1
|
Shi GC, Teng YQ, Zhu JS, Sun JW, Liu C, Zhang YW. ELK4 transcription promotes MSI2-mediated progression of non-small cell lung cancer through the TGF-β/SMAD3 pathway. Kaohsiung J Med Sci 2025; 41:e12952. [PMID: 39969091 DOI: 10.1002/kjm2.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a primary contributor to global cancer-related mortality. Musashi-2 (MSI2), an RNA-binding protein (RBP), is upregulated in specific NSCLC tumor subgroups. The current investigation evaluated the role and underlying mechanism of MSI2 in NSCLC. The expression levels of ELK4, MSI2, SMAD3, p-SMAD3 and TGFβR1 were assessed via RT-qPCR or Western blot. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to confirm the interaction between ELK4 and MSI2. The proliferation, migration and invasion of NSCLC cells were determined via MTT, colony formation, and transwell assays, respectively. A xenograft tumor model was established in BALB/c nude mice. Immunohistochemical (IHC) staining was used to test Ki67 expression. We found that MSI2 and ELK4 expression levels were increased in NSCLC tissues and cells. ELK4 depletion suppressed the proliferation, migration and invasion of NSCLC cells. ELK4 acts as a transcription factor and promotes the transcription of MSI2. MSI2 depletion repressed NSCLC cell proliferation, migration and invasion through the TGF-β/SMAD3 pathway. Overexpression of ELK4 reversed the inhibitory effect of MSI2 repression on NSCLC progression. These results confirmed that ELK4 is a direct regulator of MSI2 expression and that MSI2 promotes NSCLC progression through TGF-β/SMAD3 activation, suggesting the potential clinical value of inhibiting MSI2 in NSCLC.
Collapse
Affiliation(s)
- Guo-Cui Shi
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Yu-Qing Teng
- Outpatient Department, The Chinese People's Liberation Army, Hebei Provincial Military Region, Cangzhou, Hebei, China
| | - Jin-Song Zhu
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Jia-Wei Sun
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Cui Liu
- Department of Respiratory Medicine, CANGZHOU People's Hospital, Cangzhou, Hebei, China
| | - Yi-Wei Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Li X, Wang Y, Zhang B, Mao R, Wang Z, Jiang T, Song H. Hsa_circ_0119412 Contributes to Development of Retinoblastoma by Targeting miR-186-5p/ELK4 Axis. Mol Biotechnol 2023; 65:1608-1618. [PMID: 36715861 DOI: 10.1007/s12033-023-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Increasing evidences indicate the crucial role of circRNAs in tumorigenesis, but little is understood about their molecular mechanism in retinoblastoma (RB). This paper was designed for exploring the circ_0119412 function in cases with RB and the potential mechanism. RT-qPCR was utilized to ascertain circ_0119412 and miR-186-5p levels in RB tissues and cells, and western blotting was used to quantify ELK4 in RB cells. In addition, CCK-8 and scratch assays were carried out for evaluation of cell proliferation and migration, respectively. Apoptosis-related proteins levels (Bax and Bcl-2) were measure by western blotting. Tumor growth in vivo was detected utilizing xenograft tumor experiment. The targeting relationship between circ_0119412, miR-186-5p, and ELK4 was validated using a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. In RB tissues and cells, Circ_0119412 and ELK4 expression were upregulated, while miR-186-5p expression was downregulated. In vitro assay revealed that downregulating circ_0119412 accelerated the cell apoptosis of RB cells and slowed down their migration and proliferation, and the in vivo assay indicated that circ_0119412 downregulation reduced the weight and volume of tumor in nude mice. In addition, miR-186-5p interference promoted the malignant behavior of RB cells, while ELK4 silencing showed an opposite trend. Mechanically, circ_0119412 can promote RB malignant phenotypes via miR-186-5p/ELK4 axis. Circ_0119412 was found to be upregulated in RB, and could accelerate the progression of RB via the miR-186-5p/ELK4 axis, indicating circ_0119412 may serve a promising clinical therapeutic target of RB.
Collapse
Affiliation(s)
- Xiaodong Li
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Ying Wang
- Ophthalmology Department, Changchun Bokangming Eye Hospital, Changchun, Jilin, 130000, China
| | - Baoying Zhang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Rui Mao
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Zhongkui Wang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Tingyu Jiang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Haibin Song
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China.
| |
Collapse
|
3
|
Zheng K, Sha N, Hou G, Leng Z, Zhao Q, Zhang L, He L, Xu M, Jiang Y, Chen T. IGF1R-phosphorylated PYCR1 facilitates ELK4 transcriptional activity and sustains tumor growth under hypoxia. Nat Commun 2023; 14:6117. [PMID: 37777542 PMCID: PMC10542766 DOI: 10.1038/s41467-023-41658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
The proline synthesis is importantly involved in tumor growth under hypoxia, while the underlying mechanism remains to be further investigated. Here we show that pyrroline-5-carpoxylate reductase-1 (PYCR1), displaying a constant nuclear localization, is phosphorylated by nuclear IGF1R at Tyrosine 135 under hypoxia; this phosphorylation promotes the binding of PYCR1 to ELK4 and thus PYCR1 recruitment to ELK4-targeted genes promoter. Under hypoxia, ELK4-binding ability and enzymatic activity of PYCR1 are both required for ELK4-Sirt7-mediated transcriptional repression and cell growth maintenance, in which PYCR1-catalyzed NAD+ production stimulates the deacetylation activity of Sirt7 on H3K18ac that restrains genes transcription. Functionally, PYCR1 Tyr-135 phosphorylation exerts supportive effect on tumor growth under hypoxia, and the level of PYCR1 Tyr-135 phosphorylation is associated with malignancy of colorectal cancer (CRC). These data uncover the relationship between the compartmentally metabolic activity of PYCR1 and genes transcription regulation, and highlight the oncogenic role of PYCR1 during CRC development.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuyun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingnan He
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Zheng L, Xu H, Di Y, Chen L, Liu J, Kang L, Gao L. ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J Transl Med 2021; 19:342. [PMID: 34372882 PMCID: PMC8353876 DOI: 10.1186/s12967-021-02915-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023] Open
Abstract
Background We tried to elaborate the molecular mechanism of ETS-like transcription factor 4 (ELK4) affecting gastric cancer (GC) progression through M2 polarization of macrophages mediated by lysine-specific demethylase 5A (KDM5A)-Praja2 (PJA2)-kinase suppressor of ras 1 (KSR1) axis. Methods GC expression dataset was obtained from GEO database, and the downstream regulatory mechanism of ELK4 was predicted. Tumor-associated macrophages (TAMs) were isolated from GC tissues. The interaction among ELK4, KDM5A, PJA2 and KSR1 was analyzed by dual luciferase reporter gene, ChIP and Co-IP assays. The stability of KSR1 protein was detected by cycloheximide (CHX) treatment. After TAMs were co-cultured with HGC-27 cells, HGC-27 cell biological processes were assessed through gain- and loss-of function assays. Tumorigenicity was detected by tumorigenicity test in nude mice. Results In GC and TAMs, ELK4, KDM5A and KSR1 were highly expressed, while PJA2 was lowly expressed. M2 polarization of macrophages promoted the development of GC. ELK4 activated KDM5A by transcription and promoted macrophage M2 polarization. KDM5A inhibited the expression of PJA2 by removing H3K4me3 of PJA2 promoter, which promoted M2 polarization of macrophages. PJA2 reduced KSR1 by ubiquitination. ELK4 promoted the proliferative, migrative and invasive potentials of GC cells as well as the growth of GC xenografts by regulating KSR1. Conclusion ELK4 may reduce the PJA2-dependent inhibition of KSR1 by transcriptional activation of KDM5A to promote M2 polarization of macrophages, thus promoting the development of GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02915-1.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Hongmei Xu
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Ya Di
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Lanlan Chen
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Jiao Liu
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Liying Kang
- Department of Oncology, Tianjin Wuqing District People's Hospital, Tianjin, 301700, People's Republic of China
| | - Liming Gao
- Department of Oncology, The First Hospital of Qinhuangdao, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei Province, People's Republic of China.
| |
Collapse
|
5
|
Long R, Liu Z, Li J, Zhang Y, Yu H. HCG11 up-regulation induced by ELK4 suppressed proliferation in vestibular schwannoma by targeting miR-620/ELK4. Cancer Cell Int 2021; 21:5. [PMID: 33402177 PMCID: PMC7786942 DOI: 10.1186/s12935-020-01691-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
Background Vestibular schwannoma (VS) is a kind of benign tumor deriving from the acoustic nerve sheath. Substantial long non-coding RNAs (lncRNAs) were illustrated to have crucial roles in multiple cancers. However, few lncRNAs were elucidated in VS. Methods HCG11, miR-620 and ELK4 expression were tested by RT-qPCR. Gain-of-function experiments were conducted to confirm the effect of HCG11 on VS. Results HCG11 possessed a low expression in VS cell lines. Overexpression of HCG11 repressed cell proliferation but accelerated apoptosis of VS cells. Moreover, we identified ELK4 stimulated the transcription of HCG11 and their affinity was verified by ChIP assays. MiR-620 was chosen to be a target of HCG11 and it was tested to have a high expression in VS cell lines. Moreover, depletion of miR-620 could inhibit cell proliferative ability while fostering apoptosis rate of VS cells. ELK4 was low expressed in VS cell lines and knockdown of ELK4 could rescue the effects made by HCG11 overexpression on progression of VS. Conclusions HCG11 could inhibit the growth of VS by targeting miR-620/ELK4 in VS cells. HCG11 was a novel therapeutic target for VS treatment.
Collapse
Affiliation(s)
- Ruiqing Long
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhuohui Liu
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jinghui Li
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yuan Zhang
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Binding and inhibition of the ternary complex factor Elk-4/Sap1 by the adapter protein Dok-4. Biochem J 2017; 474:1509-1528. [PMID: 28275114 DOI: 10.1042/bcj20160832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 01/25/2023]
Abstract
The adapter protein Dok-4 (downstream of kinase-4) has been reported as both an activator and inhibitor of Erk and Elk-1, but lack of knowledge about the identity of its partner molecules has precluded any mechanistic insight into these seemingly conflicting properties. We report that Dok-4 interacts with the transactivation domain of Elk-4 through an atypical phosphotyrosine-binding domain-mediated interaction. Dok-4 possesses a nuclear export signal and can relocalize Elk-4 from nucleus to cytosol, whereas Elk-4 possesses two nuclear localization signals that restrict interaction with Dok-4. The Elk-4 protein, unlike Elk-1, is highly unstable in the presence of Dok-4, through both an interaction-dependent mechanism and a pleckstrin homology domain-dependent but interaction-independent mechanism. This is reversed by proteasome inhibition, depletion of endogenous Dok-4 or lysine-to-arginine mutation of putative Elk-4 ubiquitination sites. Finally, Elk-4 transactivation is potently inhibited by Dok-4 overexpression but enhanced by Dok-4 knockdown in MDCK renal tubular cells, which correlates with increased basal and EGF-induced expression of Egr-1, Fos and cylcinD1 mRNA, and cell proliferation despite reduced Erk activation. Thus, Dok-4 can target Elk-4 activity through multiple mechanisms, including binding of the transactivation domain, nuclear exclusion and protein destabilization, without a requirement for inhibition of Erk.
Collapse
|
7
|
Wang A, Ding X, Demarque M, Liu X, Pan D, Xin H, Zhong B, Wang X, Dejean A, Jin W, Dong C. Ubc9 Is Required for Positive Selection and Late-Stage Maturation of Thymocytes. THE JOURNAL OF IMMUNOLOGY 2017; 198:3461-3470. [PMID: 28314856 DOI: 10.4049/jimmunol.1600980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/21/2017] [Indexed: 11/19/2022]
Abstract
SUMOylation is an important posttranslational modification that regulates protein function in diverse biological processes. However, its role in early T cell development has not been genetically studied. UBC9 is the only E2 enzyme for all SUMOylation. In this study, by selectively deleting Ubc9 gene in T cells, we have investigated the functional roles of SUMOylation in T cell development. Loss of Ubc9 results in a significant reduction of CD4 and CD8 single-positive lymphocytes in both thymus and periphery. Ubc9-deficient cells exhibit defective late-stage maturation post the initial positive selection with increased apoptosis and impaired proliferation, among which attenuated IL-7 signaling was correlated with the decreased survival of Ubc9-deficent CD8 single-positive cells. Furthermore, NFAT nuclear retention induced by TCR signals was regulated by SUMOylation during thymocytes development. Our study thus reveals a novel posttranslational mechanism underlying T cell development.
Collapse
Affiliation(s)
- Aibo Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao Ding
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Maud Demarque
- Nuclear Organization and Oncogenesis Laboratory, Department of Cell Biology and Infection, INSERM U993, Institute Pasteur, 75015 Paris, France
| | - Xindong Liu
- Southwest Hospital, Third Military Medical University, 400038 Chongqing, China
| | - Deng Pan
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77054; and
| | - Huawei Xin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Laboratory, Department of Cell Biology and Infection, INSERM U993, Institute Pasteur, 75015 Paris, France
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
8
|
Lee HS, Jung W, Lee E, Chang H, Choi JH, Kim HG, Kim A, Kim BH. SIRT7, H3K18ac, and ELK4 Immunohistochemical Expression in Hepatocellular Carcinoma. J Pathol Transl Med 2016; 50:337-44. [PMID: 27498548 PMCID: PMC5042897 DOI: 10.4132/jptm.2016.05.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023] Open
Abstract
Background SIRT7 is one of the histone deacetylases and is NAD-dependent. It forms a complex with ETS-like transcription factor 4 (ELK4), which deacetylates H3K18ac and works as a transcriptional suppressor. Overexpression of SIRT7 and deacetylation of H3K18ac have been shown to be associated with aggressive clinical behavior in some cancers, including hepatocellular carcinoma (HCC). The present study investigated the immunohistochemical expression of SIRT7, H3K18ac, and ELK4 in hepatocellular carcinoma. Methods A total of 278 HCC patients were enrolled in this study. Tissue microarray blocks were made from existing paraffin-embedded blocks. Immunohistochemical expressions of SIRT7, H3K18ac and ELK4 were scored and analyzed. Results High SIRT7 (p = .034), high H3K18ac (p = .001), and low ELK4 (p = .021) groups were associated with poor outcomes. Age < 65 years (p = .028), tumor size ≥ 5 cm (p = .001), presence of vascular emboli (p = .003), involvement of surgical margin (p = .001), and high American Joint Committee on Cancer stage (III&V) (p < .001) were correlated with worse prognoses. In multivariate analysis, H3K18ac (p = .001) and ELK4 (p = .015) were the significant independent prognostic factors. Conclusions High SIRT7 expression with poor overall survival implies that deacetylation of H3K18ac contributes to progression of HCC. High H3K18ac expression with poor prognosis is predicted due to a compensation mechanism. In addition, high ELK4 expression with good prognosis suggests another role of ELK4 as a tumor suppressor beyond SIRT7’s helper. In conclusion, we could assume that the H3K18ac deacetylation pathway is influenced by many other factors.
Collapse
Affiliation(s)
- Hye Seung Lee
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Wonkyung Jung
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Eunjung Lee
- Department of Pathology, Korea University Anam Hospital, Seoul, Korea
| | - Hyeyoon Chang
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Jin Hyuk Choi
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Han Gyeom Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Aeree Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
9
|
Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci 2016; 61:52-62. [PMID: 26521204 DOI: 10.1016/j.advms.2015.09.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/09/2023]
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have much more functions and to be much more abundant in living organisms. Sirtuins gained much attention when they were first acknowledged to be responsible for some beneficial and longevity-promoting effects of calorie restriction in many species of animals - from fruit flies to mammals. In this paper, we discuss some detailed molecular mechanisms of inducing these effects, and wonder if they could be possibly mimicked without actually applying calorie restriction, through induction of sirtuin activity. It is known now that sirtuins, when adjusting the pattern of cellular metabolism to nutrient availability, can regulate many metabolic functions significant from the standpoint of aging research - including DNA repair, genome stability, inflammatory response, apoptosis, cell cycle, and mitochondrial functions. While carrying out these regulations, sirtuins cooperate with many transcription factors, including PGC-1a, NFKB, p53 and FoxO. This paper contains some considerations about possible use of facilitating activity of the sirtuins in prevention of aging, metabolic syndrome, chronic inflammation, and other diseases.
Collapse
|
10
|
Huang CJ, Wu D, Khan FA, Huo LJ. DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA Cell Biol 2015; 34:652-60. [PMID: 26309017 DOI: 10.1089/dna.2015.2933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
11
|
Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT. An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system. Dev Biol 2015; 408:269-91. [PMID: 25818835 PMCID: PMC4584193 DOI: 10.1016/j.ydbio.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/30/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
Neurogenesis in the brain of Xenopus laevis continues throughout larval stages of development. We developed a 2-tier screen to identify candidate genes controlling neurogenesis in Xenopus optic tectum in vivo. First, microarray and NanoString analyses were used to identify candidate genes that were differentially expressed in Sox2-expressing neural progenitor cells or their neuronal progeny. Then an in vivo, time-lapse imaging-based screen was used to test whether morpholinos against 34 candidate genes altered neural progenitor cell proliferation or neuronal differentiation over 3 days in the optic tectum of intact Xenopus tadpoles. We co-electroporated antisense morpholino oligonucleotides against each of the candidate genes with a plasmid that drives GFP expression in Sox2-expressing neural progenitor cells and quantified the effects of morpholinos on neurogenesis. Of the 34 morpholinos tested, 24 altered neural progenitor cell proliferation or neuronal differentiation. The candidates which were tagged as differentially expressed and validated by the in vivo imaging screen include: actn1, arl9, eif3a, elk4, ephb1, fmr1-a, fxr1-1, fbxw7, fgf2, gstp1, hat1, hspa5, lsm6, mecp2, mmp9, and prkaca. Several of these candidates, including fgf2 and elk4, have known or proposed neurogenic functions, thereby validating our strategy to identify candidates. Genes with no previously demonstrated neurogenic functions, gstp1, hspa5 and lsm6, were identified from the morpholino experiments, suggesting that our screen successfully revealed unknown candidates. Genes that are associated with human disease, such as such as mecp2 and fmr1-a, were identified by our screen, providing the groundwork for using Xenopus as an experimental system to probe conserved disease mechanisms. Together the data identify candidate neurogenic regulatory genes and demonstrate that Xenopus is an effective experimental animal to identify and characterize genes that regulate neural progenitor cell proliferation and differentiation in vivo.
Collapse
Affiliation(s)
- Jennifer E Bestman
- Drug Discovery & Biomedical Sciences, The Medical University of South Carolina, Charleston, SC 29425, United States
| | - Lin-Chien Huang
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jane Lee-Osbourne
- University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Phillip Cheung
- Dart Neuroscience, LLC, San Diego, CA 92064, United States
| | - Hollis T Cline
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
12
|
Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2013; 13:755-66. [PMID: 23175280 DOI: 10.1038/nrm3478] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO-protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.
Collapse
Affiliation(s)
- Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
13
|
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487:114-8. [PMID: 22722849 PMCID: PMC3412143 DOI: 10.1038/nature11043] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
Sirtuin proteins regulate diverse cellular pathways that influence genomic stability, metabolism, and ageing1,2. SIRT7 is a mammalian sirtuin whose biochemical activity, molecular targets, and physiologic functions have been unclear. Here we show that SIRT7 is an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase that stabilizes the transformed state of cancer cells. Genome-wide binding studies reveal that SIRT7 binds to promoters of a specific set of gene targets, where it deacetylates H3K18Ac and promotes transcriptional repression. The spectrum of SIRT7 target genes is defined in part by its interaction with the cancer-associated ETS transcription factor ELK4, and comprises numerous genes with links to tumour suppression. Notably, selective hypoacetylation of H3K18Ac has been linked to oncogenic transformation, and in patients is associated with aggressive tumour phenotypes and poor prognosis3–6. We find that deacetylation of H3K18Ac by SIRT7 is necessary for maintaining essential features of human cancer cells, including anchorage-independent growth and escape from contact inhibition. Moreover, SIRT7 is necessary for a global hypoacetylation of H3K18Ac associated with cellular transformation by the viral oncoprotein E1A. Finally, SIRT7 depletion markedly reduces the tumourigenicity of human cancer cell xenografts in mice. Together, our work establishes SIRT7 as a highly selective H3K18Ac deacetylase and demonstrates a pivotal role for SIRT7 in chromatin regulation, cellular transformation programs, and tumour formation in vivo.
Collapse
|