1
|
Wang H, Han J, Kong H, Ma C, Zhang XA. The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases. Biomolecules 2025; 15:247. [PMID: 40001550 PMCID: PMC11853213 DOI: 10.3390/biom15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
- College of Exercise and Health, Shanghai Sport University, Shanghai 200438, China
| | - Ce Ma
- Sports Training Teaching and Research Office, Shenyang Sport University, Shenyang 110102, China;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| |
Collapse
|
2
|
Xiao T, Wang P, Wu M, Cheng C, Yang Y, Bian Q, Liu Q. METTL3-regulated m6A modification of lncRNA E230001N04Rik is involved in myofibroblast differentiation in arsenic-induced pulmonary fibrosis through promoting senescence of lung epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136094. [PMID: 39405678 DOI: 10.1016/j.jhazmat.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Arsenic is a toxic agent that causes respiratory damage. Long non-coding RNAs (lncRNAs) are non-coding transcripts that adsorb specific miRNAs and regulate biological processes of human diseases. N6-Methyladenosine (m6A) is an internal modification of RNAs. However, there are few reports about lncRNAs and m6A modifications as co-regulators of pulmonary fibrosis. For 6 months, C57BL/6 mice were given water containing 0, 10, or 20 ppm arsenite. meRIP-seq and lncRNA-seq analyses showed that the m6A levels of the lncRNA E230001N04Rik were higher, and the levels of E230001N04Rik itself were lower in the high-dose arsenite group than in the controls. Murine lung epithelial 12 (MLE12) cells, exposed to 8 μM arsenite for 8 passages, had elevated METTL3 and miR-20b-3p and low E230001N04Rik. Arsenite induced cellular senescence, as demonstrated by secretion of factors related to the senescence-associated secretory phenotype (SASP). Arsenite-treated MLE12 cells co-cultured with primary lung fibroblasts (PLFs) caused myofibroblast differentiation. These data show that METTL3 reduces E230001N04Rik expression via controlling its m6A levels, which regulate miR-20b-3p and mediate the senescence of alveolar epithelial cells (AECs). Thereby, E230001N04Rik is involved in the arsenite-induced myofibroblast differentiation and in pulmonary fibrosis. These observations provide a prospective mechanism for chronic pulmonary disease caused by arsenite.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Laboratory of Modern Environmental Toxicology, Environment and Health Research Division, Public Health School and Health Research Centre, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
3
|
Memon F, Nadeem M, Sulaiman M, Arain MI, Hani UE, Yuan S. Unraveling molecular and clinical aspects of ALKBH5 as dual role in colorectal cancer. J Pharm Pharmacol 2024; 76:1393-1403. [PMID: 39321327 DOI: 10.1093/jpp/rgae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.
Collapse
Affiliation(s)
- Furqan Memon
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Momina Nadeem
- Faculty of Pharmacy, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Muhammad Sulaiman
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mudassar Iqbal Arain
- San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92035, United States
- School of Pharmacy, University of Kansas, 2010 Becker Dr., Lawrenece, KS 66047, United States
- Pharmacy Practice, University of Sindh, Jamshoro, 76080 Sindh, Pakistan
| | - Umm-E- Hani
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Wang T, Zhang L, Gao W, Liu Y, Yue F, Ma X, Liu L. Transcriptome-wide N6-methyladenosine modification profiling of long non-coding RNAs in patients with recurrent implantation failure. BMC Med Genomics 2024; 17:251. [PMID: 39394578 PMCID: PMC11470675 DOI: 10.1186/s12920-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
N6-methyladenosine (m6A) is involved in most biological processes and actively participates in the regulation of reproduction. According to recent research, long non-coding RNAs (lncRNAs) and their m6A modifications are involved in reproductive diseases. In the present study, using m6A-modified RNA immunoprecipitation sequencing (m6A-seq), we established the m6A methylation transcription profiles in patients with recurrent implantation failure (RIF) for the first time. There were 1443 significantly upregulated m6A peaks and 425 significantly downregulated m6A peaks in RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that genes associated with differentially methylated lncRNAs are involved in the p53 signalling pathway and amino acid metabolism. The competing endogenous RNA network revealed a regulatory relationship between lncRNAs, microRNAs and messenger RNAs. We verified the m6A methylation abundances of lncRNAs by using m6A-RNA immunoprecipitation (MeRIP)-real-time polymerase chain reaction. This study lays a foundation for further exploration of the potential role of m6A modification in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Zhang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Wenxin Gao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Yue
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China.
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Tang H, Du Y, Tan Z, Li D, Xie J. METTL14-mediated HOXA5 m 6A modification alleviates osteoporosis via promoting WNK1 transcription to suppress NLRP3-dependent macrophage pyroptosis. J Orthop Translat 2024; 48:190-203. [PMID: 39280633 PMCID: PMC11393600 DOI: 10.1016/j.jot.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Background Osteoporosis is a commonly diagnosed metabolic bone disease. NLRP3 inflammasome activation and pyroptosis are observed during osteoporosis. However, the mechanism by which NLRP3-mediated pyroptosis contributes to osteoporosis remains largely undefined. Methods Ovariectomized (OVX) mice were employed as an in vivo model of osteoclastogenesis. H&E staining and micro-CT detected the histological changes and bone parameters in the femur tissues. RANKL-treated macrophages were used as the in vitro model of osteoclastogenesis, and LPS/ATP treatment was used as the macrophage pyroptosis model. The cytotoxicity, cytokine secretion and caspase-1 activity were assessed by LDH release assay, ELISA and flow cytometry, respectively. The osteoclast formation ability was detected by TRAP staining. qRT-PCR, IHC and Western blotting detected the expression and localization of METTL14, pyroptosis-related or osteoclast-specific molecules in femur tissues or macrophages. Mechanistically, MeRIP assessed the m6A modification of HOXA5. Luciferase and ChIP assays were employed to detect the direct association between HOXA5 and WNK1 promoter in macrophages. Results METTL14, HOXA5 and WNK1 were decreased in OVX mice, which was associated with pyroptosis. METTL14 or HOXA5 overexpression suppressed macrophage-osteoclast differentiation and pyroptosis, along with the upregulation of WNK1. METTL14-mediated m6A modification stabilized HOXA5 mRNA and increased its expression, and HOXA5 regulated WNK1 expression via direct binding to its promoter. Functional studies showed that WNK1 knockdown counteracted METTL14- or HOXA5-suppressed pyroptosis and macrophage-osteoclast differentiation. In OVX mice, overexpression of METTL14 or HOXA5 alleviated osteoporosis via suppressing WNK1-dependent NLRP3 signaling. Conclusion METTL14-mediated HOXA5 m6A modification increased its expression, thereby inducing WNK1 expression and suppressing NLRP3-dependent pyroptosis to alleviate osteoporosis. The combination of METTL14 or HOXA5 agonist with pyroptosis targeted therapy may be a promising therapeutic approach for osteoporosis. The Translational Potential of this Article· •METTL14 or HOXA5 overexpression suppressed macrophage-osteoclast differentiation and pyroptosis in macrophages.·•METTL14-mediated m6A modification stabilized HOXA5 mRNA and increased its expression.•HOXA5 regulated WNK1 expression via direct binding to its promoter.•Silencing of WNK1 reversed METTL14- or HOXA5-suppressed pyroptosis and macrophageosteoclast differentiation.·•METTL14 or HOXA5 overexpression alleviated osteoporosis via suppressing WNK1-dependent NLRP3 signaling in OVX mice.
Collapse
Affiliation(s)
- Hao Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yuxuan Du
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zejiu Tan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Dongpeng Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiang Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
7
|
Su Z, Dong Y, Sun J, Wu Y, Wei Q, Liang Y, Lin Z, Li Y, Shen L, Xi C, Wu L, Xu Y, Liu Y, Yin J, Wang H, Shi K, Le R, Gao S, Xu X. RNA m 6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells. Cell Prolif 2024; 57:e13696. [PMID: 38952035 PMCID: PMC11503247 DOI: 10.1111/cpr.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
N6-methyladenosine (m6A) exerts essential roles in early embryos, especially in the maternal-to-zygotic transition stage. However, the landscape and roles of RNA m6A modification during the transition between pluripotent stem cells and 2-cell-like (2C-like) cells remain elusive. Here, we utilised ultralow-input RNA m6A immunoprecipitation to depict the dynamic picture of transcriptome-wide m6A modifications during 2C-like transitions. We found that RNA m6A modification was preferentially enriched in zygotic genome activation (ZGA) transcripts and MERVL with high expression levels in 2C-like cells. During the exit of the 2C-like state, m6A facilitated the silencing of ZGA genes and MERVL. Notably, inhibition of m6A methyltransferase METTL3 and m6A reader protein IGF2BP2 is capable of significantly delaying 2C-like state exit and expanding 2C-like cells population. Together, our study reveals the critical roles of RNA m6A modification in the transition between 2C-like and pluripotent states, facilitating the study of totipotency and cell fate decision in the future.
Collapse
Affiliation(s)
- Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiatong Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qingqing Wei
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Yuwei Liang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhiyi Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yujun Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Lu Shen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenxiang Xi
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Li Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yiliang Xu
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yingdong Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
8
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
9
|
Maqbool M, Hussain MS, Shaikh NK, Sultana A, Bisht AS, Agrawal M. Noncoding RNAs in the COVID-19 Saga: An Untold Story. Viral Immunol 2024; 37:269-286. [PMID: 38968365 DOI: 10.1089/vim.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Mangalore, India
| | - Ajay Singh Bisht
- Shri Guru Ram Rai University School of Pharmaceutical Sciences, Dehradun, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K. R. Mangalam University, Gurugram, India
| |
Collapse
|
10
|
Liu C, Ren Q, Deng J, Wang S, Ren L. c-MYC/METTL3/LINC01006 positive feedback loop promotes migration, invasion and proliferation of non-small cell lung cancer. Biomed J 2024; 47:100664. [PMID: 37774794 PMCID: PMC11340496 DOI: 10.1016/j.bj.2023.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND This study aims to clarify the N6-methyladenosine (m6A) modification of LINC01006, which is involved in migration, invasion and proliferation of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS LINC01006 and METTL3 expressions were analyzed in TCGA-LUAD cohort. Colony formation assay, wound-healing assay and transwell assay were performed to evaluate the ability of colony formation, migration and invasion. Q-PCR and western blot analysis determined gene expressions. M6A-RNA immunoprecipitation and m6A quantification assay were used to evaluate m6A modification. qChIP assay was used to validate transcriptional target. Luciferase assay validated the miRNA targets and transcriptional targets. In-situ xenograft model were included to evaluate tumor proliferation in vivo. RESULTS LINC01006 and METTL3 expressions were elevated in NSCLC cells and tissues. LINC01006 promoted the migration and invasion of NSCLC via epithelial - mesenchymal transition (EMT). The expression of LINC01006 was positively correlated to the expression of METTL3. METTL3 promoted tumor formation and proliferation in the in-situ xenograft model of NSCLC. The expression of LINC01006 was increased by METTL3 via m6A modification. c-MYC directly induced METTL3. Both c-MYC and LINC01006 were commonly targeted by miR-34a/b/c and miR-2682, and thereby c-MYC/METTL3/LINC01006 formed a positive feedback loop through miRNA targets in NSCLC. CONCLUSIONS LINC01006 is an oncogenic lncRNA, which induces migration, invasion and proliferation of NSCLC. METTL3 increases LINC01006 expression through stabilizing LINC01006 mRNA. c-MYC, as a transcription factor, activates METTL3, which results in an elevated level of LINC01006. c-MYC, METTL3 and LINC01006 form a positive feedback loop through multiple miRNA targets in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Liu
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Qiang Ren
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Deng
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Songping Wang
- Department of Respiratory and Critical Care medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Allergy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lei Ren
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
11
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
12
|
Yu S, Li C, Lu X, Han Z, Li Y, Yuan X, Guo D. The m 6A-ncRNAs axis in diabetes complications: novel mechanism and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1426380. [PMID: 38978623 PMCID: PMC11228181 DOI: 10.3389/fendo.2024.1426380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Diabetes, a multifaceted metabolic disorder, poses a significant global health burden with its increasing prevalence and associated complications, such as diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, and diabetic angiopathy. Recent studies have highlighted the intricate interplay between N6-methyladenosine (m6A) and non-coding RNAs (ncRNAs) in key pathways implicated in these diabetes complications, like cell apoptosis, oxidative stress, and inflammation. Thus, understanding the mechanistic insights into how m6A dysregulation impacts the expression and function of ncRNAs opens new avenues for therapeutic interventions targeting the m6A-ncRNAs axis in diabetes complications. This review explores the regulatory roles of m6A modifications and ncRNAs, and stresses the role of the m6A-ncRNA axis in diabetes complications, providing a therapeutic potential for these diseases.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunsheng Li
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinxin Lu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zehui Han
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Li
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Ming X, Chen S, Li H, Wang Y, Zhou L, Lv Y. m6A RNA Methylation and Implications for Hepatic Lipid Metabolism. DNA Cell Biol 2024; 43:271-278. [PMID: 38635960 DOI: 10.1089/dna.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This review presents a summary of recent progress in research on the N6-methyladenosine (m6A) modification and regulatory roles in hepatic lipid metabolism. As the most abundant internal modification of eukaryotic RNA, the m6A modification is a dynamic and reversible process of the m6A enzyme system, which includes writers, erasers, and readers. m6A methylation depressed lipid synthesis and facilitated lipolysis in liver. The depletion of m6A methyltransferase Mettl14/Mettl3 raised fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), acetyl-CoA carboxylase (ACC), and elongase of very long chain fatty acids 6 (ELOVL6) in rodent liver, causing increases in liver weight, triglyceride (TG) production, and content in hepatocytes. FTO catalyzed m6A demethylation and the suppression m6A reader YTHDC2 promoted hepatocellular TG generation and hepatic steatosis in C57BL/6 mice through sterol regulatory element-binding protein 1c (SREBP-1c) signaling pathway, which upregulated the lipogenic genes FAS, SCD1, ACC, recombinant acetyl coenzyme a carboxylase alpha, and cell death-inducing DNA fragmentation factor-like effector C (CIDEC). Furthermore, FTO overexpression did not only enhance mitochondrial fusion to impair mitochondrial function and lipid oxidation but also promoted lipid peroxidation, accompanied by excessive TG in hepatocytes and rodent liver. Elevated m6A modification potently suppressed hepatic lipid accumulation, while the shrinkage of m6A modification arose hepatic lipid deposition. These findings have highlighted the beneficial role of m6A RNA methylation in hepatic lipid metabolism, potentially protecting liver from lipid metabolic disorders.
Collapse
Affiliation(s)
- Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yun Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
15
|
Long F, Zheng P, Su Q, Zhang Y, Wang D, Xiao Z, Wu M, Li J. LncRNA SNHG12 regulated by WTAP aggravated the oxygen-glucose deprivation/reperfusion-induced injury in bEnd.3 cell. J Stroke Cerebrovasc Dis 2024; 33:107613. [PMID: 38301749 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES Previous studies have identified abnormal expression of lncRNA SNHG12 in ischemic stroke, but the underlying molecular mechanism remains unclear. MATERIALS AND METHODS Through database predictions, m6A methylation sites were found on SNHG12, suggesting post-transcriptional modification. To further elucidate the role of SNHG12 and m6A methyltransferase WTAP in oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in cerebral microvascular endothelial cells, we conducted investigations. Additionally, we examined the impact of m6A methyltransferase WTAP on SNHG12 expression. RESULTS Overexpressing SNHG12 in bEnd.3 cells was found to inhibit cell proliferation and promote apoptosis, as well as activate the production of reactive oxygen species and inflammatory cytokines (E-selectin, IL-6 and MCP-1), along with angiogenic proteins (VEGFA and FGFb). Conversely, SNHG12 knockdown alleviated OGD/R-induced damage to BEnd.3 cells, resulting in improved cell proliferation, reduced apoptosis, decreased ROS and LDH production, as well as diminished expression of inflammatory cytokines (E-selectin, IL-6 and MCP-1) and angiogenic proteins (VEGFA and FGFb). Furthermore, WTAP was found to positively regulate SNHG12 expression, and WTAP knockdown in bEnd.3 cells under the OGD/R conditions inhibited cell proliferation, promoted apoptosis, and increased ROS and LDH production. CONCLUSION These findings suggest that WTAP may play a crucial role in SNHG12-mediated OGD/R-induced damage in bEnd.3 cells. More molecular experiments are needed to further analyze its mechanism. Overall, our study helps to enrich our understanding of the dysregulation of SNHG12 in ischemic stroke.
Collapse
Affiliation(s)
- Faqing Long
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Pisi Zheng
- Hainan Medical University, Haikou, China
| | - Qingjie Su
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Yuhui Zhang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Desheng Wang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Zhixiang Xiao
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Mingchang Wu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China
| | - Jianhong Li
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, #368 Yehai Avenue, Longhua District, Haikou 570311, Hainan, China.
| |
Collapse
|
16
|
Sağlam B, Akgül B. An Overview of Current Detection Methods for RNA Methylation. Int J Mol Sci 2024; 25:3098. [PMID: 38542072 PMCID: PMC10970374 DOI: 10.3390/ijms25063098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Epitranscriptomic mechanisms, which constitute an important layer in post-transcriptional gene regulation, are involved in numerous cellular processes under health and disease such as stem cell development or cancer. Among various such mechanisms, RNA methylation is considered to have vital roles in eukaryotes primarily due to its dynamic and reversible nature. There are numerous RNA methylations that include, but are not limited to, 2'-O-dimethyladenosine (m6Am), N7-methylguanosine (m7G), N6-methyladenosine (m6A) and N1-methyladenosine (m1A). These biochemical modifications modulate the fate of RNA by affecting the processes such as translation, target site determination, RNA processing, polyadenylation, splicing, structure, editing and stability. Thus, it is highly important to quantitatively measure the changes in RNA methylation marks to gain insight into cellular processes under health and disease. Although there are complicating challenges in identifying certain methylation marks genome wide, various methods have been developed recently to facilitate the quantitative measurement of methylated RNAs. To this end, the detection methods for RNA methylation can be classified in five categories such as antibody-based, digestion-based, ligation-based, hybridization-based or direct RNA-based methods. In this review, we have aimed to summarize our current understanding of the detection methods for RNA methylation, highlighting their advantages and disadvantages, along with the current challenges in the field.
Collapse
Affiliation(s)
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, 35430 İzmir, Turkey;
| |
Collapse
|
17
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr Gene Ther 2024; 24:193-207. [PMID: 38310456 DOI: 10.2174/0115665232275754231204072320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/05/2024]
Abstract
With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.
Collapse
Affiliation(s)
- Dilip Kumar Chanchal
- Department of Pharmacy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| | | | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, Uttar Pradesh, India
| | - Neha Agnihotri
- Department of Pharmacy, Maharana Pratap College of Pharmacy, Kothi, Mandhana, Kanpur-209217, Uttar Pradesh, India
| | - Prateek Porwal
- Glocal School of Pharmacy, Glocal University Mirzapur Pole, Saharanpur - 247121, Uttar Pradesh, India
| |
Collapse
|
19
|
Matveeva A, Vinogradov D, Zhuravlev E, Semenov D, Vlassov V, Stepanov G. Intron Editing Reveals SNORD-Dependent Maturation of the Small Nucleolar RNA Host Gene GAS5 in Human Cells. Int J Mol Sci 2023; 24:17621. [PMID: 38139448 PMCID: PMC10743478 DOI: 10.3390/ijms242417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The GAS5 gene encodes a long non-coding RNA (lncRNA) and intron-located small nucleolar RNAs (snoRNAs). Its structure, splice variants, and diverse functions in mammalian cells have been thoroughly investigated. However, there are still no data on a successful knockout of GAS5 in human cells, with most of the loss-of-function experiments utilizing standard techniques to produce knockdowns. By using CRISPR/Cas9 to introduce double-strand breaks in the terminal intronic box C/D snoRNA genes (SNORDs), we created monoclonal cell lines carrying continuous deletions in one of the GAS5 alleles. The levels of GAS5-encoded box C/D snoRNAs and lncRNA GAS5 were assessed, and the formation of the novel splice variants was analyzed. To comprehensively evaluate the influence of specific SNORD mutations, human cell lines with individual mutations in SNORD74 and SNORD81 were obtained. Specific mutations in SNORD74 led to the downregulation of all GAS5-encoded SNORDs and GAS5 lncRNA. Further analysis revealed that SNORD74 contains a specific regulatory element modulating the maturation of the GAS5 precursor transcript. The results demonstrate that the maturation of GAS5 occurs through the m6A-associated pathway in a SNORD-dependent manner, which is a quite intriguing epitranscriptomic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (D.V.); (E.Z.); (D.S.)
| |
Collapse
|
20
|
Liu S, Xiang D. New understandings of the genetic regulatory relationship between non-coding RNAs and m 6A modification. Front Genet 2023; 14:1270983. [PMID: 38125749 PMCID: PMC10731383 DOI: 10.3389/fgene.2023.1270983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most frequent epigenetic modifications of RNA in eukaryotes is N6 methyladenosine (m6A), which is mostly present in messenger RNAs. Through the influence of several RNA processing stages, m6A modification is a crucial approach for controlling gene expression, especially in cancer progression. It is universally acknowledged that numerous non-coding RNAs (ncRNAs), such as microRNAs, circular RNAs, long non-coding RNAs, and piRNAs, are also significantly affected by m6A modification, and the complex genetic regulatory relationship between m6A and ncRNAs plays a pivotal role in the development of cancer. The connection between m6A modifications and ncRNAs offers an opportunity to explore the oncogene potential regulatory mechanisms and suggests that m6A modifications and ncRNAs could be vital biomarkers for multiple cancers. In this review, we discuss the mechanisms of interaction between m6A methylation and ncRNAs in cancer, and we also summarize diagnostic and prognostic biomarkers for clinical cancer detection. Furthermore, our article includes some methodologies for identifying m6A sites when assessing biomarker potential.
Collapse
Affiliation(s)
- Songtao Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dayong Xiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Yang S, Li K, Zhang J, Liu J, Liu L, Tan Y, Xu C. Link between m6A modification and infiltration characterization of tumor microenvironment in lung adenocarcinoma. Exp Biol Med (Maywood) 2023; 248:2273-2288. [PMID: 38166412 PMCID: PMC10903232 DOI: 10.1177/15353702231214266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/30/2023] [Indexed: 01/04/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation plays a pivotal role in immune responses and the onset and advancement of cancer. Nonetheless, the precise impact of m6A modification in lung adenocarcinoma (LUAD) and its associated tumor microenvironment (TME) remains to be fully elucidated. Here, we distinguished distinct m6A modification patterns within two separate LUAD cohorts using a set of 21 m6A regulators. The TME characteristics associated with these two patterns align with the immune-inflamed and immune-excluded phenotypes, respectively. We identified 2064 m6A-related genes, which were used as a basis to divide all LUAD samples into three distinct m6A gene clusters. We applied a scoring system to evaluate the m6A gene signature of the m6A modification pattern in individual patients. To authenticate the categorization significance of m6A modification patterns, we established a correlation between m6A score and TME infiltration profiling, tumor somatic mutations, and responses to immunotherapy. A high level of m6A modification may be associated with the aggressiveness and poor prognosis of LUAD. Further studies should investigate the mechanism of action of m6A regulators and m6A-related genes to improve the diagnosis and treatment of patients with LUAD.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| |
Collapse
|
22
|
Zhang Y, Xu Y, Bao Y, Luo Y, Qiu G, He M, Lu J, Xu J, Chen B, Wang Y. N6-methyladenosine (m6A) modification in osteosarcoma: expression, function and interaction with noncoding RNAs - an updated review. Epigenetics 2023; 18:2260213. [PMID: 37766615 PMCID: PMC10540650 DOI: 10.1080/15592294.2023.2260213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Osteosarcoma, originating from primitive bone-forming mesenchymal cells, is the most common malignant bone tumour among children and adolescents. N6-methyladenosine (m6A), the most ubiquitous type of posttranscriptional modification, is a methylation that occurs in the N6-position of adenosine. m6A dramatically affects the splicing, export, translation, and stability of various RNAs, including mRNA and noncoding RNAs (ncRNAs). Increasing evidence suggests that ncRNAs, especially microRNAs (miRNA), long noncoding RNAs (lncRNA), and circular RNAs (circRNAs), regulate the m6A modification process by affecting the expression of m6A-associated enzymes. m6A modification interactions with ncRNAs provide new perspectives for exploring the underlying mechanisms of tumorigenesis and progression. In the current review, we summarized the expression and biological functions of m6A regulators in osteosarcoma. At the same time, the present review systematically elucidated the functional and mechanical interactions between m6A modification and ncRNAs in osteosarcoma. In addition, we discussed the effect of m6A and ncRNAs in the tumour microenvironment and potential clinical applications of osteosarcoma.
Collapse
Affiliation(s)
- Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yuxin Bao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jian Xu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
24
|
Li K, Zhang D, Zhai S, Wu H, Liu H. METTL3-METTL14 complex induces necroptosis and inflammation of vascular smooth muscle cells via promoting N6 methyladenosine mRNA methylation of receptor-interacting protein 3 in abdominal aortic aneurysms. J Cell Commun Signal 2023; 17:897-914. [PMID: 36947363 PMCID: PMC10409957 DOI: 10.1007/s12079-023-00737-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Abdominal aortic aneurysms (AAA) have the highest incidence and rupture rate of all aortic aneurysms. The N6 methyladenosine (m6A) modification is closely associated with angiotensin (Ang II)-induced aortic diseases. This study aimed to identify whether the m6A writer METTL3/METTL4 regulates rip3 mRNA expression in AAA. To induce the mouse AAA model, apolipoprotein E-deficient (ApoE-/-) mice were subcutaneously infused with Ang II, and C57BL/6 mice were infused with type I elastase. Vascular smooth muscle cells (VSMCs) were induced with Ang II. Necroptosis was detected using an Annexin V-FITC/PI apoptosis detection kit, and ELISA assays measured inflammatory cytokines. The RNA immunoprecipitation-qPCR determined the methylated rip3 mRNA level. The increased expressions of inflammatory factors, aortic adventitia injury, degradation of elastin, and CD68-positive cells suggested the successful establishment of mouse AAA models. In AAA aorta wall tissues, the m6A modification level and the expression of METTL3/METTL14 were elevated. In Ang II-induced VSMCs, necroptosis and inflammatory cytokines in the supernatants were increased. RNA immunoprecipitation and co-immunoprecipitation assays confirmed the binding between the METTL3-METTL14 complex and rip3 mRNA, the interaction between YTHDF3 and rip3 mRNA, and between the METTL3-METTL14 complex and SMAD2/3. Interference with METTL3/METTL14 attenuated VSMC necroptosis, inflammatory response, and the AAA pathological process in vivo. The METTL3-METTL14 complex, which was increased by the activation of the SMAD2/3, elevated the m6A modification of rip3 mRNA by promoting the binding between YTHDF3 and rip3 mRNA, thus contributing to the progression of AAA. The activation of SMAD2/3 in VSMCs of abdominal aortic wall tissues is stimulated by Ang II. Subsequently, it promotes METTL3 METTL14 complex mediated m6A modification of rip3 mRNA. Meanwhile, the level of rip3 mRNA becomes more stable under the m6A reader of YTHDF3, which increases the protein level of RIP3 and further induces VSMC necroptosis. In addition, cell debris induces inflammatory factors in neighboring VSMCs and recruit monocytes/macrophages to the lesion.
Collapse
Affiliation(s)
- Kun Li
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Dongbin Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Huilin Wu
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Hongzhi Liu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Fuwai Hospital of Zhengzhou University, No. 1 Fuwai Road, Zhengdong New District, Zhengzhou, 451464, Henan, China.
| |
Collapse
|
25
|
Diao MN, Zhang XJ, Zhang YF. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer 2023; 129:8-23. [PMID: 36997662 PMCID: PMC10307841 DOI: 10.1038/s41416-023-02246-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Lung cancer, a highly malignant disease, greatly affects patients' quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Jing Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
26
|
Liang E, Xiao S, Zhao C, Zhang Y, Fu G. M6A modification promotes blood-brain barrier breakdown during cerebral ischemia/reperfusion injury through increasing matrix metalloproteinase 3 expression. Heliyon 2023; 9:e16905. [PMID: 37332938 PMCID: PMC10275791 DOI: 10.1016/j.heliyon.2023.e16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown is a critical event in cerebral ischemia-reperfusion (I/R) injury, and matrix metalloproteinases (MMPs), which are proteolytic enzymes, play essential roles in BBB breakdown through degrading the extracellular matrix. N6-Methyladenosine (m6A), the most common and reversible mRNA modification, has an important role in the progression of cerebral I/R injury. However, whether m6A is related to BBB breakdown and MMPs expression in cerebral I/R injury is still not clear. In this study, we explored the potential effects of m6A modification on BBB breakdown in cerebral I/R injury and its underlying mechanisms using mice subjected to transient middle cerebral artery occlusion and reperfusion (MCAO/R), and mouse brain endothelial cells treated with oxygen-glucose deprivation and reoxygenation (OGD/R). We find that MMP3 expression is highly expressed and positively associated with the m6A writer CBLL1 (Cbl proto-oncogene like 1) in cerebral I/R injury in vivo and in vitro. Furthermore, MMP3 mRNA occurs m6A modification in mouse brain endothelial cells, and the m6A modification level of MMP3 mRNA is significantly increased in cerebral I/R injury. Moreover, inhibition of m6A modification reduces MMP3 expression and ameliorates BBB breakdown in cerebral I/R in vivo and in vitro. In conclusion, m6A modification promotes BBB breakdown in cerebral I/R injury through increasing MMP3 expression, indicating that m6A may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- En Liang
- Department of Neurosurgery, Guangzhou PanYu He Xian Memorial Hospital, Guangzhou, 511442, PR China
| | - Shaorong Xiao
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Changtong Zhao
- Department of Neurosurgery, Guangzhou PanYu He Xian Memorial Hospital, Guangzhou, 511442, PR China
| | - Yu Zhang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518133, PR China
| | - Guanglei Fu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, PR China
| |
Collapse
|
27
|
Zhang L, Xu X, Su X. Modifications of noncoding RNAs in cancer and their therapeutic implications. Cell Signal 2023:110726. [PMID: 37230201 DOI: 10.1016/j.cellsig.2023.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In the last 50 years, over 150 various chemical modifications on RNA molecules, including mRNAs, rRNAs, tRNAs, and other noncoding RNAs (ncRNAs), have been identified and characterized. These RNA modifications regulate RNA biogenesis and biological functions and are widely involved in various physiological processes and diseases, including cancer. In recent decades, broad interest has arisen in the epigenetic modification of ncRNAs due to the increased knowledge of the critical roles of ncRNAs in cancer. In this review, we summarize the various modifications of ncRNAs and highlight their roles in cancer initiation and progression. In particular, we discuss the potential of RNA modifications as novel biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China.
| |
Collapse
|
28
|
Qi F, Shen W, Wei X, Cheng Y, Xu F, Zheng Y, Li L, Qin C, Li X. CSNK1D-mediated phosphorylation of HNRNPA2B1 induces miR-25-3p/miR-93-5p maturation to promote prostate cancer cell proliferation and migration through m 6A-dependent manner. Cell Mol Life Sci 2023; 80:156. [PMID: 37208565 PMCID: PMC11072693 DOI: 10.1007/s00018-023-04798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
It has been reported that heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is highly expressed in prostate cancer (PCa) and associated with poor prognosis of patients with PCa. Nevertheless, the specific mechanism underlying HNRNPA2B1 functions in PCa remains not clear. In our study, we proved that HNRNPA2B1 promoted the progression of PCa through in vitro and in vivo experiments. Further, we found that HNRNPA2B1 induced the maturation of miR-25-3p/miR-93-5p by recognizing primary miR-25/93 (pri-miR-25/93) through N6-methyladenosine (m6A)-dependent manner. In addition, both miR-93-5p and miR-25-3p were proven as tumor promoters in PCa. Interestingly, by mass spectrometry analysis and mechanical experiments, we found that casein kinase 1 delta (CSNK1D) could mediate the phosphorylation of HNRNPA2B1 to enhance its stability. Moreover, we further proved that miR-93-5p targeted BMP and activin membrane-bound inhibitor (BAMBI) mRNA to reduce its expression, thereby activating transforming growth factor β (TGF-β) pathway. At the same time, miR-25-3p targeted forkhead box O3 (FOXO3) to inactivate FOXO pathway. These results collectively indicated that CSNK1D stabilized HNRNPA2B1 facilitates the processing of miR-25-3p/miR-93-5p to regulate TGF-β and FOXO pathways, resulting in PCa progression. Our findings supported that HNRNPA2B1 might be a promising target for PCa treatment.
Collapse
Affiliation(s)
- Feng Qi
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Wenyi Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fan Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yuxiao Zheng
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiao Li
- Department of Urologic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
- Department of Scientific Research, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Ren L, Yang X, Liu J, Wang W, Liu Z, Lin Q, Huang B, Pan J, Mao X. An innovative model based on N7-methylguanosine-related lncRNAs for forecasting prognosis and tumor immune landscape in bladder cancer. Cancer Cell Int 2023; 23:85. [PMID: 37158958 PMCID: PMC10165842 DOI: 10.1186/s12935-023-02933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND As a novel type of the prevalent post-transcriptional modifications, N7-methylguanosine (m7G) modification is essential in the tumorigenesis, progression, and invasion of many cancers, including bladder cancer (BCa). However, the integrated roles of m7G-related lncRNAs in BCa remain undiscovered. This study aims to develop a prognostic model based on the m7G-related lncRNAs and explore its predictive value of the prognosis and anti-cancer treatment sensitivity. METHODS We obtained RNA-seq data and corresponding clinicopathological information from the TCGA database and collected m7G-related genes from previous studies and GSEA. Based on LASSO and Cox regression analysis, we developed a m7G prognostic model. The Kaplan-Meier (K-M) survival analysis and ROC curves were performed to evaluate the predictive power of the model. Gene set enrichment analysis (GSEA) was conducted to explore the molecular mechanisms behind apparent discrepancies between the low- and high-risk groups. We also investigated immune cell infiltration, TIDE score, TMB, the sensitivity of common chemotherapy drugs, and the response to immunotherapy between the two risk groups. Finally, we validated the expression levels of these ten m7G-related lncRNAs in BCa cell lines by qRT-PCR. RESULTS We developed a m7G prognostic model (risk score) composed of 10 m7G-related lncRNAs that are significantly associated with the OS of BCa patients. The K-M survival curves revealed that the high-risk group patients had significantly worse OS than those in the low-risk group. The Cox regression analysis confirmed that the risk score was a significant independent prognostic factor for BCa patients. We found that the high-risk group had higher the immune scores and immune cell infiltration. Furthermore, the results of the sensitivity of common anti-BCa drugs showed that the high-risk group was more sensitive to neoadjuvant cisplatin-based chemotherapy and anti-PD1 immunotherapy. Finally, qRT-PCR revealed that AC006058.1, AC073133.2, LINC00677, and LINC01338 were significantly downregulated in BCa cell lines, while the expression levels of AC124312.2 and AL158209.1 were significantly upregulated in BCa cell lines compared with normal cell lines. CONCLUSION The m7G prognostic model can be applied to accurately predict the prognosis and provide robust directions for clinicians to develop better individual-based and precise treatment strategies for BCa patients.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Qingyuan Lin
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
30
|
Liu Z, Gao L, Cheng L, Lv G, Sun B, Wang G, Tang Q. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Exp Mol Med 2023; 55:487-501. [PMID: 36854773 PMCID: PMC10073155 DOI: 10.1038/s12276-023-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 03/02/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the epigenetic modifications of RNA. The addition of this chemical mark to RNA molecules regulates gene expression by affecting the fate of the RNA molecules. This posttranscriptional RNA modification is reversible and regulated by methyltransferase "writers" and demethylase "erasers". The fate of m6A-modified RNAs depends on the function of different "readers" that recognize and bind to them. Research on m6A methylation modification has recently increased due to its important role in regulating cancer progression. Noncoding RNAs (ncRNAs) are a class of RNA molecules that are transcribed from the genome but whose roles have been overlooked due to their lack of well-defined potential for translation into proteins or peptides. However, this misconception has now been completely overturned. ncRNAs regulate various diseases, especially tumors, and it has been confirmed that they play either tumor-promoting or tumor-suppressing roles in almost all types of tumors. In this review, we discuss the m6A modification of different types of ncRNA and summarize the mechanisms involved. Finally, we discuss the progress of research on clinical treatment and discuss the important significance of the m6A modification of ncRNAs in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Qiushi Tang
- Chinese Journal of Practical Surgery, Chinese Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
31
|
YTHDF1 Attenuates TBI-Induced Brain-Gut Axis Dysfunction in Mice. Int J Mol Sci 2023; 24:ijms24044240. [PMID: 36835655 PMCID: PMC9966860 DOI: 10.3390/ijms24044240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
The brain-gut axis (BGA) is a significant bidirectional communication pathway between the brain and gut. Traumatic brain injury (TBI) induced neurotoxicity and neuroinflammation can affect gut functions through BGA. N6-methyladenosine (m6A), as the most popular posttranscriptional modification of eukaryotic mRNA, has recently been identified as playing important roles in both the brain and gut. However, whether m6A RNA methylation modification is involved in TBI-induced BGA dysfunction is not clear. Here, we showed that YTHDF1 knockout reduced histopathological lesions and decreased the levels of apoptosis, inflammation, and oedema proteins in brain and gut tissues in mice after TBI. We also found that YTHDF1 knockout improved fungal mycobiome abundance and probiotic (particularly Akkermansia) colonization in mice at 3 days post-CCI. Then, we identified the differentially expressed genes (DEGs) in the cortex between YTHDF1-knockout and WT mice. These genes were primarily enriched in the regulation of neurotransmitter-related neuronal signalling pathways, inflammatory signalling pathways, and apoptotic signalling pathways. This study reveals that the ITGA6-mediated cell adhesion molecule signalling pathway may be the key feature of m6A regulation in TBI-induced BGA dysfunction. Our results suggest that YTHDF1 knockout could attenuate TBI-induced BGA dysfunction.
Collapse
|
32
|
McMillan M, Gomez N, Hsieh C, Bekier M, Li X, Miguez R, Tank EMH, Barmada SJ. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell 2023; 83:219-236.e7. [PMID: 36634675 PMCID: PMC9899051 DOI: 10.1016/j.molcel.2022.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
RNA methylation at adenosine N6 (m6A) is one of the most common RNA modifications, impacting RNA stability, transport, and translation. Previous studies uncovered RNA destabilization in amyotrophic lateral sclerosis (ALS) models in association with accumulation of the RNA-binding protein TDP43. Here, we show that TDP43 recognizes m6A RNA and that RNA methylation is critical for both TDP43 binding and autoregulation. We also observed extensive RNA hypermethylation in ALS spinal cord, corresponding to methylated TDP43 substrates. Emphasizing the importance of m6A for TDP43 binding and function, we identified several m6A factors that enhance or suppress TDP43-mediated toxicity via single-cell CRISPR-Cas9 in primary neurons. The most promising modifier-the canonical m6A reader YTHDF2-accumulated within ALS spinal neurons, and its knockdown prolonged the survival of human neurons carrying ALS-associated mutations. Collectively, these data show that m6A modifications modulate RNA binding by TDP43 and that m6A is pivotal for TDP43-related neurodegeneration in ALS.
Collapse
Affiliation(s)
- Michael McMillan
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline Hsieh
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberto Miguez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Yan Y, Peng J, Liang Q, Ren X, Cai Y, Peng B, Chen X, Wang X, Yi Q, Xu Z. Dynamic m6A-ncRNAs association and their impact on cancer pathogenesis, immune regulation and therapeutic response. Genes Dis 2023; 10:135-150. [PMID: 37013031 PMCID: PMC10066278 DOI: 10.1016/j.gendis.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Several types of modifications have been proven to participate in the metabolism and processing of different RNA types, including non-coding RNAs (ncRNAs). N-6-methyladenosine (m6A) is a dynamic and reversible RNA modification that is closely involved in the ncRNA homeostasis, and serves as a crucial regulator for multiple cancer-associated signaling pathways. The ncRNAs usually regulate the epigenetic modification, mRNA transcription and other biological processes, displaying enormous roles in human cancers. In this review, we summarized the significant implications of m6A-ncRNA interaction in various types of cancers. In particular, the interplay between m6A and ncRNAs in cancer pathogenesis and therapeutic resistance are being widely recognized. We also discussed the relevance of m6A-ncRNA interaction in immune regulation, followed by the interference on cancer immunotherapeutic procedures. In addition, we briefly highlighted the computation tools that could identify the accurate features of m6A methylome among ncRNAs. In summary, this review would pave the way for a better understanding of the biological functions of m6A-ncRNA crosstalk in cancer research and treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinxin Ren
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
34
|
Pan J, Xie Y, Li H, Li X, Chen J, Liu X, Zhou J, Tang X, He Z, Peng Z, Zhang H, Li Y, Xiang X, Yuan Y, Zhang D. mmu-lncRNA 121686/hsa-lncRNA 520657 induced by METTL3 drive the progression of AKI by targeting miR-328-5p/HtrA3 signaling axis. Mol Ther 2022; 30:3694-3713. [PMID: 35869629 PMCID: PMC9734029 DOI: 10.1016/j.ymthe.2022.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of acute kidney injury (AKI) is still not fully understood, and effective interventions are lacking. Here, we explored whether methyltransferase 3 (METTL3) was involved in the progression of AKI via regulation of cell death. We reported that PT(proximal tubule)-METTL3-knockout (KO) noticeably suppressed ischemic-induced AKI via inhibition of renal cell apoptosis. Furthermore, we also found that the expression of mmu-long non-coding RNA (lncRNA) 121686 was upregulated in antimycin-treated Boston University mouse proximal tubule (BUMPT) cells and a mouse ischemia-reperfusion (I/R)-induced AKI model. Functionally, mmu-lncRNA 121686 could promote I/R-induced mouse renal cell apoptosis. Mechanistically, mmu-lncRNA 121686 acted as a competing endogenous RNA (ceRNA) to prevent microRNA miR-328-5p-mediated downregulation of high-temperature requirement factor A 3 (Htra3). PT-mmu-lncRNA 121686-KO mice significantly ameliorated the ischemic-induced AKI via the miR-328-5p/HtrA3 axis. In addition, hsa-lncRNA 520657, homologous with lncRNA 121686, sponged miR-328-5p and upregulated Htra3 to promote I/R-induced human renal cell apoptosis. Interestingly, we found that mmu-lncRNA 121686/hsa-lncRNA 520657 upregulation were dependent on METTL3 via N6-methyladenosine (m6A) modification. The mmu-lncRNA 121686/miR-328-5p or hsa-lncRNA 520657/miR-328-5p /HtrA3 axis was induced in vitro by METTL3 overexpression; in contrast, this effect was attenuated by METTL3 small interfering RNA (siRNA). Furthermore, we found that PT-METTL3-KO or METTL3 siRNA significantly suppressed ischemic, septic, and vancomycin-induced AKI via downregulation of the mmu-lncRNA 121686/miR-328-5p/HtrA3 axis. Taken together, our data indicate that the METTL3/mmu-lncRNA 121686/hsa-lncRNA 520657/miR-328-5p/HtrA3 axis potentially acts as a therapeutic target for AKI.
Collapse
Affiliation(s)
- Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Yuxin Xie
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China
| | - Xiangfeng Liu
- Department of General Surgery, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Jun Zhou
- Department of General Surgery, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Xianming Tang
- Department of Chest Surgery, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Zhibiao He
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Yijian Li
- Department of Urinary Surgery, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China
| | - Yunchang Yuan
- Department of Chest Surgery, Second Xiangya Hospital, Changsha, Hunan 410011, People’s Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China,Hunan Clinical Medical Research Center for Acute Organ Injury and Repair, Changsha, Hunan 410011, People’s Republic of China,Corresponding author: Dongshan Zhang, Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People’s Republic of China.
| |
Collapse
|
35
|
m 6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation. Cell Death Dis 2022; 13:1008. [PMID: 36446779 PMCID: PMC9709059 DOI: 10.1038/s41419-022-05451-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer with unfavorable clinical outcomes worldwide. circFNDC3B plays as a tumor suppressor in CRC, however, the mechanism of circFNDC3B in CRC remains ambiguous. The stem-like properties of CRC cells were detected by the evaluation of stemness markers, sphere formation assay and flow cytometry. qRT-PCR, FISH, IHC, and western blotting assessed the expression and localization of circFNDC3B, RNF41, ASB6, and stemness markers in CRC. The metastatic capabilities of CRC cells were examined by wound healing and Transwell assays, as well as in vivo liver metastasis model. Bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assay and co-IP were used to detect the associations among circFNDC3B, FXR2, RNF41, and ASB6. Downregulated circFNDC3B was associated with unfavorite survival in CRC patients, and circFNDC3B overexpression suppressed CRC stemness and metastasis. Mechanistically, studies revealed that YTHDC1 facilitated cytoplasmic translocation of m6A-modified circFNDC3B, and circFNDC3B enhanced RNF41 mRNA stability and expression via binding to FXR2. circFNDC3B promoted ASB6 degradation through RNF41-mediated ubiquitination. Functional studies showed that silencing of RNF41 counteracted circFNDC3B-suppressed CRC stemness and metastasis, and ASB6 overexpression reversed circFNDC3B- or RNF41-mediated regulation of CRC stemness and metastasis. Elevated ASB6 was positively correlated with unfavorite survival in CRC patients. In vivo experiments further showed that circFNDC3B or RNF41 overexpression repressed tumor growth, stemness and liver metastasis via modulating ASB6. Taken together, m6A-modified circFNDC3B inhibited CRC stemness and metastasis via RNF41-dependent ASB6 degradation. These findings provide novel insights and important clues for targeted therapeutic strategies of CRC.
Collapse
|
36
|
Porman AM, Roberts JT, Duncan ED, Chrupcala ML, Levine AA, Kennedy MA, Williams MM, Richer JK, Johnson AM. A single N6-methyladenosine site regulates lncRNA HOTAIR function in breast cancer cells. PLoS Biol 2022; 20:e3001885. [PMID: 36441764 PMCID: PMC9731500 DOI: 10.1371/journal.pbio.3001885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
N6-methyladenosine (m6A) modification of RNA regulates normal and cancer biology, but knowledge of its function on long noncoding RNAs (lncRNAs) remains limited. Here, we reveal that m6A regulates the breast cancer-associated human lncRNA HOTAIR. Mapping m6A in breast cancer cell lines, we identify multiple m6A sites on HOTAIR, with 1 single consistently methylated site (A783) that is critical for HOTAIR-driven proliferation and invasion of triple-negative breast cancer (TNBC) cells. Methylated A783 interacts with the m6A "reader" YTHDC1, promoting chromatin association of HOTAIR, proliferation and invasion of TNBC cells, and gene repression. A783U mutant HOTAIR induces a unique antitumor gene expression profile and displays loss-of-function and antimorph behaviors by impairing and, in some cases, causing opposite gene expression changes induced by wild-type (WT) HOTAIR. Our work demonstrates how modification of 1 base in an lncRNA can elicit a distinct gene regulation mechanism and drive cancer-associated phenotypes.
Collapse
Affiliation(s)
- Allison M. Porman
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
| | - Justin T. Roberts
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
| | - Emily D. Duncan
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Cell and Developmental Biology Department, Aurora, Colorado, United States of America
| | - Madeline L. Chrupcala
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
| | - Ariel A. Levine
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
| | - Michelle A. Kennedy
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aaron M. Johnson
- University of Colorado Anschutz Medical Campus, Biochemistry and Molecular Genetics Department, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, Molecular Biology Graduate Program, Aurora, Colorado, United States of America
- University of Colorado Anschutz Medical Campus, RNA Bioscience Initiative, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
37
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
38
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
39
|
Peng J, Ghosh D, Zhang F, Yang L, Wu J, Pang J, Zhang L, Yin S, Jiang Y. Advancement of epigenetics in stroke. Front Neurosci 2022; 16:981726. [PMID: 36312038 PMCID: PMC9610114 DOI: 10.3389/fnins.2022.981726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2023] Open
Abstract
A wide plethora of intervention procedures, tissue plasminogen activators, mechanical thrombectomy, and several neuroprotective drugs were reported in stroke research over the last decennium. However, against this vivid background of newly emerging pieces of evidence, there is little to no advancement in the overall functional outcomes. With the advancement of epigenetic tools and technologies associated with intervention medicine, stroke research has entered a new fertile. The stroke involves an overabundance of inflammatory responses arising in part due to the body's immune response to brain injury. Neuroinflammation contributes to significant neuronal cell death and the development of functional impairment and even death in stroke patients. Recent studies have demonstrated that epigenetics plays a key role in post-stroke conditions, leading to inflammatory responses and alteration of the microenvironment within the injured tissue. In this review, we summarize the progress of epigenetics which provides an overview of recent advancements on the emerging key role of secondary brain injury in stroke. We also discuss potential epigenetic therapies related to clinical practice.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dipritu Ghosh
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Liu D, Fan B, Li J, Sun T, Ma J, Zhou X, Feng S. N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Front Cell Neurosci 2022; 16:989637. [PMID: 36212687 PMCID: PMC9539101 DOI: 10.3389/fncel.2022.989637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
N6-methyladenosine (m6A), an essential post-transcriptional modification in eukaryotes, is closely related to the development of pathological processes in neurological diseases. Notably, spinal cord injury (SCI) is a serious traumatic disease of the central nervous system, with a complex pathological mechanism which is still not completely understood. Recent studies have found that m6A modification levels are changed after SCI, and m6A-related regulators are involved in the changes of the local spinal cord microenvironment after injury. However, research on the role of m6A modification in SCI is still in the early stages. This review discusses the latest progress in the dynamic regulation of m6A modification, including methyltransferases (“writers”), demethylases (“erasers”) and m6A -binding proteins (“readers”). And then analyses the pathological mechanism relationship between m6A and the microenvironment after SCI. The biological processes involved included cell death, axon regeneration, and scar formation, which provides new insight for future research on the role of m6A modification in SCI and the clinical transformation of strategies for promoting recovery of spinal cord function.
Collapse
Affiliation(s)
- Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinze Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Xianhu Zhou,
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
- Shiqing Feng,
| |
Collapse
|
41
|
Chang C, Ma G, Cheung E, Hutchins AP. A programmable system to methylate and demethylate N 6-Methyladenosine (m 6A) on specific RNA transcripts in mammalian cells. J Biol Chem 2022; 298:102525. [PMID: 36162509 PMCID: PMC9597892 DOI: 10.1016/j.jbc.2022.102525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
RNA N6-methyladenosine (m6A) is the most abundant internal mRNA modification and forms part of an epitranscriptomic system that modulates RNA function. m6A is reversibly catalyzed by specific enzymes, and those modifications can be recognized by RNA-binding proteins that in turn regulate biological processes. Although there are many reports demonstrating m6A participation in critical biological functions, this exploration has mainly been conducted through the global KO or knockdown of the writers, erasers, or readers of m6A. Consequently, there is a lack of information about the role of m6A on single transcripts in biological processes, posing a challenge in understanding the biological functions of m6A. Here, we demonstrate a CRISPR/dCas13a-based RNA m6A editors, which can target RNAs using a single or multiple CRISPR RNA array to methylate or demethylate m6A in human 293T cells and mouse embryonic stem cells. We systematically assay its capabilities to enable the targeted rewriting of m6A dynamics, including modulation of circular RNA translation and transcript half-life. Finally, we use the system to specifically modulate m6A levels on the noncoding XIST (X-inactive specific transcript) to modulate X chromosome silencing and activation. The editors described here can be used to explore the roles of m6A in biological processes.
Collapse
Affiliation(s)
- Chen Chang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Gang Ma
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Edwin Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR.
| | - Andrew P Hutchins
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
42
|
Jusic A, Stellos K, Ferreira L, Baker AH, Devaux Y. (Epi)transcriptomics in cardiovascular and neurological complications of COVID-19. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100013. [PMID: 36164464 PMCID: PMC9330360 DOI: 10.1016/j.jmccpl.2022.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Although systemic inflammation and pulmonary complications increase the mortality rate in COVID-19, a broad spectrum of cardiovascular and neurological complications can also contribute to significant morbidity and mortality. The molecular mechanisms underlying cardiovascular and neurological complications during and after SARS-CoV-2 infection are incompletely understood. Recently reported perturbations of the epitranscriptome of COVID-19 patients indicate that mechanisms including those derived from RNA modifications and non-coding RNAs may play a contributing role in the pathogenesis of COVID-19. In this review paper, we gathered recently published studies investigating (epi)transcriptomic fluctuations upon SARS-CoV-2 infection, focusing on the brain-heart axis since neurological and cardiovascular events and their sequelae are of utmost prevalence and importance in this disease.
Collapse
Affiliation(s)
- Amela Jusic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Centre for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Faculty of Medicine, University Coimbra, 3000-548 Coimbra, Portugal
| | - Andrew H. Baker
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- CARIM Institute, University of Maastricht, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| |
Collapse
|
43
|
Geng R, Chen T, Zhong Z, Ni S, Bai J, Liu J. The m6A-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Tumor Immune Infiltration in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14164056. [PMID: 36011053 PMCID: PMC9406778 DOI: 10.3390/cancers14164056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: OV is the most lethal gynecological malignancy. M6A and lncRNAs have a great impact on OV development and patient immunotherapy response. In this paper, we decided to establish a reliable signature of mRLs. Method: The lncRNAs associated with m6A in OV were analyzed and obtained by co-expression analysis of the TCGA-OV database. Univariate, LASSO and multivariate Cox regression analyses were employed to establish the model of mRLs. K-M analysis, PCA, GSEA and nomogram based on the TCGA-OV and GEO database were conducted to prove the predictive value and independence of the model. The underlying relationship between the model and TME and cancer stemness properties were further investigated through immune feature comparison, consensus clustering analysis and pan-cancer analysis. Results: A prognostic signature comprising four mRLs, WAC-AS1, LINC00997, DNM3OS and FOXN3-AS1, was constructed and verified for OV according to the TCGA and GEO database. The expressions of the four mRLs were confirmed by qRT-PCR in clinical samples. Applying this signature, one can identify patients more effectively. The samples were divided into two clusters, and the clusters had different overall survival rates, clinical features and tumor microenvironments. Finally, pan-cancer analysis further demonstrated that the four mRLs were significantly related to immune infiltration, TME and cancer stemness properties in various cancer types. Conclusions: This study provided an accurate prognostic signature for patients with OV and elucidated the potential mechanism of the mRLs in immune modulation and treatment response, giving new insights into identifying new therapeutic targets.
Collapse
Affiliation(s)
- Rui Geng
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Tian Chen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
- Correspondence: (J.B.); (J.L.)
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.B.); (J.L.)
| |
Collapse
|
44
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|
45
|
Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m 6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022; 18:4432-4451. [PMID: 35864970 PMCID: PMC9295064 DOI: 10.7150/ijbs.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/12/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has revealed that m6A modification, the predominant RNA modification in eukaryotes, adds a novel layer of regulation to the gene expression. Dynamic and reversible m6A modification implements sophisticated and crucial functions in RNA metabolism, including generation, splicing, stability, and translation in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Furthermore, m6A modification plays a determining role in producing various m6A-labeling RNA outcomes, thereby affecting several functional processes, including tumorigenesis and progression. Herein, we highlighted current advances in m6A modification and the regulatory mechanisms underlying mRNAs and ncRNAs in distinct cancer stages. Meanwhile, we also focused on the therapeutic significance of m6A regulators in clinical cancer treatment.
Collapse
Affiliation(s)
- Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
46
|
Huang J, Song J, Li X, Liu S, Huang W, Shen Z, Cheng Y, Kou S, Gao Z, Tian Y, Hu J. Analysis and prognostic significance of tumour immune infiltrates and immune microenvironment of m6A-related lncRNAs in patients with gastric cancer. BMC Med Genomics 2022; 15:164. [PMID: 35879790 PMCID: PMC9310490 DOI: 10.1186/s12920-022-01318-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies have shown that long noncoding RNAs and N6-methyladenosine play important roles in gastric cancer. The purpose of this study was to determine the correlation and prognostic value of m6A-related lncRNAs and immune infiltration in gastric cancer. METHODS We downloaded the clinically related information and RNA-Seq transcriptome data of gastric cancer patients from the TCGA database. Univariate Cox regression analysis and Pearson analysis were used to screen out m6A-related lncRNAs. Consensus cluster analysis was used to divide the sample into two clusters, and LASSO analysis and Cox regression analysis were used to construct a risk scoring model. RESULTS A total of 25 lncRNA expression profiles were screened, and gastric cancer patients were divided into different subtypes. Cluster 2 had a better prognosis, but its stromal score, ESTIMATE score and immune score were low. Cluster 1 was rich in resting memory CD4 T cells, regulatory T cells, monocytes, and resting mast cells, and Cluster 2 was rich in activated memory CD4 T cells and follicular helper T cells. Thirteen lncRNAs were selected to construct a risk model, and the prognosis of gastric cancer patients in the high-risk group was poor. The expression of PD-L1 in tumours is significantly higher than that in normal tissues. Univariate and multivariate Cox regression analysis results showed that the overall survival rate was significantly related to stage and the risk score, which can be used as an independent prognostic factor. The results of the heatmap and scatter plot showed that clusters (P = 0.0045) and grade (G1-2, G3, P = 0.0037) were significantly related to prognosis. The relationship between the risk score and immune cell infiltration showed that memory B cells, resting dendritic cells, M0 macrophages, and M2 macrophages were positively correlated with the risk score, while resting mast cells, monocytes, activated NK cells, and follicular helper T cells were negatively correlated with the risk score. CONCLUSION The results of this study indicate that m6A-related lncRNAs may play an important role in the prognosis of gastric cancer patients and the tumour immune microenvironment and may provide help for the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Jiarong Huang
- Department of General Surgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China.,Clinical Research Group, Grade 2017 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Jinxuan Song
- Clinical Research Group, Grade 2017 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Xiangyu Li
- Clinical Research Group, Grade 2017 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Shuangfei Liu
- Clinical Research Group, Grade 2019 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wentao Huang
- Clinical Research Group, Grade 2017 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Ziyi Shen
- Clinical Research Group, Grade 2017 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yan Cheng
- Clinical Research Group, Grade 2018 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Shien Kou
- Clinical Research Group, Grade 2018 in Department of Clinical Medicine, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Zhenguo Gao
- Department of General Surgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunhong Tian
- Department of General Surgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China.
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
47
|
Yu ZL, Zhu ZM. Construction of an N6-methyladenosine lncRNA- and immune cell infiltration-related prognostic model in colorectal cancer. PROTOPLASMA 2022; 259:1029-1045. [PMID: 34734333 DOI: 10.1007/s00709-021-01718-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The present paper aims to shed light on the influence of N6-methyladenosine (m6A) long non-coding RNAs (lncRNAs) and immune cell infiltration on colorectal cancer (CRC). We downloaded workflow-type data and xml-format clinical data on CRC from The Cancer Genome Atlas project. The relationship between lncRNA and m6A was identified by using Perl and R software. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Lasso regression was utilized to construct a prognostic model. Survival analysis was used to explore the relationship between clusters of m6A lncRNAs and clinical survival data. Differential analysis of the tumor microenvironment and an immune correlation analysis were used to determine immune cell infiltration levels in different clusters and their correlation with clinical prognosis. The expression of lncRNA was tightly associated with m6A. The univariate Cox regression analysis showed that lncRNA was a risk factor for the prognosis. Differential expression analysis demonstrated that m6A lncRNAs were partially highly expressed in tumor tissue. m6A lncRNA-related prognostic model could predict the prognosis of CRC independently. "ECM_RECEPTOR_INTERACTION" was the most significantly enriched gene set. PARP8 was overexpressed in tumor tissue and high-risk cluster. CD4 memory T cells, activated resting NK cells, and memory B cells were highly clustered in the high-risk cluster. All of the scores were higher in the low-risk group. m6A lncRNA is closely related to the occurrence and progression of CRC. The corresponding prognostic model can be utilized to evaluate the prognosis of CRC. m6A lncRNA and related immune cell infiltration in the tumor microenvironment can provide novel therapeutic targets for further research.
Collapse
Affiliation(s)
- Zhong Lin Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zheng Ming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
48
|
Liu J, Zhu J, Wang X, Zhou Z, Liu H, Zhu D. A Novel YTHDF3-Based Model to Predict Prognosis and Therapeutic Response in Breast Cancer. Front Mol Biosci 2022; 9:874532. [PMID: 35755811 PMCID: PMC9218665 DOI: 10.3389/fmolb.2022.874532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Due to high tumor heterogeneity, breast cancer (BC) patients still suffer poor survival outcomes. YTHDF3 plays a critical role in the prognosis of BC patients. Hence, we aimed to construct a YTHDF3-based model for the prediction of the overall survival (OS) and the sensitivity of therapeutic agents in BC patients. Methods: Based on The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database, we obtained BC patients’ data (n = 999) with YTHDF3 expression profiles. The association between YTHDF3 expression and 5-year OS was determined via Cox proportional hazards regression (CPHR) analysis. By integrating the variables, we established a prognostic nomogram. The model was estimated via discrimination, calibration ability, and decision curve analysis (DCA). The performance of the model was compared with the TNM stage system through receiver operating characteristic (ROC) curves and DCA. By means of the Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/), the therapeutic agents’ response was estimated. Gene set enrichment analysis (GSEA) demonstrated possible biological mechanisms related to YTHDF3. TIMER and CIBERSORTx were employed to analyze the association between YTHDF3 and tumor-infiltrating immune cells. Results: The high YTHDF3 expression was significantly correlated with poor 5-year OS in BC patients. Through multivariate CPHR, four independent prognostic variables (age, TNM stage, YTHDF3 expression, and molecular subtype) were determined. On the basis of the four factors, a YTHDF3-based nomogram was built. The area under the curve (AUC) of the ROC curve for the model surpassed that of the TNM stage system (0.72 vs. 0.63, p = 0.00028). The model predictions showed close consistency with the actual observations via the calibration plot. Therapeutic response prediction was conducted in high- and low-risk groups and compared with each other. The BC patients with higher risk scores showed more therapeutic resistance than those with a lower risk score. Conclusion: YTHDF3 was verified as a prognostic biomarker of BC, and a novel YTHDF3-based model was constructed to predict the 5-year OS of BC patients. Our model could be applied to effectively predict the therapeutic response of commonly used agents for BC patients.
Collapse
Affiliation(s)
- Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jing Zhu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xin Wang
- Group of Ultrasonography in Obstetrics, Department of Obstetrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Zhisheng Zhou
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Haiyan Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Dajiang Zhu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
49
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
50
|
Mo BW, Li XM, Li SM, Xiao B, Yang J, Li HM. m6A echoes with DNA methylation: Coordinated DNA methylation and gene expression data analysis identified critical m6A genes associated with asthma. Gene 2022; 828:146457. [PMID: 35421547 DOI: 10.1016/j.gene.2022.146457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/30/2022] [Accepted: 03/25/2022] [Indexed: 11/04/2022]
Abstract
Asthma is a chronic inflammatory disease that involves complex gene-environment interactions. Methylation of nucleotides, such as 5-methylcytosine (5mC) in DNA and N6-methyladenosine (m6A) in mRNA, carries important information for gene regulation. Our study screened m6A genes and genes associated with asthma from the Gene Expression Omnibus (GEO) databases GSE63383, GSE119580, GSE38003, GSE34313, GSE13168, and GSE35643. GSE52778, GSE35643, GSE40996, and GSE64744), and DNA methylation data from GSE85568 and GSE146377. We screened out 6 m6A related genes (FTO, IGF2BP2, RBM15, RBMX, WTAP, and YTHDC1) that were significantly dysregulated in asthma or proinflammatory conditions. A correlation study showed a high correlation between m6A genes and gene pairs such as WTAP, IL7R, and TLR2; RBMX, SLC22A4, IL33, TNC, FLG, and IL6R (|r| ≥ 0.8). Following DNA methylation dataset analysis, we proposed several DNA methylation-m6A modification asthma-related gene axes such as cg19032951/cg15153914-IGF2BP2-SMAD3. Interestingly, several target genes, such as SMAD3, possess the ability to participate in DNA methylation processes, which may reciprocally regulate the expression of m6A genes and form a closed-loop regulation axis. Some classic DNA methylation-related genes, such as TET1, UHRF1, and ZBTB4, were also involved. We identified an integrated profile of m6A gene expression in asthma and proposed a novel potential interplay between DNA methylation and m6A modification in asthma pathogenesis. Using the CMAP database, we found that resveratrol may target these dysregulated m6A genes, and therefore may serve as a potential therapeutic agent for asthma.
Collapse
Affiliation(s)
- Bi-Wen Mo
- The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, PR China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, PR China
| | - Xiao-Mang Li
- Guilin Medical University, Guilin 541000, PR China
| | - Shen-Mei Li
- Guilin Medical University, Guilin 541000, PR China
| | - Bo Xiao
- Affiliated Hospital of Guilin Medical University, Guilin 541000, PR China; Key Laboratory of Respiratory Diseases (Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region), PR China
| | - Jie Yang
- Guilin Medical University, Guilin 541000, PR China
| | - Hui-Min Li
- Guilin Medical University, Guilin 541000, PR China.
| |
Collapse
|