1
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
3
|
Rogers SL, Rankin-Gee E, Risbud RM, Porter BE, Marsh ED. Normal Development of the Perineuronal Net in Humans; In Patients with and without Epilepsy. Neuroscience 2018; 384:350-360. [PMID: 29885523 DOI: 10.1016/j.neuroscience.2018.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023]
Abstract
The perineuronal net (PN), a highly organized extracellular matrix structure, is believed to play an important role in synaptic function, including maturation and stabilization. In addition to its role in restricting plasticity, alterations in the PN are implicated in disorders such as epilepsy and schizophrenia. However, the time course of PN development is not known in humans. Therefore we set out to document the developmental timeline of the PN formation in humans in 14 frontal and hippocampal specimens from donors aged 27 days to 31 years old. Using immunohistochemistry and western blotting, we demonstrate that the PN begins to form as early as the second month of life but does not reach its robust, mature appearance until around 8 years of age, though aggrecan cleavage products are observed prior to this. A similar developmental time course was observed in specimens from epilepsy patients. Our data suggest that aggrecan is present early in development but the structured PN develops throughout early childhood, similar to what has been observed in rodents. This timeline provides information for future pathological studies on the role of the PN in disease and an additional parallel between human and rodent development.
Collapse
Affiliation(s)
- Stephanie L Rogers
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elyse Rankin-Gee
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305, United States
| | - Rashmi M Risbud
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305, United States
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Farrugia BL, Lord MS, Whitelock JM, Melrose J. Harnessing chondroitin sulphate in composite scaffolds to direct progenitor and stem cell function for tissue repair. Biomater Sci 2018; 6:947-957. [DOI: 10.1039/c7bm01158j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review details the inclusion of chondroitin sulphate in bioscaffolds for superior functional properties in tissue regenerative applications.
Collapse
Affiliation(s)
- B. L. Farrugia
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - M. S. Lord
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. M. Whitelock
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. Melrose
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
- Raymond Purves Bone and Joint Research Laboratory
- Kolling Institute Northern Sydney Local Health District
| |
Collapse
|
5
|
Santoro A, Conde J, Scotece M, Abella V, Lois A, Lopez V, Pino J, Gomez R, Gomez-Reino JJ, Gualillo O. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways. PLoS One 2015; 10:e0135979. [PMID: 26305372 PMCID: PMC4549255 DOI: 10.1371/journal.pone.0135979] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/28/2015] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs) in chondrocytes, contributing thus to the extracellular matrix (ECM) degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2), under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored. METHODS SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis. RESULTS Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1. CONCLUSIONS Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.
Collapse
Affiliation(s)
- Anna Santoro
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- University of Naples Federico II, Dept. of Pharmacy, 80138, Naples, Italy
| | - Javier Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Vanessa Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- Department of Molecular and Cellular Biology, University of Coruña (UDC), A Coruña, Spain
| | - Ana Lois
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Veronica Lopez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude), Division of Orthopaedics Surgery and Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gomez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan J. Gomez-Reino
- University of Santiago de Compostela, Department of Medicine and SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
6
|
Proteoglycans of reactive rat cortical astrocyte cultures: abundance of N-unsubstituted glucosamine-enriched heparan sulfate. Matrix Biol 2014; 41:8-18. [PMID: 25483985 DOI: 10.1016/j.matbio.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022]
Abstract
"Reactive" astrocytes and other glial cells in the injured CNS produce an altered extracellular matrix (ECM) that influences neuronal regeneration. We have profiled the glycosaminoglycan (GAG) component of proteoglycans (PGs) produced by reactive neonatal rat cortical astrocytes, and have quantified their neurite-outgrowth inhibitory activity. PGs extracted from cell layers and medium were fractionated on DEAE-Sephacel with a gradient of NaCl from 0.15 to 1.0 M. Monosaccharide analysis of the major peaks eluting at 0.6 M NaCl indicated an excess of GlcNH₂ to GalNH₂, suggesting an approximate HS/CS ratio of 6.2 in the cell layer and 4.2 in the medium. Chondroitinase ABC-generated disaccharide analysis of cell and medium PGs showed a >5-fold excess of chondroitin 4-sulfate over chondroitin 6-sulfate. Heparin lyase-generated disaccharides characteristic of the highly sulfated S-domain regions within HS were more abundant in cell layer than medium-derived PGs. Cell layer and medium HS disaccharides contained ~20% and ~40% N-unsubstituted glucosamine respectively, which is normally rare in HS isolated from most tissues. NGF-stimulated neurite outgrowth assays using NS-1 (PC12) neuronal cells on adsorbed substrata of PGs isolated from reactive astrocyte medium showed pronounced inhibition of neurite outgrowth, and aggregation of NS-1 cells. Cell layer PGs from DEAE-Sephacel pooled fractions having high charge density permitted greater NGF-stimulated outgrowth than PGs with lower charge density. Our results indicate the synthesis of both inhibitory and permissive PGs by activated astrocytes that may correlate with sulfation patterns and HS/CS ratios.
Collapse
|
7
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
8
|
Beller JA, Kulengowski B, Kobraei EM, Curinga G, Calulot CM, Bahrami A, Hering TM, Snow DM. Comparison of sensory neuron growth cone and filopodial responses to structurally diverse aggrecan variants, in vitro. Exp Neurol 2013; 247:143-57. [PMID: 23458191 DOI: 10.1016/j.expneurol.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Following spinal cord injury, a regenerating neurite encounters a glial scar enriched in chondroitin sulfate proteoglycans (CSPGs), which presents a major barrier. There are two points at which a neurite makes contact with glial scar CSPGs: initially, filopodia surrounding the growth cone extend and make contact with CSPGs, then the peripheral domain of the entire growth cone makes CSPG contact. Aggrecan is a CSPG commonly used to model the effect CSPGs have on elongating or regenerating neurites. In this study, we investigated filopodia and growth cone responses to contact with structurally diverse aggrecan variants using the common stripe assay. Using time-lapse imaging with 15-s intervals, we measured growth cone area, growth cone width, growth cone length, filopodia number, total filopodia length, and the length of the longest filopodia following contact with aggrecan. Responses were measured after both filopodia and growth cone contact with five different preparations of aggrecan: two forms of aggrecan derived from bovine articular cartilage (purified and prepared using different techniques), recombinant aggrecan lacking chondroitin sulfate side chains (produced in CHO-745 cells) and two additional recombinant aggrecan preparations with varying lengths of chondroitin sulfate side chains (produced in CHO-K1 and COS-7 cells). Responses in filopodia and growth cone behavior differed between the structurally diverse aggrecan variants. Mutant CHO-745 aggrecan (lacking chondroitin sulfate chains) permitted extensive growth across the PG stripe. Filopodia contact with the CHO-745 aggrecan caused a significant increase in growth cone width and filopodia length (112.7% ± 4.9 and 150.9% ± 7.2 respectively, p<0.05), and subsequently upon growth cone contact, growth cone width remained elevated along with a reduction in filopodia number (121.9% ± 4.2; 72.39% ± 6.4, p<0.05). COS-7 derived aggrecan inhibited neurite outgrowth following growth cone contact. Filopodia contact produced an increase in growth cone area and width (126.5% ± 8.1; 150.3% ± 13.31, p<0.001), and while these parameters returned to baseline upon growth cone contact, a reduction in filopodia number and length was observed (73.94% ± 5.8, 75.3% ± 6.2, p<0.05). CHO-K1 derived aggrecan inhibited neurite outgrowth following filopodia contact, and caused an increase in growth cone area and length (157.6% ± 6.2; 117.0% ± 2.8, p<0.001). Interestingly, the two bovine articular cartilage aggrecan preparations differed in their effects on neurite outgrowth. The proprietary aggrecan (BA I, Sigma-Aldrich) inhibited neurites at the point of growth cone contact, while our chemically purified aggrecan (BA II) inhibited neurite outgrowth at the point of filopodia contact. BA I caused a reduction in growth cone width following filopodia contact (91.7% ± 2.5, p<0.05). Upon growth cone contact, there was a further reduction in growth cone width and area (66.4% ± 2.2; 75.6% ± 2.9; p<0.05), as well as reductions in filopodia number, total length, and max length (75.9% ± 5.7, p<0.05; 68.8% ± 6.0; 69.6% ± 3.5, p<0.001). Upon filopodia contact, BA II caused a significant increase in growth cone area, and reductions in filopodia number and total filopodia length (115.9% ± 5.4, p<0.05; 72.5% ± 2.7; 77.7% ± 3.2, p<0.001). In addition, filopodia contact with BA I caused a significant reduction in growth cone velocity (38.6 nm/s ± 1.3 before contact, 17.1 nm/s ± 3.6 after contact). These data showed that neuron morphology and behavior are differentially dependent upon aggrecan structure. Furthermore, the behavioral changes associated with the approaching growth cone may be predictive of inhibition or growth.
Collapse
Affiliation(s)
- Justin A Beller
- Spinal Cord and Brain Injury Research Center, and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lockhart MM, Wirrig EE, Phelps AL, Ghatnekar AV, Barth JL, Norris RA, Wessels A. Mef2c regulates transcription of the extracellular matrix protein cartilage link protein 1 in the developing murine heart. PLoS One 2013; 8:e57073. [PMID: 23468913 PMCID: PMC3582617 DOI: 10.1371/journal.pone.0057073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 11/20/2022] Open
Abstract
Cartilage Link Protein 1 (Crtl1) is an extracellular matrix (ECM) protein that stabilizes the interaction between hyaluronan and versican and is expressed in endocardial and endocardially-derived cells in the developing heart, including cells in the atrioventricular (AV) and outflow tract (OFT) cushions. Previous investigations into the transcriptional regulation of the Crtl1 gene have shown that Sox9 regulates Crtl1 expression in both cartilage and the AV valves. The cardiac transcription factor Mef2c is involved in the regulation of gene expression in cardiac and skeletal muscle cell lineages. In this study we have investigated the potential role of Mef2c in the regulation of ECM production in the endocardial and mesenchymal cell lineages of the developing heart. We demonstrate that the Crtl1 5′ flanking region contains two highly conserved Mef2 binding sites and that Mef2c is able to bind to these sites in vivo during cardiovascular development. Additionally, we show that Crtl1 transcription is dependent on Mef2c expression in fetal mitral valve interstitial cells (VICs). Combined, these findings highlight a new role for Mef2c in cardiac development and the regulation of cardiac extracellular matrix protein expression.
Collapse
Affiliation(s)
- Marie M. Lockhart
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elaine E. Wirrig
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Aimee L. Phelps
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Angela V. Ghatnekar
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pawlak E, Wang L, Johnson PJ, Nuovo G, Taye A, Belknap JK, Alfandari D, Black SJ. Distribution and processing of a disintegrin and metalloproteinase with thrombospondin motifs-4, aggrecan, versican, and hyaluronan in equine digital laminae. Am J Vet Res 2012; 73:1035-46. [PMID: 22738056 DOI: 10.2460/ajvr.73.7.1035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To determine the expression and distribution of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), its substrates aggrecan and versican, and their binding partner hyaluronan in laminae of healthy horses. SAMPLE Laminae from the forelimb hooves of 8 healthy horses. PROCEDURES Real-time quantitative PCR assay was used for gene expression analysis. Hyaluronidase, chondroitinase, and keratanase digestion of lamina extracts combined with SDS-PAGE and western blotting were used for protein and proteoglycan analysis. Immunofluorescent and immunohistochemical staining of tissue sections were used for protein and hyaluronan localization. RESULTS Genes encoding ADAMTS-4, aggrecan, versican, and hyaluronan synthase II were expressed in laminae. The ADAMTS-4 was predominantly evident as a 51-kDa protein bearing a catalytic site neoepitope indicative of active enzyme and in situ activity, which was confirmed by the presence of aggrecan and versican fragments bearing ADAMTS-4 cleavage neoepitopes in laminar protein extracts. Aggrecan, versican, and hyaluronan were localized to basal epithelial cells within the secondary epidermal laminae. The ADAMTS-4 localized to these cells but was also present in some cells in the dermal laminae. CONCLUSIONS AND CLINICAL RELEVANCE Within digital laminae, versican exclusively and aggrecan primarily localized within basal epithelial cells and both were constitutively cleaved by ADAMTS-4, which therefore contributed to their turnover. On the basis of known properties of these proteoglycans, it is possible that they can protect the basal epithelial cells of horses from biomechanical and concussive stress.
Collapse
Affiliation(s)
- Erica Pawlak
- Department of Veterinary and Animal Sciences, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang L, Pawlak E, Johnson PJ, Belknap JK, Alfandari D, Black SJ. Effects of cleavage by a disintegrin and metalloproteinase with thrombospondin motifs-4 on gene expression and protein content of versican and aggrecan in the digital laminae of horses with starch gruel-induced laminitis. Am J Vet Res 2012; 73:1047-56. [PMID: 22738057 DOI: 10.2460/ajvr.73.7.1047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine whether increased gene expression of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) in laminae of horses with starch gruel-induced laminitis was accompanied by increased enzyme activity and substrate degradation. SAMPLE Laminae from the forelimb hooves of 8 healthy horses and 17 horses with starch gruel-induced laminitis (6 at onset of fever, 6 at onset of Obel grade 1 lameness, and 5 at onset of Obel grade 3 lameness). PROCEDURES Gene expression was determined by use of cDNA and real-time quantitative PCR assay. Protein expression and processing were determined via SDS-PAGE and quantitative western blotting. Protein distribution and abundance were determined via quantitative immunofluorescent staining. RESULTS ADAMTS-4 gene expression was increased and that of versican decreased in laminitic laminae, compared with expression in healthy laminae. Catalytically active ADAMTS-4 also was increased in the tissue, as were ADAMTS-4-cleavage fragments of versican. Immunofluorescent analyses indicated that versican was depleted from the basal epithelia of laminae of horses at onset of Obel grade 3 lameness, compared with results for healthy laminae, and this was accompanied by regional separation of basal epithelial cells from the basement membrane. Aggrecan gene and protein expression were not significantly affected. CONCLUSIONS AND CLINICAL RELEVANCE Changes in gene and protein expression of ADAMTS-4 and versican in the basal epithelium of laminitic laminae indicated a fundamental change in the physiology of basal epithelial cells. This was accompanied by and may have caused detachment of these cells from the basement membrane.
Collapse
Affiliation(s)
- Le Wang
- Department of Veterinary and Animal Sciences, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
12
|
Durigova M, Nagase H, Mort JS, Roughley PJ. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol 2011; 30:145-53. [PMID: 21055468 PMCID: PMC3057330 DOI: 10.1016/j.matbio.2010.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/12/2010] [Accepted: 10/20/2010] [Indexed: 01/19/2023]
Abstract
Aggrecan degradation in articular cartilage occurs predominantly through proteolysis and has been attributed to the action of members of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families. Both families of enzymes cleave aggrecan at specific sites within the aggrecan core protein. One cleavage site within the interglobular domain (IGD), between Glu(373-374)Ala and five additional sites in the chondroitin sulfate-2 (CS-2) region of aggrecan were characterized as "aggrecanase" (ADAMTS) cleavage sites, while cleavage between Ser(341-342)Phe within the IGD of bovine aggrecan is attributed to MMP action. The objective of this study was to assess the cleavage efficiency of MMPs relative to ADAMTS and their contribution to aggrecan proteolysis in vitro. The analysis of aggrecan IGD degradation in bovine articular cartilage explants treated with catabolic cytokines over a 19-day period showed that MMP-mediated degradation of aggrecan within the IGD can only be observed following day 12 of culture. This delay is associated with the lack of activation of proMMPs during the first 12 days of culture. Analysis of MMP1, 2, 3, 7, 8, 9, 12, 13 and ADAMTS5 efficiencies at cleaving within the aggrecan IGD and CS-2 region in vitro was carried out by the digestion of bovine aggrecan with the various enzymes and Western blot analysis using aggrecan anti-G1 and anti-G3 antibodies. Of these MMPs, MMP12 was the most efficient at cleaving within the aggrecan IGD. In addition to cleavage in the IGD, MMP, 3, 7, 8 and 12 were also able to degrade the aggrecan CS-2 region. MMP3 and MMP12 were able to degrade aggrecan at the very C-terminus of the CS-2 region, cleaving the Glu(2047-2048)Ala bond which was previously shown to be cleaved by ADAMTS5. However, in comparison to ADAMTS5, MMP3 was about 100 times and 10 times less efficient at cleaving within the aggrecan IGD and CS-2 regions, respectively. Collectively, our results showed that the delayed activation of proMMPs and the relatively low cleavage efficiency of MMPs can explain the minor contribution of these enzymes to aggrecan catabolism in vivo. This study also uncovered a potential role for MMPs in the C-terminal truncation of aggrecan.
Collapse
Affiliation(s)
- Michaela Durigova
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Imperial College London, London, W6 8L, United Kingdom
| | - John S. Mort
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Peter J. Roughley
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, H3G 1A6 Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Han E, Wilensky LM, Schumacher BL, Chen AC, Masuda K, Sah RL. Tissue engineering by molecular disassembly and reassembly: biomimetic retention of mechanically functional aggrecan in hydrogel. Tissue Eng Part C Methods 2010; 16:1471-9. [PMID: 20486781 PMCID: PMC2988632 DOI: 10.1089/ten.tec.2009.0800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 04/26/2010] [Indexed: 01/07/2023] Open
Abstract
In vitro assembly of key functional extracellular matrix constituents for tissue-engineered constructs may provide a tool to modulate the retention of proteoglycan (PG) aggregates, which are crucial to compressive biomechanical properties of connective tissues. This study tested the hypotheses that (1) biomimetic molecular reassembly of PG aggregates (native aggrecan [AGC] with hyaluronan [HA] ± link protein [LP]) affects AGC retention kinetics in hydrogel constructs, (2) the compressive properties of such hydrogel constructs are related to the content of retained AGC, and (3) the reassembly method is compatible with chondrocytes. Addition of HA to AGC in hydrogel constructs increased AGC retention in a dose-dependent manner, and the addition of LP to AGC + HA further enhanced AGC retention. The level of AGC retention, in turn, was associated with increased equilibrium compressive stress of the constructs. Chondrocytes could be included in the process, and maintained expression of the chondrogenic phenotype, secreting type II collagen but little type I collagen. Thus, by altering the assembly of PG aggregates with HA ± LP, which affects AGC retention, it may be possible to achieve the targeted levels of PG components to modulate the mechanical properties of the engineered construct for cartilage as well as other tissues containing PG and PG aggregates.
Collapse
Affiliation(s)
- EunHee Han
- Department of Bioengineering, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| | - Lissette M. Wilensky
- Department of Bioengineering, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| | - Barbara L. Schumacher
- Department of Bioengineering, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| | - Albert C. Chen
- Department of Bioengineering, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| | - Koichi Masuda
- Department of Orthopaedic Surgery, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| | - Robert L. Sah
- Department of Bioengineering, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, California
| |
Collapse
|
14
|
Papakonstantinou E, Karakiulakis G. The 'sweet' and 'bitter' involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br J Pharmacol 2009; 157:1111-27. [PMID: 19508395 DOI: 10.1111/j.1476-5381.2009.00279.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The extracellular matrix (ECM) plays a significant role in the structure and function of the lung. The ECM is a three-dimensional fibre mesh, comprised of various interconnected and intercalated macromolecules, among which are the glycosaminoglycans (GAG). GAG are long, linear and highly charged, heterogeneous polysaccharides that are composed of a variable number of repeating disaccharide units (macromolecular sugars) and most of them, as their name implies, have a sweet taste. In the lung, GAG support the structure of the interstitium, the subepithelial tissue and the bronchial walls, and are secreted in the airway secretions. Besides maintaining lung tissue structure, GAG also play an important role in lung function as they regulate hydration and water homeostasis, modulate the inflammatory response and influence lung tissue repair and remodelling. However, depending on their size and/or degree of sulphation, and their immobilization or solubilization in the ECM, specific GAG in the lung either live up to their sweet taste/name, supporting normal lung physiology, or they are associated to 'bitter' effects, related to lung pathology. The present review discusses the biological role of GAG in the lung as well as the involvement of these molecules in various respiratory diseases. Given the great structural diversity of GAG, understanding the changes in GAG expression that occur in lung diseases may lead to novel targets for pharmacological intervention in order to prevent and/or to treat a range of lung diseases.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- 2nd Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
15
|
Miwa HE, Gerken TA, Huynh TD, Duesler LR, Cotter M, Hering TM. Conserved sequence in the aggrecan interglobular domain modulates cleavage by ADAMTS-4 and ADAMTS-5. Biochim Biophys Acta Gen Subj 2008; 1790:161-72. [PMID: 19101611 DOI: 10.1016/j.bbagen.2008.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/03/2008] [Accepted: 11/19/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cleavage of aggrecan by ADAMTS proteinases at specific sites within highly conserved regions may be important to normal physiological enzyme functions, as well as pathological degradation. METHODS To examine ADAMTS selectivity, we assayed ADAMTS-4 and -5 cleavage of recombinant bovine aggrecan mutated at amino acids N-terminal or C-terminal to the interglobular domain cleavage site. RESULTS Mutations of conserved amino acids from P18 to P12 to increase hydrophilicity resulted in ADAMTS-4 cleavage inhibition. Mutation of Thr, but not Asn within the conserved N-glycosylation motif Asn-Ile-Thr from P6 to P4 enhanced cleavage. Mutation of conserved Thr residues from P22 to P17 to increase hydrophobicity enhanced ADAMTS-4 cleavage. A P4' Ser377Gln mutant inhibited cleavage by ADAMTS-4 and -5, while a neutral Ser377Ala mutant and species mimicking mutants Ser377Thr, Ser377Asn, and Arg375Leu were cleaved normally by ADAMTS-4. The Ser377Thr mutant, however, was resistant to cleavage by ADAMTS-5. CONCLUSION We have identified multiple conserved amino acids within regions N- and C-terminal to the site of scission that may influence enzyme-substrate recognition, and may interact with exosites on ADAMTS-4 and ADAMTS-5. GENERAL SIGNIFICANCE Inhibition of the binding of ADAMTS-4 and ADAMTS-5 exosites to aggrecan should be explored as a therapeutic intervention for osteoarthritis.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
16
|
Im HJ, Li X, Muddasani P, Kim GH, Davis F, Rangan J, Forsyth CB, Ellman M, Thonar EJMA. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J Cell Physiol 2008; 215:452-63. [PMID: 17960584 PMCID: PMC2893571 DOI: 10.1002/jcp.21317] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway.
Collapse
Affiliation(s)
- Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Muddasani P, Norman JC, Ellman M, van Wijnen AJ, Im HJ. Basic fibroblast growth factor activates the MAPK and NFkappaB pathways that converge on Elk-1 to control production of matrix metalloproteinase-13 by human adult articular chondrocytes. J Biol Chem 2007; 282:31409-21. [PMID: 17724016 DOI: 10.1074/jbc.m706508200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathology of joint destruction is associated with elevated production of basic fibroblast growth factor (bFGF) and matrix metalloproteinase-13 (MMP-13). In osteoarthritic joint disease, expression of bFGF and MMP-13 in chondrocytes and their release into the synovial fluid are significantly increased. We have previously found that the capacity for cartilage repair in human adult articular chondrocytes is severely compromised by minimal exposure to bFGF because bFGF reduces responsiveness to bone morphogenetic protein-7 and insulin-like growth factor-1 and induces MMP-13 through protein kinase Cdelta-dependent activation of multiple mitogen-activated protein kinase (MAPK) signaling pathways. Here we show using biochemical and molecular approaches that transcription factor Elk-1, a direct downstream target of MAPK, is a critical transcriptional activator of of MMP-13 by bFGF in human articular chondrocytes. We also provide evidence that Elk-1 is a direct target of NFkappaB and induces MMP-13 expression upon activation of the NFkappaB signaling pathway. Taken together, our results suggest that elevated expression of MMP-13 occurs through Elk-1 activation of both MAPK and NFkappaB signaling pathways, thus revealing a two-pronged biological mechanism by which bFGF controls the production of catabolic enzymes that are associated with excessive degradation of the cartilage matrix in degenerative joint diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Prasuna Muddasani
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
18
|
Fortier LA, Schnabel LV, Mohammed HO, Mayr KG. Assessment of cartilage degradation effects of matrix metalloproteinase-13 in equine cartilage cocultured with synoviocytes. Am J Vet Res 2007; 68:379-84. [PMID: 17397292 DOI: 10.2460/ajvr.68.4.379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of matrix metalloproteinase (MMP)-13, compared with interleukin (IL)-1alpha, on cartilage matrix molecule gene expression in a coculture system of equine cartilage explants and synoviocytes. SAMPLE POPULATION Articular cartilage and synovium specimens harvested from femoropatellar joints of 4 horses, aged 3 to 5 years. PROCEDURES Synoviocytes were isolated and cocultured with cartilage explants. Cultures were treated with human recombinant MMP-13 (1, 25, or 100 ng/mL) or IL-1alpha (0.01, 0.1, 1.0, or 10 ng/mL) for 96 hours, with medium exchange at 48 hours. Cartilage extracts and media were analyzed for glycosaminoglycan (GAG) content, and results were adjusted to cartilage DNA content. Quantitative PCR was performed on mRNA from cartilage (MMP-3, MMP-13, aggrecan, and collagen type IIB [COL2A1]) and synoviocytes (MMP-3 and MMP-13), and results were adjusted to 18S ribosomal subunit mRNA expression. Treatments were performed in triplicate, and the experiment was repeated 4 times. RESULTS Cultures treated with MMP-13 or IL-1alpha had increased media GAG concentration at 48 and 96 hours. Aggrecan and COL2A1 mRNA expression were increased by application of MMP-13 or IL-1alpha. Gene expression of the catabolic mediator, MMP-3, in cartilage and synoviocytes was increased in cultures treated with MMP-13 or IL-1alpha. Expression of MMP-13 mRNA in cartilage was increased by IL-1alpha, but decreased in synoviocytes by MMP-13 treatment. CONCLUSIONS AND CLINICAL RELEVANCE Results support the use of recombinant MMP-13 in a coculture system of synoviocytes and cartilage explants for the study of osteoarthritis.
Collapse
Affiliation(s)
- Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
19
|
Miwa HE, Gerken TA, Hering TM. Effects of covalently attached chondroitin sulfate on aggrecan cleavage by ADAMTS-4 and MMP-13. Matrix Biol 2006; 25:534-45. [PMID: 16945513 DOI: 10.1016/j.matbio.2006.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Aggrecan is degraded by several aggrecanase-1 (ADAMTS-4) isoforms differing in the number of sulfated glycosaminoglycan (sGAG)-binding motifs. ADAMTS-4 and MMPs cleave aggrecan more efficiently within the chondroitin sulfate (CS)-rich region than the interglobular domain (IGD). We investigated the influence of CS on aggrecan core protein cleavage by ADAMTS-4 (p68) and (p40) as well as MMP-13, which has no recognizable GAG-binding sites. Chondroitinase ABC-treated cartilage aggrecan was cleaved with ADAMTS-4 (p68) less efficiently than CS-substituted aggrecan within the CS-2 domain. Keratanase-treated aggrecan exhibited reduced IGD cleavage, but when both CS and KS were removed, the IGD cleavage was restored. This result suggests that KS in the IGD may compete with CS for ADAMTS-4 (p68) binding. In the absence of KS, however, p68 binding was shifted to the CS-2 domain. CS-deficient full-length recombinant aggrecan (rbAgg) was produced by chondroitinase ABC treatment, or by expression in the xylosyltransferase-deficient CHO-pgsA745 cell line. When digested with the ADAMTS-4 (p68), each of these preparations exhibited reduced CS-2 domain cleavage compared to CS-substituted CHO-K1 cell-derived aggrecan. Additionally, CS-deficient rbAgg showed increased IGD scission prior to cleavage within the CS-2 domain. ADAMTS-4 (p40) readily cleaved both rbAggs within the IGD, but cleaved poorly within the CS-2 domain, indicating little CS dependence. MMP-13, in contrast, cleaved the CS region and the IGD of both CS-substituted and CS-deficient rbAgg equally well. These data indicate that covalently bound CS enhances ADAMTS-4-mediated cleavage within the CS-rich region. MMP-13 also cleaves preferentially within the CS-region, but by an apparently CS-independent mechanism.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|