1
|
Courty PE, Fromentin J, Martine L, Durney C, Martin Desbouis C, Wipf D, Acar N, Gerbeau-Pissot P. The C24-methyl/ethyl sterol ratio is increased by Rhizophagus irregularis colonization. MYCORRHIZA 2025; 35:20. [PMID: 40072696 DOI: 10.1007/s00572-025-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known. We performed a study on eleven model plants (banana, barrelclover, flax, grapevine, maize, pea, poplar, potato, rice, sorghum and tomato) to measure the sterol content and characterize the sterol composition of roots that were either non-colonized or colonized by the arbuscular mycorrhizal fungal model Rhizophagus irregularis DAOM197198. Our results reveal a systematic increase in the content of C24-methyl sterols in crude extracts of colonized roots as compared to non-colonized roots. In addition, the transcripts of SMT1 and SMT2 (which encode enzymes that produce C24-methyl and C24-ethyl sterols, respectively) were differentially accumulated in colonized plant roots. No common regulation pattern was observed among plants. The phylogenetic relationship of members of the SMT1 and SMT2 families in more than 100 fully sequenced genomes of plants, ferns, mosses, algae and fungi has allowed the identification of unambiguous clades. Our results therefore highlight a conserved arbuscular mycorrhizal symbiosis-dependent regulation of the root sterol composition in angiosperms, with some plant specificities.
Collapse
Affiliation(s)
| | - Jérôme Fromentin
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | - Lucy Martine
- Eye & Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000, Dijon, France
| | - Célien Durney
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | | | - Daniel Wipf
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | - Niyazi Acar
- Eye & Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000, Dijon, France
| | | |
Collapse
|
2
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Wang M, He Y, Zhong Z, Papikian A, Wang S, Gardiner J, Ghoshal B, Feng S, Jami-Alahmadi Y, Wohlschlegel JA, Jacobsen SE. Histone H3 lysine 4 methylation recruits DNA demethylases to enforce gene expression in Arabidopsis. NATURE PLANTS 2025; 11:206-217. [PMID: 39934332 PMCID: PMC11842272 DOI: 10.1038/s41477-025-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Patterning of DNA methylation in eukaryotic genomes is controlled by de novo methylation, maintenance mechanisms and demethylation pathways. In Arabidopsis thaliana, DNA demethylation enzymes are clearly important for shaping methylation patterns, but how they are regulated is poorly understood. Here we show that the targeting of histone H3 lysine four trimethylation (H3K4me3) with the catalytic domain of the SDG2 histone methyltransferase potently erased DNA methylation and gene silencing at FWA and also erased CG DNA methylation in many other regions of the Arabidopsis genome. This methylation erasure was completely blocked in the ros1 dml2 dml3 triple mutant lacking DNA demethylation enzymes, showing that H3K4me3 promotes the active removal of DNA methylation. Conversely, we found that the targeted removal of H3K4me3 increased the efficiency of targeted DNA methylation. These results highlight H3K4me3 as a potent anti-DNA methylation mark and also pave the way for development of more powerful epigenome engineering tools.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yan He
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Ashot Papikian
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shuya Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Translational Plant Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Basudev Ghoshal
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute (HHMI), UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Miryeganeh M, Armitage DW. Epigenetic responses of trees to environmental stress in the context of climate change. Biol Rev Camb Philos Soc 2025; 100:131-148. [PMID: 39192567 PMCID: PMC11718629 DOI: 10.1111/brv.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In long-lived tree populations, when environmental change outpaces rates of evolutionary adaptation, plasticity in traits related to stress tolerance, dormancy, and dispersal may be vital for preventing extinction. While a population's genetic background partly determines its ability to adapt to a changing environment, so too do the many types of epigenetic modifications that occur within and among populations, which vary on timescales orders of magnitude faster than the emergence of new beneficial alleles. Consequently, phenotypic plasticity driven by epigenetic modification may be especially critical for sessile, long-lived organisms such as trees that must rely on this plasticity to keep pace with rapid anthropogenic environmental change. While studies have reported large effects of DNA methylation, histone modification, and non-coding RNAs on the expression of stress-tolerance genes and resulting phenotypic responses, little is known about the role of these effects in non-model plants and particularly in trees. Here, we review new findings in plant epigenetics with particular relevance to the ability of trees to adapt to or escape stressors associated with rapid climate change. Such findings include specific epigenetic influences over drought, heat, and salinity tolerance, as well as dormancy and dispersal traits. We also highlight promising findings concerning transgenerational inheritance of an epigenetic 'stress memory' in plants. As epigenetic information is becoming increasingly easy to obtain, we close by outlining ways in which ecologists can use epigenetic information better to inform population management and forecasting efforts. Understanding the molecular mechanisms behind phenotypic plasticity and stress memory in tree species offers a promising path towards a mechanistic understanding of trees' responses to climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| | - David W. Armitage
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| |
Collapse
|
5
|
Huang KY, Feng YY, Du H, Ma CW, Xie D, Wan T, Feng XY, Dai XG, Yin TM, Wang XQ, Ran JH. DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70006. [PMID: 39982811 DOI: 10.1111/tpj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 510650, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Chang-Wang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan Xie
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiu-Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Gang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Ming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Hereme R, Galleguillos C, Molina-Montenegro MA. Climate change and epigenetics: Unraveling the role of methylation in response to thermal instability in the Antarctic plant Colobanthus quitensis. PHYSIOLOGIA PLANTARUM 2025; 177:e70043. [PMID: 39815938 DOI: 10.1111/ppl.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025]
Abstract
Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases. Here, we evaluated the impact of these events on the acclimation process, with a focus on how methylation influences the induction of cold response genes. According to the results, an increase in the number of methylations in the promoter regions is associated with lower expression of these genes. Similarly, in populations where this relationship is observed, individuals acclimated to the projected climate change condition are more vulnerable, as their average temperature is lower in the face of a cold event compared to individuals acclimated to the current antarctic condition. This research is the first report highlighting the role of methylation in response to cold and its influence on the transcriptional responses of the antarctic plant Colobanthus quitensis facing climate change projections.
Collapse
Affiliation(s)
- Rasme Hereme
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Carolina Galleguillos
- Centro de Biología Molecular de Plantas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marco A Molina-Montenegro
- Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
7
|
Balao F, Medrano M, Bazaga P, Paun O, Alonso C. Long-term methylome changes after experimental seed demethylation and their interaction with recurrent water stress in Erodium cicutarium (Geraniaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1199-1212. [PMID: 39250311 DOI: 10.1111/plb.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The frequencies and lengths of drought periods are increasing in subtropical and temperate regions worldwide. Epigenetic responses to water stress could be key for plant resilience to these largely unpredictable challenges. Experimental DNA demethylation, together with application of a stress factor is an appropriate strategy to reveal the contribution of epigenetics to plant responses to stress. We analysed leaf cytosine methylation changes in adult plants of the annual Mediterranean herb, Erodium cicutarium, in a greenhouse, after seed demethylation with 5-Azacytidine and/or recurrent water stress. We used bisulfite RADseq (BsRADseq) and a newly reported reference genome for E. cicutarium to characterize methylation changes in a 2 × 2 factorial design, controlling for plant relatedness. In the long term, 5-Azacytidine treatment alone caused both hypo- and hyper-methylation at individual cytosines, with substantial hypomethylation in CG contexts. In control conditions, drought resulted in a decrease in methylation in all but CHH contexts. In contrast, the genome of plants that experienced recurrent water stress and had been treated with 5-Azacytidine increased DNA methylation level by ca. 5%. Seed demethylation and recurrent drought produced a highly significant interaction in terms of global and context-specific cytosine methylation. Most methylation changes occurred around genic regions and within Transposable Elements. The annotation of these Differentially Methylated Regions associated with genes included several with a potential role in stress responses (e.g., PAL, CDKC, and ABCF), confirming an epigenetic contribution in response to stress at the molecular level.
Collapse
Affiliation(s)
- F Balao
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Medrano
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - P Bazaga
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - C Alonso
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
8
|
Nkongolo K, Michael P. Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch ( Betula papyrifera) exposed to nickel. Genome 2024; 67:351-367. [PMID: 39226484 DOI: 10.1139/gen-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (Betula papyrifera Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.
Collapse
Affiliation(s)
- Kabwe Nkongolo
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
9
|
Alakärppä E, Salo HM, Suokas M, Jokipii-Lukkari S, Vuosku J, Häggman H. Targeted bisulfite sequencing of Scots pine adaptation-related genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112173. [PMID: 38944158 DOI: 10.1016/j.plantsci.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
During environmental changes, epigenetic processes can enable adaptive responses faster than natural selection. In plants, very little is known about the role of DNA methylation during long-term adaptation. Scots pine is a widely distributed coniferous species which must adapt to different environmental conditions throughout its long lifespan. Thus, epigenetic modifications may contribute towards this direction. We provide bisulfite next-generation sequencing data from the putative promoters and exons of eight adaptation-related genes (A3IP2, CCA1, COL1, COL2, FTL2, MFT1, PHYO, and ZTL) in three Scots pine populations located in northern and southern parts of Finland. DNA methylation levels were studied in the two seed tissues: the maternal megagametophyte which contributes to embryo viability, and the biparental embryo which represents the next generation. In most genes, differentially methylated cytosines (DMCs) were in line with our previously demonstrated gene expression differences found in the same Scots pine populations. In addition, we found a strong correlation of total methylation levels between the embryo and megagametophyte tissues of a given individual tree, which indicates that DNA methylation can be inherited from the maternal parent. In conclusion, our results imply that DNA methylation differences may contribute to the adaptation of Scots pine populations in different climatic conditions.
Collapse
Affiliation(s)
- Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland.
| | - Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Soile Jokipii-Lukkari
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
10
|
Daware A, Mohanty JK, Narnoliya L, Singh A, Rathore D, Thakro V, Francis A, Singh NP, Francis P, Tripathi S, Chattopadhyay D, Parida SK. Uncovering DNA methylation landscapes to decipher evolutionary footprints of phenotypic diversity in chickpea. DNA Res 2024; 31:dsae013. [PMID: 38702947 PMCID: PMC11149376 DOI: 10.1093/dnares/dsae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Genetic diversity and environmental factors are long believed to be the dominant contributors to phenotypic diversity in crop plants. However, it has been recently established that, besides genetic variation, epigenetic variation, especially variation in DNA methylation, plays a significant role in determining phenotypic diversity in crop plants. Therefore, assessing DNA methylation diversity in crop plants becomes vital, especially in the case of crops like chickpea, which has a narrow genetic base. Thus, in the present study, we employed whole-genome bisulfite sequencing to assess DNA methylation diversity in wild and cultivated (desi and kabuli) chickpea. This revealed extensive DNA methylation diversity in both wild and cultivated chickpea. Interestingly, the methylation diversity was found to be significantly higher than genetic diversity, suggesting its potential role in providing vital phenotypic diversity for the evolution and domestication of the Cicer gene pool. The phylogeny based on DNA methylation variation also indicates a potential complementary role of DNA methylation variation in addition to DNA sequence variation in shaping chickpea evolution. Besides, the study also identified diverse epi-alleles of many previously known genes of agronomic importance. The Cicer MethVarMap database developed in this study enables researchers to readily visualize methylation variation within the genes and genomic regions of their interest (http://223.31.159.7/cicer/public/). Therefore, epigenetic variation like DNA methylation variation can potentially explain the paradox of high phenotypic diversity despite the narrow genetic base in chickpea and can potentially be employed for crop improvement.
Collapse
Affiliation(s)
- Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akansha Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepanshi Rathore
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aleena Francis
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Philip Francis
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur 208024, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
11
|
Varela A, Marfil CF, Talquenca SG, Fontana A, Asurmendi S, Buscema F, Berli FJ. Three-year study of DNA cytosine methylation dynamics in transplanted Malbec grapevines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112037. [PMID: 38367820 DOI: 10.1016/j.plantsci.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
DNA cytosine methylation, an epigenetic mechanism involved in gene regulation and genome stability, remains poorly understood in terms of its role under changing environmental conditions. Previous research using methylation-sensitive amplified polymorphism (MSAP) markers in a Vitis vinifera L. cv. Malbec clone showed vineyard-specific DNA methylation polymorphism, but no change in overall methylation levels. To complement these findings, the present study investigates the intra-seasonal epigenetic dynamics between genetically identical plants grown in different vineyards through a transplanting experiment. Cuttings of the same clone, showing differential methylation patterns imposed by the vineyard of origin (Agrelo and Gualtallary), were cultivated in a common vineyard (Lunlunta). Using high-performance liquid chromatography-ultraviolet detection, the quantification of global DNA 5-methylcytosine (5-mC) levels revealed relatively low overall 5-mC percentages in grapevines, with higher levels in Agrelo (5.8%) compared to Gualtallary plants (3.7%). The transplanted plants maintained the 5-mC levels differences between vineyards (9.8% vs 6.2%), which equalized in subsequent seasons (7.5% vs 7%). Additionally, the study examined 5-mC polymorphism using MSAP markers in Lunlunta transplanted plants over three seasons. The observed differences between vineyards in MSAP patterns during the initial growing season gradually diminished, suggesting a reprogramming of the hemimethylated pattern following implantation in the common vineyard. In contrast, the non-methylated pattern exhibited greater stability, indicating a potential memory effect. Overall, this study provides valuable insights into the dynamic nature of DNA methylation in grapevines under changing environmental conditions, with potential implications for crop management and breeding strategies.
Collapse
Affiliation(s)
- Anabella Varela
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina
| | - Carlos F Marfil
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín, Mendoza, Luján de Cuyo 3853, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina.
| | - Sebastián Gomez Talquenca
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín, Mendoza, Luján de Cuyo 3853, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, De Los Reseros y N. Repetto w/n, Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Fernando Buscema
- Catena Institute of Wine, Bodega Catena Zapata, Mendoza, Argentina
| | - Federico J Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Mendoza, Chacras de Coria M5507, Argentina.
| |
Collapse
|
12
|
Yadav S, Yadava YK, Meena S, Kalwan G, Bharadwaj C, Paul V, Kansal R, Gaikwad K, Jain PK. Novel insights into drought-induced regulation of ribosomal genes through DNA methylation in chickpea. Int J Biol Macromol 2024; 266:131380. [PMID: 38580022 DOI: 10.1016/j.ijbiomac.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Modifications within the epigenome of an organism in response to external environmental conditions allow it to withstand the hostile stress factors. Drought in chickpea is a severely limiting abiotic stress factor which is known to cause huge yield loss. To analyse the methylome of chickpea in response to drought stress conditions and how it affects gene expression, we performed whole-genome bisulfite sequencing (WGBS) and RNA-seq of two chickpea genotypes which contrast for drought tolerance. It was observed that the mCHH was most variable under drought stress and the drought tolerant (DT) genotype exhibited substantial genome-wide hypomethylation as compared to the drought sensitive (DS) genotype. Specifically, there was substantial difference in gene expression and methylation for the ribosomal genes for the tolerant and sensitive genotypes. The differential expression of these genes was in complete agreement with earlier reported transcriptomes in chickpea. Many of these genes were hypomethylated (q < 0.01) and downregulated under drought stress (p < 0.01) in the sensitive genotype. The gene RPS6 (ribosomal protein small subunit) was found to be downregulated and hypomethylated in the drought sensitive genotype which could possibly lead to reduced ribosomal biosynthesis. This study provides novel insights into regulation of drought-responsive genes in chickpea.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shashi Meena
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijay Paul
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
13
|
Shan S, Gitzendanner MA, Boatwright JL, Spoelhof JP, Ethridge CL, Ji L, Liu X, Soltis PS, Schmitz RJ, Soltis DE. Genome-wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae). THE NEW PHYTOLOGIST 2024; 242:1363-1376. [PMID: 38450804 DOI: 10.1111/nph.19655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
14
|
Sammarco I, Díez Rodríguez B, Galanti D, Nunn A, Becker C, Bossdorf O, Münzbergová Z, Latzel V. DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (Fragaria vesca). THE NEW PHYTOLOGIST 2024; 241:1621-1635. [PMID: 38058250 DOI: 10.1111/nph.19464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Bárbara Díez Rodríguez
- Natural Resources and Climate Area, CARTIF Technology Centre, Parque Tecnológico de Boecillo, parc. 205, 47151, Boecillo, Valladolid, Spain
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043, Marburg, Germany
- Department of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098, Freiburg i. Br., Germany
| | - Dario Galanti
- Royal Botanic Gardens, Kew, Richmond, UK
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Adam Nunn
- ecSeq Bioinformatics GmbH, Sternwartenstraße 29, 04103, Saxony, Germany
- Department of Computer Science, University of Leipzig, Härtelstraße 16-18, Leipzig, 04107, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr Bohr-Gasse 3, 1030, Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
15
|
Ballesteros D, Martínez MT, Sánchez-Romero C, Montalbán IA, Sales E, Moncaleán P, Arrillaga I, Corredoira E. Current status of the cryopreservation of embryogenic material of woody species. FRONTIERS IN PLANT SCIENCE 2024; 14:1337152. [PMID: 38298606 PMCID: PMC10828030 DOI: 10.3389/fpls.2023.1337152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.
Collapse
Affiliation(s)
- Daniel Ballesteros
- Departamento de Botánica y Geología, Facultad de Farmacia, Universitat de València, Burjassot, Valencia, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, Haywards Heath, United Kingdom
| | - María Teresa Martínez
- Misión Biológica de Galicia (MBG-CSIC), Sede Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Ester Sales
- Dpto. Ciencias Agrarias y del Medio natural, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Escuela Politécnica Superior, Huesca, Spain
| | | | - Isabel Arrillaga
- Institut Biotec/Med, Dpto Biología Vegetal, Facultad de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Elena Corredoira
- Misión Biológica de Galicia (MBG-CSIC), Sede Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Kenchanmane Raju SK, Lensink M, Kliebenstein DJ, Niederhuth C, Monroe G. Epigenomic divergence correlates with sequence polymorphism in Arabidopsis paralogs. THE NEW PHYTOLOGIST 2023; 240:1292-1304. [PMID: 37614211 DOI: 10.1111/nph.19227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.
Collapse
Affiliation(s)
| | - Mariele Lensink
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Marand AP, Eveland AL, Kaufmann K, Springer NM. cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:111-137. [PMID: 36608347 PMCID: PMC9881396 DOI: 10.1146/annurev-arplant-070122-030236] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
Collapse
Affiliation(s)
| | | | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA;
| |
Collapse
|
18
|
Kenchanmane Raju SK, Ledford M, Niederhuth CE. DNA methylation signatures of duplicate gene evolution in angiosperms. PLANT PHYSIOLOGY 2023:kiad220. [PMID: 37061825 PMCID: PMC10400039 DOI: 10.1093/plphys/kiad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomics approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole genome duplicates were typically enriched for CG-only gene-body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was characteristic of more recent single-gene duplicates. Core angiosperm gene families differentiated into those which preferentially retain paralogs and 'duplication-resistant' families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Monroe JG. Potential and limits of (mal)adaptive mutation rate plasticity in plants. THE NEW PHYTOLOGIST 2023; 237:2020-2026. [PMID: 36444532 DOI: 10.1111/nph.18640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Genetic mutations provide the heritable material for plant adaptation to their environments. At the same time, the environment can affect the mutation rate across plant genomes. However, the extent to which environmental plasticity in mutation rates can facilitate or hinder adaptation remains a longstanding and unresolved question. Emerging discoveries of mechanisms affecting mutation rate variability provide opportunities to consider this question in a new light. Links between chromatin states, transposable elements, and DNA repair suggest cases of adaptive mutation rate plasticity could occur. Yet, numerous evolutionary and biological forces are expected to limit the impact of any such mutation rate plasticity on adaptive evolution. Persistent uncertainty about the significance of mutation rate plasticity on adaptation motivates new experimental and theoretical research relevant to understanding plant responses in changing environments.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Akinmusola RY, Wilkins CA, Doughty J. DDM1-Mediated TE Silencing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:437. [PMID: 36771522 PMCID: PMC9919755 DOI: 10.3390/plants12030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time and heterosis. The role of DDM1 in epigenetic regulation is best characterised in plants, especially arabidopsis, rice, maize and tomato. The epigenetic changes induced by DDM1 establish the stable inheritance of many plant traits for at least eight generations, yet DDM1 does not methylate protein-coding genes. The DDM1 TE silencing mechanism is distinct and has evolved independently of other silencing pathways. Unlike the RNA-directed DNA Methylation (RdDM) pathway, DDM1 does not depend on siRNAs to enforce the heterochromatic state of TEs. Here, we review DDM1 TE silencing activity in the RdDM and non-RdDM contexts. The DDM1 TE silencing machinery is strongly associated with the histone linker H1 and histone H2A.W. While the linker histone H1 excludes the RdDM factors from methylating the heterochromatin, the histone H2A.W variant prevents TE mobility. The DDM1-H2A.W strategy alone silences nearly all the mobile TEs in the arabidopsis genome. Thus, the DDM1-directed TE silencing essentially preserves heterochromatic features and abolishes mobile threats to genome stability.
Collapse
|
21
|
Van Antro M, Prelovsek S, Ivanovic S, Gawehns F, Wagemaker NCAM, Mysara M, Horemans N, Vergeer P, Verhoeven KJF. DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures. Mol Ecol 2023; 32:428-443. [PMID: 36324253 PMCID: PMC10100429 DOI: 10.1111/mec.16757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Environmentally induced DNA methylation variants may mediate gene expression responses to environmental changes. If such induced variants are transgenerationally stable, there is potential for expression responses to persist over multiple generations. Our current knowledge in plants, however, is almost exclusively based on studies conducted in sexually reproducing species where the majority of DNA methylation changes are subject to resetting in germlines, limiting the potential for transgenerational epigenetics stress memory. Asexual reproduction circumvents germlines, and may therefore be more conducive to long-term inheritance of epigenetic marks. Taking advantage of the rapid clonal reproduction of the common duckweed Lemna minor, we hypothesize that long-term, transgenerational stress memory from exposure to high temperature can be detected in DNA methylation profiles. Using a reduced representation bisulphite sequencing approach (epiGBS), we show that temperature stress induces DNA hypermethylation at many CG and CHG cytosine contexts but not CHH. Additionally, differential methylation in CHG context that was observed was still detected in a subset of cytosines, even after 3-12 generations of culturing in a common environment. This demonstrates a memory effect of stress reflected in the methylome and that persists over multiple clonal generations. Structural annotation revealed that this memory effect in CHG methylation was enriched in transposable elements. The observed epigenetic stress memory is probably caused by stable transgenerational persistence of temperature-induced DNA methylation variants across clonal generations. To the extent that such epigenetic memory has functional consequences for gene expression and phenotypes, this result suggests potential for long-term modulation of stress responses in asexual plants.
Collapse
Affiliation(s)
- Morgane Van Antro
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Stella Prelovsek
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Slavica Ivanovic
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Fleur Gawehns
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | | | - Mohamed Mysara
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Nele Horemans
- Biosphere Impact StudiesBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Philippine Vergeer
- Plant Ecology and PhysiologyRadboud UniversityNijmegenThe Netherlands
- Wageningen University and Research (WUR)Plant Ecology and Nature Conservation GroupWageningenThe Netherlands
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
22
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
23
|
Hansen PB, Ruud AK, de los Campos G, Malinowska M, Nagy I, Svane SF, Thorup-Kristensen K, Jensen JD, Krusell L, Asp T. Integration of DNA Methylation and Transcriptome Data Improves Complex Trait Prediction in Hordeum vulgare. PLANTS 2022; 11:plants11172190. [PMID: 36079572 PMCID: PMC9459846 DOI: 10.3390/plants11172190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Whole-genome multi-omics profiles contain valuable information for the characterization and prediction of complex traits in plants. In this study, we evaluate multi-omics models to predict four complex traits in barley (Hordeum vulgare); grain yield, thousand kernel weight, protein content, and nitrogen uptake. Genomic, transcriptomic, and DNA methylation data were obtained from 75 spring barley lines tested in the RadiMax semi-field phenomics facility under control and water-scarce treatment. By integrating multi-omics data at genomic, transcriptomic, and DNA methylation regulatory levels, a higher proportion of phenotypic variance was explained (0.72–0.91) than with genomic models alone (0.55–0.86). The correlation between predictions and phenotypes varied from 0.17–0.28 for control plants and 0.23–0.37 for water-scarce plants, and the increase in accuracy was significant for nitrogen uptake and protein content compared to models using genomic information alone. Adding transcriptomic and DNA methylation information to the prediction models explained more of the phenotypic variance attributed to the environment in grain yield and nitrogen uptake. It furthermore explained more of the non-additive genetic effects for thousand kernel weight and protein content. Our results show the feasibility of multi-omics prediction for complex traits in barley.
Collapse
Affiliation(s)
- Pernille Bjarup Hansen
- Center for Quantitative Genetics and Genomics, Aarhus University, 4200 Slagelse, Denmark
- Correspondence: (P.B.H.); (T.A.); Tel.: +45-87158243 (T.A.)
| | - Anja Karine Ruud
- Center for Quantitative Genetics and Genomics, Aarhus University, 4200 Slagelse, Denmark
| | - Gustavo de los Campos
- Departments of Epidemiology & Biostatistics and Statistics & Probability, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marta Malinowska
- Center for Quantitative Genetics and Genomics, Aarhus University, 4200 Slagelse, Denmark
| | - Istvan Nagy
- Center for Quantitative Genetics and Genomics, Aarhus University, 4200 Slagelse, Denmark
| | - Simon Fiil Svane
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Copenhagen University, 2630 Taastrup, Denmark
| | - Kristian Thorup-Kristensen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Copenhagen University, 2630 Taastrup, Denmark
| | | | - Lene Krusell
- Sejet Plant Breeding, Nørremarksvej 67, 8700 Horsens, Denmark
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, 4200 Slagelse, Denmark
- Correspondence: (P.B.H.); (T.A.); Tel.: +45-87158243 (T.A.)
| |
Collapse
|
24
|
Escrich A, Cusido RM, Bonfill M, Palazon J, Sanchez-Muñoz R, Moyano E. The Epigenetic Regulation in Plant Specialized Metabolism: DNA Methylation Limits Paclitaxel in vitro Biotechnological Production. FRONTIERS IN PLANT SCIENCE 2022; 13:899444. [PMID: 35874001 PMCID: PMC9305382 DOI: 10.3389/fpls.2022.899444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Environmental conditions are key factors in the modulation of the epigenetic mechanisms regulating gene expression in plants. Specifically, the maintenance of cell cultures in optimal in vitro conditions alters methylation patterns and, consequently, their genetic transcription and metabolism. Paclitaxel production in Taxus x media cell cultures is reduced during its maintenance in in vitro conditions, compromising the biotechnological production of this valuable anticancer agent. To understand how DNA methylation influences taxane production, the promoters of three genes (GGPPS, TXS, and DBTNBT) involved in taxane biosynthesis have been studied, comparing the methylation patterns between a new line and one of ~14 years old. Our work revealed that while the central promoter of the GGPPS gene is protected from cytosine methylation accumulation, TXS and DBTNBT promoters accumulate methylation at different levels. The DBTNBT promoter of the old line is the most affected, showing a 200 bp regulatory region where all the cytosines were methylated. This evidence the existence of specific epigenetic regulatory mechanisms affecting the last steps of the pathway, such as the DBTNBT promoter. Interestingly, the GGPPS promoter, a regulatory sequence of a non-specific taxane biosynthetic gene, was not affected by this mechanism. In addition, the relationship between the detected methylation points and the predicted transcription factor binding sites (TFBS) showed that the action of TFs would be compromised in the old line, giving a further explanation for the production reduction in in vitro cell cultures. This knowledge could help in designing novel strategies to enhance the biotechnological production of taxanes over time.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa M. Cusido
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
25
|
Liu S, Bao Y, Deng H, Liu G, Han Y, Wu Y, Zhang T, Chen C. The Methylation Inhibitor 5-Aza-2'-Deoxycytidine Induces Genome-Wide Hypomethylation in Rice. RICE (NEW YORK, N.Y.) 2022; 15:35. [PMID: 35779161 PMCID: PMC9250569 DOI: 10.1186/s12284-022-00580-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is a conserved epigenetic modification which is vital for regulating gene expression and maintaining genome stability in both mammals and plants. Homozygous mutation of rice methyltransferase 1 (met1) gene can cause host death in rice, making it difficult to obtain plant material needed for hypomethylation research. To circumvent this challenge, the methylation inhibitor, 5-Aza-2'-deoxycytidine (AzaD), is used as a cytosine nucleoside analogue to reduce genome wide hypomethylation and is widely used in hypomethylation research. However, how AzaD affects plant methylation profiles at the genome scale is largely unknown. Here, we treated rice seedlings with AzaD and compared the AzaD treatment with osmet1-2 mutants, illustrating that there are similar CG hypomethylation and distribution throughout the whole genome. Along with global methylation loss class I transposable elements (TEs) which are farther from genes compared with class II TEs, were more significantly activated, and the RNA-directed DNA Methylation (RdDM) pathway was activated in specific genomic regions to compensate for severe CG loss. Overall, our results suggest that AzaD is an effective DNA methylation inhibitor that can influence genome wide methylation and cause a series of epigenetic variations.
Collapse
Affiliation(s)
- Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Jopčík M, Libantová J, Lancíková V. Effect of chronic radiation on the flax (Linum usitatissimum L.) genome grown for six consecutive generations in the radioactive Chernobyl area. PHYSIOLOGIA PLANTARUM 2022; 174:e13745. [PMID: 35780328 DOI: 10.1111/ppl.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The growth of plants under chronic radiation stress in the Chernobyl area may cause changes in the genome of plants. To assess the extent of genetic and epigenetic changes in nuclear DNA, seeds of the annual crop flax (Linum usitatissimum L.) of the Kyivskyi variety, sown 21 years after the accident and grown for six generations in radioactive (RAD) and remediated (REM) fields were analysed. Flaxseed used for sowing first generation, which served as a reference (REF), was also analysed. The AFLP (Amplified Fragment Length Polymorphism) revealed a higher number of specific EcoRI-MseI loci (3.4-fold) in pooled flaxseed samples harvested from the RAD field compared with the REM field, indicating a link between the mutation process in the flax genome and the ongoing adaptation process. MSAP (Methylation-Sensitive Amplified Polymorphism) detecting EcoRI-MspI and EcoRI-HpaII loci in flax nuclear DNA genome showed no significant differences in methylation level, reaching about 33% in each of the groups studied. On the other hand, significant changes in the DNA methylation pattern of flaxseed samples harvested from the RAD field compared with controls were detected. Pairwise FST comparison revealed within both, EcoRI-MspI and transformed methylation-Sensitive data sets more than a 3-fold increase of genetic divergence in the RAD field compared with both controls. These results indicate that the nuclear genome of flax exposed to chronic radiation for six generations has more mutations and uses DNA methylation as one of the adaptation mechanisms for sustainability under adverse conditions.
Collapse
Affiliation(s)
- Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Libantová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Veronika Lancíková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
27
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
28
|
Mounger JM, van Riemsdijk I, Boquete MT, Wagemaker CAM, Fatma S, Robertson MH, Voors SA, Oberstaller J, Gawehns F, Hanley TC, Grosse I, Verhoeven KJF, Sotka EE, Gehring CA, Hughes AR, Lewis DB, Schmid MW, Richards CL. Genetic and Epigenetic Differentiation Across Intertidal Gradients in the Foundation Plant Spartina alterniflora. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.868826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological genomics approaches have informed us about the structure of genetic diversity in natural populations that might underlie patterns in trait variation. However, we still know surprisingly little about the mechanisms that permit organisms to adapt to variable environmental conditions. The salt marsh foundation plant Spartina alterniflora exhibits a dramatic range in phenotype that is associated with a pronounced intertidal environmental gradient across a narrow spatial scale. Both genetic and non-genetic molecular mechanisms might underlie this phenotypic variation. To investigate both, we used epigenotyping-by-sequencing (epiGBS) to evaluate the make-up of natural populations across the intertidal environmental gradient. Based on recent findings, we expected that both DNA sequence and DNA methylation diversity would be explained by source population and habitat within populations. However, we predicted that epigenetic variation might be more strongly associated with habitat since similar epigenetic modifications could be rapidly elicited across different genetic backgrounds by similar environmental conditions. Overall, with PERMANOVA we found that population of origin explained a significant amount of the genetic (8.6%) and epigenetic (3.2%) variance. In addition, we found that a small but significant amount of genetic and epigenetic variance (<1%) was explained by habitat within populations. The interaction of population and habitat explained an additional 2.9% of the genetic variance and 1.4% of the epigenetic variance. By examining genetic and epigenetic variation within the same fragments (variation in close-cis), we found that population explained epigenetic variation in 9.2% of 8,960 tested loci, even after accounting for differences in the DNA sequence of the fragment. Habitat alone explained very little (<0.1%) of the variation in these close-cis comparisons, but the interaction of population and habitat explained 2.1% of the epigenetic variation in these loci. Using multiple matrix regression with randomization (MMRR) we found that phenotypic differences in natural populations were correlated with epigenetic and environmental differences even when accounting for genetic differences. Our results support the contention that sequence variation explains most of the variation in DNA methylation, but we have provided evidence that DNA methylation distinctly contributes to plant responses in natural populations.
Collapse
|
29
|
Teresi SJ, Teresi MB, Edger PP. TE Density: a tool to investigate the biology of transposable elements. Mob DNA 2022; 13:11. [PMID: 35413944 PMCID: PMC9004194 DOI: 10.1186/s13100-022-00264-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are powerful creators of genotypic and phenotypic diversity due to their inherent mutagenic capabilities and in this way they serve as a deep reservoir of sequences for genomic variation. As agents of genetic disruption, a TE's potential to impact phenotype is partially a factor of its location in the genome. Previous research has shown TEs' ability to impact the expression of neighboring genes, however our understanding of this trend is hampered by the exceptional amount of diversity in the TE world, and a lack of publicly available computational methods that quantify the presence of TEs relative to genes. RESULTS Here, we have developed a tool to more easily quantify TE presence relative to genes through the use of only a gene and TE annotation, yielding a new metric we call TE Density. Briefly defined as the proportion of TE-occupied base-pairs relative to a window-size of the genome. This new pipeline reports TE density for each gene in the genome, for each type descriptor of TE (order and superfamily), and for multiple positions and distances relative to the gene (upstream, intragenic, and downstream) over sliding, user-defined windows. In this way, we overcome previous limitations to the study of TE-gene relationships by focusing on all TE types present in the genome, utilizing flexible genomic distances for measurement, and reporting a TE presence metric for every gene in the genome. CONCLUSIONS Together, this new tool opens up new avenues for studying TE-gene relationships, genome architecture, comparative genomics, and the tremendous diversity present of the TE world. TE Density is open-source and freely available at: https://github.com/sjteresi/TE_Density .
Collapse
Affiliation(s)
- Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | | | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
30
|
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene-body methylation in plants: mechanisms, functions and important implications for understanding evolutionary processes. Genome Biol Evol 2022; 14:6550137. [PMID: 35298639 PMCID: PMC8995044 DOI: 10.1093/gbe/evac038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.
Collapse
Affiliation(s)
| | | | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | | |
Collapse
|
31
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
32
|
DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 2021; 44:279-297. [PMID: 34837631 DOI: 10.1007/s13258-021-01191-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND A review of research shows that methylation in plants is more complex and sophisticated than in microorganisms and animals. Overall, studies on the effects of abiotic stress on epigenetic modifications in plants are still scarce and limited to few species. Epigenetic regulation of plant responses to environmental stresses has not been elucidated. This study summarizes key effects of abiotic stressors on DNA methylation and histone modifications in plants. DISCUSSION Plant DNA methylation and histone modifications in responses to abiotic stressors varied and depended on the type and level of stress, plant tissues, age, and species. A critical analysis of the literature available revealed that 44% of the epigenetic modifications induced by abiotic stressors in plants involved DNA hypomethylation, 40% DNA hypermethylation, and 16% histone modification. The epigenetic changes in plants might be underestimated since most authors used methods such as methylation-sensitive amplification polymorphism (MSAP), High performance liquid chromatography (HPLC), and immunolabeling that are less sensitive compared to bisulfite sequencing and single-base resolution methylome analyses. More over, mechanisms underlying epigenetic changes in plants have not yet been determined since most reports showed only the level or/and distribution of DNA methylation and histone modifications. CONCLUSIONS Various epigenetic mechanisms are involved in response to abiotic stressors, and several of them are still unknown. Integrated analysis of the changes in the genome by omic approaches should help to identify novel components underlying mechanisms involved in DNA methylation and histone modifications associated with plant response to environmental stressors.
Collapse
|
33
|
Drosou V, Kapazoglou A, Letsiou S, Tsaftaris AS, Argiriou A. Drought induces variation in the DNA methylation status of the barley HvDME promoter. JOURNAL OF PLANT RESEARCH 2021; 134:1351-1362. [PMID: 34510287 DOI: 10.1007/s10265-021-01342-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Cytosine methylation is an epigenetic modification with essential roles in diverse plant biological processes including vegetative and reproductive development and responsiveness to environmental stimuli. A dynamic process involving DNA methyltransferases and DNA demethylases establishes cytosine DNA methylation levels and distribution along the genome. A DNA demethylase gene from barley (Hordeum vulgare), DEMETER (HvDME), the homologue of the Arabidopsis thaliana DME (AtDME), has been characterized previously and found to respond to drought conditions. Here, the promoter of the HvDME gene was analysed further by in silico and DNA methylation analysis. The effect of drought conditions on the DNA methylation status of HvDME was investigated at single-cytosine resolution using bisulfite sequencing. It was demonstrated that the HvDME promoter can be divided into two discrete regions, in terms of DNA methylation level and density; a relatively unmethylated region proximal to the translational start site that is depleted of non-CG (CHG, CHH) methylation and another distal region, approximately 1500 bp upstream of the translational start site, enriched in CG, as well as non-CG methylation. Drought stress provoked alterations in the methylation status of the HvDME promoter distal region, whereas the DNA methylation of the proximal region remained unaffected. Computational analysis of the HvDME promoter revealed the presence of several putative regulatory elements related to drought responsiveness, as well as transposable elements (TEs) that may affect DNA methylation. Overall, our results expand our investigations of the epigenetic regulation of the HvDME gene in response to drought stress in barley and may contribute to further understanding of the epigenetic mechanisms underlying abiotic stress responses in barley and other cereals.
Collapse
Affiliation(s)
- Victoria Drosou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece
| | - Aliki Kapazoglou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece.
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Lykovrysi, 14123, Athens, Greece.
| | - Sophia Letsiou
- Laboratory of Biochemistry, Department of Research and Development, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | | | - Anagnostis Argiriou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
34
|
Kinser TJ, Smith RD, Lawrence AH, Cooley AM, Vallejo-Marín M, Conradi Smith GD, Puzey JR. Endosperm-based incompatibilities in hybrid monkeyflowers. THE PLANT CELL 2021; 33:2235-2257. [PMID: 33895820 PMCID: PMC8364248 DOI: 10.1093/plcell/koab117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 05/31/2023]
Abstract
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.
Collapse
Affiliation(s)
- Taliesin J. Kinser
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | - Ronald D. Smith
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185
| | - Amelia H. Lawrence
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| | | | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | | | - Joshua R. Puzey
- Biology Department, College of William and Mary, Williamsburg, Virginia 23185
| |
Collapse
|
35
|
Mounger J, Boquete MT, Schmid MW, Granado R, Robertson MH, Voors SA, Langanke KL, Alvarez M, Wagemaker CAM, Schrey AW, Fox GA, Lewis DB, Lira CF, Richards CL. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle. Evol Dev 2021; 23:351-374. [PMID: 34382741 DOI: 10.1111/ede.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions and is potentially threatened by anthropogenic environmental changes. Several studies have documented landscape-level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of nongenetic variation. To assess one type of nongenetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing; epiGBS) to address the following questions: (a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? (b) How are genetic and epigenetic variation structured within and among populations? (c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field. In addition, a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - M Teresa Boquete
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Department of Evolutionary Ecology, CSIC, Estación Biológica de Doñana, Sevilla, Spain
| | | | - Renan Granado
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Marta H Robertson
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Sandy A Voors
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Kristen L Langanke
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Mariano Alvarez
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Avalo, Durham, NC, USA
| | | | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Gordon A Fox
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Catarina Fonseca Lira
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.,Plant Evolutionary Ecology, University of Tübingen, Institute of Evolution & Ecology, Tübingen, Germany
| |
Collapse
|
36
|
Dai X, Wang J, Song Y, Liu Z, Xue T, Qiao M, Yu Y, Xin W, Xiang F. Cytosine methylation of the FWA promoter promotes direct in vitro shoot regeneration in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1491-1504. [PMID: 34292662 DOI: 10.1111/jipb.13156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic modifications within promoter sequences can act as regulators of gene expression. Shoot regeneration is influenced by both DNA methylation and histone methylation, but the mechanistic basis of this regulation is obscure. Here, we identified 218 genes related to the regeneration capacity of callus that were differentially transcribed between regenerable calli (RC) and non-regenerable calli (NRC) in Arabidopsis thaliana. An analysis of the promoters of five of the differentially expressed genes (FWA, ACC1, TFL1, MAX3, and GRP3) pointed to an inverse relationship between cytosine methylation and transcription. The FWA promoter was demethylated and highly expressed in NRC, whereas it was methylated and expressed at low levels in RC. Explants of the hypomethylation mutants fwa-1 and fwa-2 showed strong levels of FWA expression and regenerated less readily than the wild type, suggesting that FWA inhibits direct in vitro shoot regeneration. WUSCHEL-RELATED HOMEOBOX 9 (WOX9), which is required for shoot apical meristem formation, was directly repressed by FWA. Overexpressing WOX9 partly rescued the shoot regeneration defect of fwa-2 plants. These findings suggest that cytosine methylation of the FWA promoter forms part of the regulatory system governing callus regenerability and direct in vitro shoot regeneration.
Collapse
Affiliation(s)
- Xuehuan Dai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yuguang Song
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present address: Qufu Normal University, Qufu, 273165, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present address: Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tao Xue
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present address: Huaibei Normal University, Huaibei, 235000, China
| | - Meng Qiao
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yanchong Yu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present address: Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Xin
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present address: Institute of Botany, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengning Xiang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
37
|
Zhao Y, Zhong Y, Ye C, Liang P, Pan X, Zhang YY, Zhang Y, Shen Y. Multi-omics analyses on Kandelia obovata reveal its response to transplanting and genetic differentiation among populations. BMC PLANT BIOLOGY 2021; 21:341. [PMID: 34281510 PMCID: PMC8287808 DOI: 10.1186/s12870-021-03123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.
Collapse
Affiliation(s)
- Yuze Zhao
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yifan Zhong
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pingping Liang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
38
|
Mounger J, Ainouche ML, Bossdorf O, Cavé-Radet A, Li B, Parepa M, Salmon A, Yang J, Richards CL. Epigenetics and the success of invasive plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200117. [PMID: 33866809 PMCID: PMC8059582 DOI: 10.1098/rstb.2020.0117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Biological invasions impose ecological and economic problems on a global scale, but also provide extraordinary opportunities for studying contemporary evolution. It is critical to understand the evolutionary processes that underly invasion success in order to successfully manage existing invaders, and to prevent future invasions. As successful invasive species sometimes are suspected to rapidly adjust to their new environments in spite of very low genetic diversity, we are obliged to re-evaluate genomic-level processes that translate into phenotypic diversity. In this paper, we review work that supports the idea that trait variation, within and among invasive populations, can be created through epigenetic or other non-genetic processes, particularly in clonal invaders where somatic changes can persist indefinitely. We consider several processes that have been implicated as adaptive in invasion success, focusing on various forms of 'genomic shock' resulting from exposure to environmental stress, hybridization and whole-genome duplication (polyploidy), and leading to various patterns of gene expression re-programming and epigenetic changes that contribute to phenotypic variation or even novelty. These mechanisms can contribute to transgressive phenotypes, including hybrid vigour and novel traits, and may thus help to understand the huge successes of some plant invaders, especially those that are genetically impoverished. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Jeannie Mounger
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
| | - Malika L. Ainouche
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Madalin Parepa
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Campus Scientifique de Beaulieu, Rennes, France
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33617, USA
- Plant Evolutionary Ecology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Tong W, Li R, Huang J, Zhao H, Ge R, Wu Q, Mallano AI, Wang Y, Li F, Deng W, Li Y, Xia E. Divergent DNA methylation contributes to duplicated gene evolution and chilling response in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1312-1327. [PMID: 33730390 DOI: 10.1111/tpj.15237] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali I Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
40
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Li H, Yang X, Wang Q, Chen J, Shi T. Distinct methylome patterns contribute to ecotypic differentiation in the growth of the storage organ of a flowering plant (sacred lotus). Mol Ecol 2021; 30:2831-2845. [PMID: 33899994 DOI: 10.1111/mec.15933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
DNA methylation is an epigenetic modification involved in phenotypic diversity, plant development, and environmental responses. However, the mechanisms of DNA methylation underpinning the adaption of lotus (Nelumbo nucifera) ecotypes to high and low latitudes remain unsolved, especially adaptive evolution of their storage organs. Tropical and temperate lotus ecotypes have thin and enlarged rhizomes which are adapted to low and high latitudes, respectively. Here, we investigated the DNA methylomes and transcriptomes of rhizomes of the temperate and tropical lotus to address this issue. Compared with that of the tropical lotus, the DNA of the temperate lotus was significantly more hypermethylated, indicating an increase in global DNA methylation in the lotus, with rhizome enlargement. Meanwhile, genes associated with differentially methylated regions in their promoters tended to be differentially expressed between the two ecotypes. Interestingly, the genes with their expression negatively correlated with methylation levels in their promoters and genomic regions displayed significantly higher transposon coverage, while the genes showing a significant positive correlation between expression and methylation showed lesser transposon coverage. Further, we identified that DNA methylation, especially in the promoter region, was significantly correlated with the expression of many starch-biosynthetic, gibberellin-, and brassinosteroid-signalling genes associated with rhizome differentiation. Overall, our study unveiled that distinct global and local methylation patterns between the two lotus ecotypes contribute to their expression differences and adaptive phenotypic divergence of their storage organs, highlighting the role of DNA methylation in shaping the ecotypic differentiation of lotus.
Collapse
Affiliation(s)
- Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. FORESTS 2021. [DOI: 10.3390/f12050569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications such as DNA methylation are a potential mechanism for trees to respond to changing environments. However, it remains controversial the extent to which DNA methylation impacts ecologically important traits that influence fitness. In this study, we used reduced-representation bisulfite sequencing to associate genomic and epigenomic variation with seven phenotypic traits related to growth, leaf function, and disease susceptibility in 160 valley oak (Quercus lobata) saplings planted across two common gardens in California. We found that DNA methylation was associated with a significant fraction of phenotypic variance in plant height, leaf lobedness, powdery mildew infection, and trichome density. Two of the seven traits were significantly associated with DNA methylation in the CG context, three traits were significantly associated with CHG methylation, and two traits were significantly associated with CHH methylation. Notably, controlling for genomic variation in SNPs generally reduced the amount of trait variation explained by DNA methylation. Our results suggest that DNA methylation may serve as a useful biomarker to predict phenotypic variation in trees, though it remains unclear the degree to which DNA methylation is a causal mechanism driving phenotypic variation in forest tree species.
Collapse
|
43
|
Chachar S, Liu J, Zhang P, Riaz A, Guan C, Liu S. Harnessing Current Knowledge of DNA N6-Methyladenosine From Model Plants for Non-model Crops. Front Genet 2021; 12:668317. [PMID: 33995495 PMCID: PMC8118384 DOI: 10.3389/fgene.2021.668317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications alter the gene activity and function by causing change in the chromosomal architecture through DNA methylation/demethylation, or histone modifications without causing any change in DNA sequence. In plants, DNA cytosine methylation (5mC) is vital for various pathways such as, gene regulation, transposon suppression, DNA repair, replication, transcription, and recombination. Thanks to recent advances in high throughput sequencing (HTS) technologies for epigenomic “Big Data” generation, accumulated studies have revealed the occurrence of another novel DNA methylation mark, N6-methyladenosine (6mA), which is highly present on gene bodies mainly activates gene expression in model plants such as eudicot Arabidopsis (Arabidopsis thaliana) and monocot rice (Oryza sativa). However, in non-model crops, the occurrence and importance of 6mA remains largely less known, with only limited reports in few species, such as Rosaceae (wild strawberry), and soybean (Glycine max). Given the aforementioned vital roles of 6mA in plants, hereinafter, we summarize the latest advances of DNA 6mA modification, and investigate the historical, known and vital functions of 6mA in plants. We also consider advanced artificial-intelligence biotechnologies that improve extraction and prediction of 6mA concepts. In this Review, we discuss the potential challenges that may hinder exploitation of 6mA, and give future goals of 6mA from model plants to non-model crops.
Collapse
Affiliation(s)
- Sadaruddin Chachar
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Department of Biotechnology, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Jingrong Liu
- College of Mathematics and Statistics, Northwest Normal University, Lanzhou, China
| | - Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adeel Riaz
- Deaprtment of Biochemistry, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Changfei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Shuyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Soliman M, Podio M, Marconi G, Di Marsico M, Ortiz JPA, Albertini E, Delgado L. Differential Epigenetic Marks Are Associated with Apospory Expressivity in Diploid Hybrids of Paspalum rufum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040793. [PMID: 33920644 PMCID: PMC8072704 DOI: 10.3390/plants10040793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Apomixis seems to emerge from the deregulation of preexisting genes involved in sexuality by genetic and/or epigenetic mechanisms. The trait is associated with polyploidy, but diploid individuals of Paspalum rufum can form aposporous embryo sacs and develop clonal seeds. Moreover, diploid hybrid families presented a wide apospory expressivity variation. To locate methylation changes associated with apomixis expressivity, we compare relative DNA methylation levels, at CG, CHG, and CHH contexts, between full-sib P. rufum diploid genotypes presenting differential apospory expressivity. The survey was performed using a methylation content-sensitive enzyme ddRAD (MCSeEd) strategy on samples at premeiosis/meiosis and postmeiosis stages. Based on the relative methylation level, principal component analysis and heatmaps, clearly discriminate samples with contrasting apospory expressivity. Differential methylated contigs (DMCs) showed 14% of homology to known transcripts of Paspalum notatum reproductive transcriptome, and almost half of them were also differentially expressed between apomictic and sexual samples. DMCs showed homologies to genes involved in flower growth, development, and apomixis. Moreover, a high proportion of DMCs aligned on genomic regions associated with apomixis in Setaria italica. Several stage-specific differential methylated sequences were identified as associated with apospory expressivity, which could guide future functional gene characterization in relation to apomixis success at diploid and tetraploid levels.
Collapse
Affiliation(s)
- Mariano Soliman
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Maricel Podio
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Marco Di Marsico
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Juan Pablo A. Ortiz
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Luciana Delgado
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| |
Collapse
|
45
|
Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, Xiong Z, VanBuren R, Edger PP. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. THE NEW PHYTOLOGIST 2021; 230:354-371. [PMID: 33280122 PMCID: PMC7986222 DOI: 10.1111/nph.17137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is 'dominant' over the other subgenome, often being more highly expressed. Here, we 'replayed the evolutionary tape' with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation. These findings demonstrate that 'replaying the evolutionary tape' in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.
Collapse
Affiliation(s)
- Kevin A. Bird
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolutionary Biology and BehaviorMichigan State UniversityEast LansingMI48824USA
| | - Chad E. Niederhuth
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Shujun Ou
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Malia Gehan
- Donald Danforth Plant Science CenterSt LouisMO63123USA
| | - J. Chris Pires
- Division of Biological SciencesUniversity of MissouriColumbiaMO65211USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop BiotechnologyInner Mongolia UniversityHohhot010070China
| | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Ecology, Evolutionary Biology and BehaviorMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
46
|
Dar MS, Dholakia BB, Kulkarni AP, Oak PS, Shanmugam D, Gupta VS, Giri AP. Influence of domestication on specialized metabolic pathways in fruit crops. PLANTA 2021; 253:61. [PMID: 33538903 DOI: 10.1007/s00425-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.
Collapse
Affiliation(s)
- M Saleem Dar
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Dhanasekaran Shanmugam
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
47
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
48
|
Zaborowski AB, Walther D. Determinants of correlated expression of transcription factors and their target genes. Nucleic Acids Res 2020; 48:11347-11369. [PMID: 33104784 PMCID: PMC7672440 DOI: 10.1093/nar/gkaa927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/14/2022] Open
Abstract
While transcription factors (TFs) are known to regulate the expression of their target genes (TGs), only a weak correlation of expression between TFs and their TGs has generally been observed. As lack of correlation could be caused by additional layers of regulation, the overall correlation distribution may hide the presence of a subset of regulatory TF-TG pairs with tight expression coupling. Using reported regulatory pairs in the plant Arabidopsis thaliana along with comprehensive gene expression information and testing a wide array of molecular features, we aimed to discern the molecular determinants of high expression correlation of TFs and their TGs. TF-family assignment, stress-response process involvement, short genomic distances of the TF-binding sites to the transcription start site of their TGs, few required protein-protein-interaction connections to establish physical interactions between the TF and polymerase-II, unambiguous TF-binding motifs, increased numbers of miRNA target-sites in TF-mRNAs, and a young evolutionary age of TGs were found particularly indicative of high TF-TG correlation. The modulating roles of post-transcriptional, post-translational processes, and epigenetic factors have been characterized as well. Our study reveals that regulatory pairs with high expression coupling are associated with specific molecular determinants.
Collapse
Affiliation(s)
- Adam B Zaborowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Eckert S, Herden J, Stift M, Joshi J, van Kleunen M. Manipulation of cytosine methylation does not remove latitudinal clines in two invasive goldenrod species in Central Europe. Mol Ecol 2020; 30:222-236. [PMID: 33150604 DOI: 10.1111/mec.15722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.
Collapse
Affiliation(s)
- Silvia Eckert
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jasmin Herden
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jasmin Joshi
- Biodiversity Research/Systematic Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Rapperswil, Switzerland.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
50
|
Saban JM, Watson-Lazowski A, Chapman MA, Taylor G. The methylome is altered for plants in a high CO 2 world: Insights into the response of a wild plant population to multigenerational exposure to elevated atmospheric [CO 2 ]. GLOBAL CHANGE BIOLOGY 2020; 26:6474-6492. [PMID: 32902071 DOI: 10.1111/gcb.15249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Unravelling plant responses to rising atmospheric CO2 concentration ([CO2 ]) has largely focussed on plastic functional attributes to single generation [CO2 ] exposure. Quantifying the consequences of long-term, decadal multigenerational exposure to elevated [CO2 ] and the genetic changes that may underpin evolutionary mechanisms with [CO2 ] as a driver remain largely unexplored. Here, we investigated both plastic and evolutionary plant responses to elevated [CO2 ] by applying multi-omic technologies using populations of Plantago lanceolata L., grown in naturally high [CO2 ] for many generations in a CO2 spring. Seed from populations at the CO2 spring and an adjacent control site (ambient [CO2 ]) were grown in a common environment for one generation, and then offspring were grown in ambient or elevated [CO2 ] growth chambers. Low overall genetic differentiation between the CO2 spring and control site populations was found, with evidence of weak selection in exons. We identified evolutionary divergence in the DNA methylation profiles of populations derived from the spring relative to the control population, providing the first evidence that plant methylomes may respond to elevated [CO2 ] over multiple generations. In contrast, growth at elevated [CO2 ] for a single generation induced limited methylome remodelling (an order of magnitude fewer differential methylation events than observed between populations), although some of this appeared to be stably transgenerationally inherited. In all, 59 regions of the genome were identified where transcripts exhibiting differential expression (associated with single generation or long-term natural exposure to elevated [CO2 ]) co-located with sites of differential methylation or with single nucleotide polymorphisms exhibiting significant inter-population divergence. This included genes in pathways known to respond to elevated [CO2 ], such as nitrogen use efficiency and stomatal patterning. This study provides the first indication that DNA methylation may contribute to plant adaptation to future atmospheric [CO2 ] and identifies several areas of the genome that are targets for future study.
Collapse
Affiliation(s)
- Jasmine M Saban
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gail Taylor
- School of Biological Sciences, University of Southampton, Southampton, UK
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|