomerases and catalyze the glutathione-dependent conversion of maleylacetoacetate to fumarylacetoacetate. Zeta-class GSTs participate in tyrosine catabolism. Dehydroascorbate reductase- and lambda-class GSTs function as thioltransferases. Microsomal-class GSTs are members of the MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) superfamily. A plethora of studies utilizing both proteomics and genomics approaches have greatly helped in revealing the functional diversity exhibited by these enzymes. The three-dimensional structure of some of the members of the family has been described and this has helped in elucidating the mechanism of action and active-site amino-acid residues of these enzymes. Although a large amount of information is available on this complex enzyme superfamily, more research is necessary to answer additional questions such as, why are phi- and tau-class GSTs more abundant than GSTs from other classes? What functions do phi- and tau-class GSTs perform in plant taxa other than angiosperms? Do more GST classes exist? Future studies on GSTs should focus on these aspects.
Collapse
Affiliation(s)
- Mahesh Basantani
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Lucknow University, Lucknow, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Lucknow University, Lucknow, India
| |
Collapse
|
11
|
Lee JM, Kim S, Lee JY, Yoo EY, Cho MC, Cho MR, Kim BD, Bahk YY. A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Proteomics 2006; 6:5248-59. [PMID: 16947123 DOI: 10.1002/pmic.200600326] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using proteomic analysis including 2-DE, image analysis, and protein identification with LC-MS/MS, an investigation aimed at a better understanding of the differentially expressed proteins and/or gene products was carried out with total cell extracts from placental tissues in nonpungent (Capsicum annuum cv. Saeng-Ryeog #213) and pungent peppers (C. annuum cv. Saeng-Ryeog #211). Mobilization of the most abundant proteins, which were on the gels of pH ranges of 4-7, 4.5-5.5, 5.5-6.7, and 6-9, and showed very similar profiles in the two tissues, revealing approximately 2600 protein spots consisting of 1200 on pH 4-7, 600 on 4.5-5.5, 550 on 5.5-6.7, 250 on 6-9. Of these, 37 protein spots, which appeared in only pungent tissues but not in nonpungent tissues or markedly increased in their staining intensities on the gels from pungent tissue, were selected, excised, in-gel trypsin digested, and analyzed by LC-ESI-MS/MS. Peptide MS/MS data were searched against publicly available protein and EST databases, and 22 proteins were identified. Based on this result, we tested and compared the differential expression during fruit development on the 2-DE gels with total cell extracts from placental tissues of pungent and nonpungent peppers at an interval of 10 days from 10 to 40 days after flowering. In addition, this differential protein expression was further confirmed for some subsets of candidates by Northern-blot analysis with RNA samples from placental tissues harvested from each pepper fruit at the same sampling intervals. In this study, the physiological implications, revealed from the experimental data in the levels of proteome and transcripts, are discussed in the context of a complex biosynthesis network of capsaicinoids in pepper cells responsive to pungency.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. PLANT PHYSIOLOGY 2006; 140:349-64. [PMID: 16377752 PMCID: PMC1326056 DOI: 10.1104/pp.105.067868] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities.
Collapse
Affiliation(s)
- Céline Sorin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gong H, Jiao Y, Hu WW, Pua EC. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. PLANT MOLECULAR BIOLOGY 2005; 57:53-66. [PMID: 15821868 DOI: 10.1007/s11103-004-4516-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 10/07/2004] [Indexed: 05/06/2023]
Abstract
The enzymes glutathione-S-transferases (GSTs, E.C.2.5.1.18) have been associated with detoxification of xenobiotics, limiting oxidative damage and other stress responses in plants. In this study, we report the isolation of a mustard gene, BjGSTF2, homologous to the phi class GSTs and changes in plant growth in vivo and shoot regeneration in vitro were related to GST expression. GST transcripts accumulated differentially in mustard organs, where transcript was most abundant in root. Tissues incubated at high temperature or in the presence of exogenous H2O2, HgCl2, 1-aminocyclopropane-1-carboxylate, salicylic acid and paraquat upregulated GST expression, whereas spermidine was inhibitory. To investigate the in vivo function of GST, transgenic Arabidopsis thalianaplants expressing sense (GST-S6), antisense (GST-A4) and double-stranded BjGSTF2 (GST-DS1) RNAs were generated. GST-S6 was shown to flower two days earlier and was relatively more tolerant to HgCl2 and paraquat, whereas GST-DS1 with least stress tolerance flowered one week later compared to WT and GST-A4. In shoot regeneration response, tissues originated from GST-S6 were highly regenerative, whereas no shoot regeneration was observed in GST-DS1 tissues after 30 days of culture. Results of this study provide the evidence showing that GST plays a role in plant growth and development in vivo and shoot regeneration in vitro.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Ethylenes/biosynthesis
- Flowers/enzymology
- Flowers/genetics
- Flowers/growth & development
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Glutathione Transferase/genetics
- Glutathione Transferase/physiology
- Hydrogen Peroxide/pharmacology
- Molecular Sequence Data
- Morphogenesis
- Mustard Plant/enzymology
- Mustard Plant/genetics
- Mustard Plant/growth & development
- Plant Development
- Plant Shoots/enzymology
- Plant Shoots/genetics
- Plant Shoots/growth & development
- Plants/enzymology
- Plants/genetics
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Salicylic Acid/pharmacology
- Sequence Analysis, DNA
- Temperature
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Haibiao Gong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore
| | | | | | | |
Collapse
|
14
|
Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:359-66. [PMID: 17134397 DOI: 10.1111/j.1467-7652.2004.00085.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nitric oxide (NO) is emerging as an important signalling molecule with diverse physiological functions in plants. In the current study, changes in gene expression in response to 0.1 mm and 1.0 mm sodium nitroprusside (SNP), a donor of NO, were studied in Arabidopsis using the whole genome ATH1 microarray, representing over 24,000 genes. We observed 342 up-regulated and 80 down-regulated genes in response to NO treatments. These included 126 novel genes with unknown functions. Most of these changes were specific to NO treatment, as we observed a reverse trend when the plants were treated with NO scavenger, 2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (c-PTIO). Hierarchical clustering revealed 162 genes showing a dose-dependent increase in signal from 0.1 mm SNP to 1.0 mm SNP treatment. We observed the up-regulation of several genes encoding disease-resistance proteins, WRKY proteins, transcription factors, zinc finger proteins, glutathione S-transferases, ABC transporters, kinases and biosynthetic genes of ethylene, jasmonic acid, lignin and alkaloids. This report provides an insight into the molecular basis for the seemingly diverse biological functions of NO in plants. Interestingly, about 2.0% of the genes in Arabidopsis responded to NO treatment, about 10% of which were transcription factors. NO may also influence the plant's signal transduction network as indicated by the transcriptional activation of several protein kinases, including a mitogen-activated protein (MAP) kinase. We identified many genes previously not shown to be associated with NO responses in plants, and this is the first report of NO responsive genes based on a whole genome microarray.
Collapse
Affiliation(s)
- Madasamy Parani
- Plant Science Research Center, University of Toledo, Mail Stop 604, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|