1
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:179-202. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Xue Y, Wang L, Huo R, Chen M, Melo B, Dingley K, Gaudy A, Shen JX. 1β-Hydroxydeoxycholic Acid as an Endogenous Biomarker in Human Plasma for Assessment of CYP3A Clinical Drug-Drug Interaction Potential. Drug Metab Dispos 2024; 52:966-974. [PMID: 38991779 DOI: 10.1124/dmd.124.001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
4β-Hydroxycholesterol (4β-HC) in plasma has been used as a biomarker to assess CYP3A drug-drug interaction (DDI) potential during drug development. However, due to the long half-life and narrow dynamic range of 4β-HC, its use has been limited to the identification of CYP3A inducers, but not CYP3A inhibitors. The formation of 1β-hydroxydeoxycholic acid (1β-OH DCA) from deoxycholic acid (DCA) is mediated by CYP3A, thus 1β-OH DCA can potentially serve as an alternative to 4β-HC for assessment of CYP3A DDI potential. To study this feasibility, we developed a sensitive liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of 1β-OH DCA and its glycine and taurine conjugates in human plasma with the lower limit of quantitation of 50 pg/ml, which enabled the quantitation of basal levels and further reduction. The method was applied to a DDI study to assess how 1β-OH DCA and its glycine and taurine conjugates would respond to CYP3A induction or inhibition. Rifampin induction resulted in an increase of 1β-OH DCA and its conjugates in plasma, with 6.8-, 7.8-, 8.3-, and 10.3-fold increases of area under the curve from the time of dosing to the last measurable concentration (AUCLST), area under the curve from the time of dosing to 24 hours (AUC24h), C max, and mean concentrations for total 1β-OH DCA (total of all three forms), respectively. Importantly, inhibition with itraconazole resulted in notable reduction of these biomarkers, with 84%, 85%, 82%, and 81% reductions of AUCLST, AUC24h, C max, and mean concentrations for total 1β-OH DCA, respectively. These preliminary data demonstrate for the first time that total 1β-OH DCA in plasma has the potential to serve as a biomarker for CYP3A DDI assessment in early clinical development and may provide key advantages over 4β-HC. SIGNIFICANCE STATEMENT: The authors have reported the use of total 1β-hydroxydeoxycholic acid (1β-OH DCA) (sum of 1β-OH DCA and its glycine and taurine conjugates) plasma exposure as a biomarker for CYP3A activity. Itraconazole inhibition led to an 81%-85% decrease of total 1β-OH DCA plasma exposures, whereas rifampin induction led to a 6.8- to 10.3-fold increase of total 1β-OH DCA plasma exposures. Using 1β-OH DCA exposures in plasma also provides the benefit of allowing pharmacokinetic and biomarker assessment using the same matrix.
Collapse
Affiliation(s)
- Yongjun Xue
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Linna Wang
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Runlan Huo
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Mu Chen
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Brian Melo
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Karen Dingley
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Allison Gaudy
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| | - Jim X Shen
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol-Myers Squibb, Princeton, New Jersey (Y.X., L.W., R.H., B.M., A.G., J.X.S.); Regeneron Pharmaceuticals Inc., Tarrytown, New York (M.C.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey (K.D.)
| |
Collapse
|
3
|
Gallucci GM, Hayes CM, Boyer JL, Barbier O, Assis DN, Ghonem NS. PPAR-Mediated Bile Acid Glucuronidation: Therapeutic Targets for the Treatment of Cholestatic Liver Diseases. Cells 2024; 13:1296. [PMID: 39120326 PMCID: PMC11312002 DOI: 10.3390/cells13151296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cholestatic liver diseases, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), result from an impairment of bile flow that leads to the hepatic retention of bile acids, causing liver injury. Until recently, the only approved treatments for PBC were ursodeoxycholic acid (UDCA) and obeticholic acid (OCA). While these therapies slow the progression of PBC in the early stage of the disease, approximately 40% of patients respond incompletely to UDCA, and advanced cases do not respond. UDCA does not improve survival in patients with PSC, and patients often have dose-limiting pruritus reactions to OCA. Left untreated, these diseases can progress to fibrosis and cirrhosis, resulting in liver failure and the need for transplantation. These shortcomings emphasize the urgent need for alternative treatment strategies. Recently, nuclear hormone receptors have been explored as pharmacological targets for adjunct therapy because they regulate enzymes involved in bile acid metabolism and detoxification. In particular, the peroxisome proliferator-activated receptor (PPAR) has emerged as a therapeutic target for patients with PBC or PSC who experience an incomplete response to UDCA. PPARα is predominantly expressed in the liver, and it plays an essential role in the regulation of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, both of which are critical enzyme families involved in the regulation of bile acid metabolism and glucuronidation, respectively. Importantly, PPARα agonists, e.g., fenofibrate, have shown therapeutic benefits in reducing elevated markers of cholestasis in patients with PBC and PSC, and elafibranor, the first PPAR (dual α, β/δ) agonist, has been FDA-approved for the second-line treatment of PBC. Additionally, newer PPAR agonists that target various PPAR isoforms (β/δ, γ) are under development as an adjunct therapy for PBC or PSC, although their impact on glucuronidation pathways are less characterized. This review will focus on PPAR-mediated bile acid glucuronidation as a therapeutic pathway to improve outcomes for patients with PBC and PSC.
Collapse
Affiliation(s)
- Gina M. Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Colleen M. Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - James L. Boyer
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Olivier Barbier
- Faculty of Pharmacy, Laval University, Québec, QC G1V 0A6, Canada
| | - David N. Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nisanne S. Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
4
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Wang C, Cheng B, Wei W, Gui L, Zeng W, Wang Y, Wang Y, Chen Q, Xu L, Miao J, Lan K. Comparison of 1Beta- and 5Beta-hydroxylation of Deoxycholate and Glycodeoxycholate as In Vitro Index Reactions for Cytochrome P450 3A Activities. Drug Metab Dispos 2024; 52:126-134. [PMID: 38050044 DOI: 10.1124/dmd.123.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1β and C-5β This work aimed to compare the 1β- and 5β-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1β-hydroxyglycodeoxycholic acid and 5β-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1β-hydroxylation, DCA 5β-hydroxylation, and GDCA 5β-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1β-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1β- and 5β-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5β-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1β-hydroxylation exhibited higher reactivity than DCA 5β-hydroxylation. It is therefore suggested that DCA 1β- and 5β-hydroxylations may serve as alternatives to T 6β-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1β- and 5β-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1β-hydroxylation exhibited higher metabolic activity than DCA 5β-hydroxylation, DCA 5β-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1β-hydroxylation in individual liver microsomes.
Collapse
Affiliation(s)
- Cuitong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Bin Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wei Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| |
Collapse
|
6
|
Zhang S, Liu L, Yue B, Wu X, Ji H, Wang J, Jiang Z, Liu C, Wu X. Seven lower toxicity celastrol derivatives by biotransformation of Pestalotiopsis sp. LGT-1. PHYTOCHEMISTRY 2023:113750. [PMID: 37279870 DOI: 10.1016/j.phytochem.2023.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Biotransformation of toxic components by plant endophytes has become an effective method to reduce the toxicity of target compounds and discover lead compounds. In this context, an endophytic fungus, Pestalotiopsis sp. LGT-1, from Tripterygium wilfordii Hook F. (TwHF), was used to reduce the toxicity of celastrol which is also produced by TwHF and is considered an attractive molecule with a variety of biological activities. Seven celastrol derivatives (1-7) were isolated from the coculture fermentation broth of LGT-1 and celastrol. Their structures were elucidated by spectroscopic data analysis including 1D and 2D NMR, as well as HRESIMS. Their absolute configurations were determined by analysis of NOESY, ECD data and NMR calculations. In cell proliferation experiments, the toxicity of seven compounds was 10.11- to 1.24-fold lower in normal cells than the prototype compound celastrol. These derivatives serve as potential candidates for future pharmaceutical applications.
Collapse
Affiliation(s)
- Senyu Zhang
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Lumei Liu
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Bangwen Yue
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xinyuan Wu
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Hongyan Ji
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Zhibo Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
| | - Cheng Liu
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Xiuli Wu
- College of Pharmacy, Ningxia Medical University; Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
7
|
Li J, Chen Y, Li R, Zhang X, Chen T, Mei F, Liu R, Chen M, Ge Y, Hu H, Wei R, Chen Z, Fan H, Zeng Z, Deng Y, Luo H, Hu S, Cai S, Wu F, Shi N, Wang Z, Zeng Y, Xie M, Jiang Y, Chen Z, Jia W, Chen P. Gut microbial metabolite hyodeoxycholic acid targets the TLR4/MD2 complex to attenuate inflammation and protect against sepsis. Mol Ther 2023; 31:1017-1032. [PMID: 36698311 PMCID: PMC10124078 DOI: 10.1016/j.ymthe.2023.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Sepsis, a critical condition resulting from the systemic inflammatory response to a severe microbial infection, represents a global public health challenge. However, effective treatment or intervention to prevent and combat sepsis is still lacking. Here, we report that hyodeoxycholic acid (HDCA) has excellent anti-inflammatory properties in sepsis. We discovered that the plasma concentration of HDCA was remarkably lower in patients with sepsis and negatively correlated with the severity of the disease. Similar changes in HDCA levels in plasma and cecal content samples were observed in a mouse model of sepsis, and these changes were associated with a reduced abundance of HDCA-producing strains. Interestingly, HDCA administration significantly decreased systemic inflammatory responses, prevented organ injury, and prolonged the survival of septic mice. We demonstrated that HDCA suppressed excessive activation of inflammatory macrophages by competitively blocking lipopolysaccharide binding to the Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 receptor complex, a unique mechanism that characterizes HDCA as an endogenous inhibitor of inflammatory signaling. Additionally, we verified these findings in TLR4 knockout mice. Our study highlights the potential value of HDCA as a therapeutic molecule for sepsis.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ge
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongqiang Deng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuiwang Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Kastrinou Lampou V, Poller B, Huth F, Fischer A, Kullak-Ublick GA, Arand M, Schadt HS, Camenisch G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol In Vitro 2023; 87:105533. [PMID: 36473578 DOI: 10.1016/j.tiv.2022.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.
Collapse
Affiliation(s)
- Vlasia Kastrinou Lampou
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birk Poller
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Fischer
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Heiko S Schadt
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gian Camenisch
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
9
|
Viswanathan L, Bachman E, Tian S, Ahluwalia N, Zhang Y, Bernstein HS, Panorchan P. Phase 1 Study to Assess the Safety and Pharmacokinetics of Elexacaftor/Tezacaftor/Ivacaftor in Subjects Without Cystic Fibrosis With Moderate Hepatic Impairment. Eur J Drug Metab Pharmacokinet 2022; 47:817-825. [PMID: 36036885 PMCID: PMC9633523 DOI: 10.1007/s13318-022-00791-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Elexacaftor/tezacaftor/ivacaftor is highly effective in treating people with cystic fibrosis (pwCF) who have ≥ 1 responsive mutation. Liver disease occurs in approximately 10%-20% of pwCF. The objective of this study was to assess the safety and pharmacokinetics of elexacaftor/tezacaftor/ivacaftor in people with moderate hepatic impairment, which is necessary to inform on its use and guide dosing recommendations. METHODS The safety and pharmacokinetics of elexacaftor/tezacaftor/ivacaftor were evaluated in subjects without CF with moderate hepatic impairment versus matched healthy controls. Twenty-two subjects (11 with moderate hepatic impairment and 11 healthy subjects) received half the standard adult daily dose of elexacaftor/tezacaftor/ivacaftor (elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 150 mg) orally for 10 days. RESULTS Elexacaftor/tezacaftor/ivacaftor was safe and well tolerated in subjects with moderate hepatic impairment and healthy controls. On day 10, the mean values of the area under the curve during the dosing interval (AUCτ) for total (bound and unbound) elexacaftor and its major active metabolite M23-elexacaftor were increased 1.25-fold (95% CI 1.01, 1.54) and 1.73-fold (95% CI 1.27, 2.35), respectively, in subjects with moderate hepatic impairment compared with matched healthy subjects. The mean values of AUCτ for ivacaftor and tezacaftor were increased 1.50-fold (95% CI 1.09, 2.06) and 1.20-fold (95% CI 1.00, 1.43), respectively, while the mean value of AUCτ for the active metabolite M1-tezacaftor was 1.29-fold lower [ratio of moderate hepatic impairment to healthy subjects (95% CI): 0.778 (0.655, 0.924)] in subjects with moderate hepatic impairment. CONCLUSIONS A dose reduction of elexacaftor/tezacaftor/ivacaftor is warranted in people with moderate hepatic impairment. (Trial registry number 2018-002570-40; registered 2 July 2018.).
Collapse
Affiliation(s)
- Lakshmi Viswanathan
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Eric Bachman
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA.
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Neil Ahluwalia
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Yaohua Zhang
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Harold S Bernstein
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Paul Panorchan
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| |
Collapse
|
10
|
Alrehaili BD, Lee M, Takahashi S, Novak R, Rimal B, Boehme S, Trammell SAJ, Grevengoed TJ, Kumar D, Alnouti Y, Chiti K, Wang X, Patterson AD, Chiang JYL, Gonzalez FJ, Lee Y. Bile acid conjugation deficiency causes hypercholanemia, hyperphagia, islet dysfunction, and gut dysbiosis in mice. Hepatol Commun 2022; 6:2765-2780. [PMID: 35866568 PMCID: PMC9512455 DOI: 10.1002/hep4.2041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Pharmacology and ToxicologyPharmacy CollegeTaibah UniversityMedinaSaudi Arabia
| | - Mikang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shogo Takahashi
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Robert Novak
- Department of PathologyCollege of MedicineNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bipin Rimal
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Shannon Boehme
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Samuel A. J. Trammell
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trisha J. Grevengoed
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Devendra Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Yazen Alnouti
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Katya Chiti
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Andrew D. Patterson
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - John Y. L. Chiang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Frank J. Gonzalez
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Yoon‐Kwang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
| |
Collapse
|
11
|
Metabolomic-based investigation of Yinlan alleviating hyperlipidemia by inhibiting blood stasis and phlegm turbidity through the PXR-CYP3A4-ABCB1-FXR pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Yu C, Wang L, Cai W, Zhang W, Hu Z, Wang Z, Yang Z, Peng M, Huo H, Zhang Y, Zhou Q. Dietary Macroalgae Saccharina japonica Ameliorates Liver Injury Induced by a High-Carbohydrate Diet in Swamp Eel (Monopterus albus). Front Vet Sci 2022; 9:869369. [PMID: 35774985 PMCID: PMC9237522 DOI: 10.3389/fvets.2022.869369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
A high-carbohydrate diet lowers the rearing cost and decreases the ammonia emission into the environment, whereas it can induce liver injury, which can reduce harvest yields and generate economic losses in reared fish species. Macroalgae Saccharina japonica (SJ) has been reported to improve anti-diabetic, but the protective mechanism of dietary SJ against liver injury in fish fed a high-carbohydrate diet has not been studied. Therefore, a 56-day nutritional trial was designed for swamp eel Monopterus albus, which was fed with the normal diet [20% carbohydrate, normal carbohydrate (NC)], a high carbohydrate diet (32% carbohydrate, HC), and a HC diet supplemented with 2.5% SJ (HC-S). The HC diet promoted growth and lowered feed coefficient (FC), whereas it increased hepatosomatic index (HSI) when compared with the NC diet in this study. However, SJ supplementation increased iodine contents in muscle, reduced HSI, and improved liver injury, such as the decrease of glucose (GLU), total bile acid (TBA), and alanine aminotransferase (ALT) in serum, and glycogen and TBA in the liver. Consistently, histological analysis showed that SJ reduced the area of lipid droplet, glycogen, and collagen fiber in the liver (p < 0.05). Thoroughly, the underlying protective mechanisms of SJ supplementation against HC-induced liver injury were studied by liver transcriptome sequencing coupled with pathway analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed genes (DEGs), such as the acetyl-coenzyme A synthetase (acss1), alcohol dehydrogenase (adh), interferon-induced protein with tetratricopeptide repeats 1 (ifit1), aldo-keto reductase family 1 member D1 (akr1d1), cholesterol 7-alpha-monooxygenase (cyp7a1), and UDP-glucuronosyltransferase (ugt), indicated that the pathway of glycolysis/gluconeogenesis was the main metabolic pathway altered in the HC group compared with the NC group. Meanwhile, hepatitis C, primary BA biosynthesis, and drug metabolism-cytochrome P450 were the three main metabolic pathways altered by SJ supplementation when compared with the HC group. Moreover, the BA-targeted metabolomic analysis of the serum BA found that SJ supplementation decreased the contents of taurohyocholic acid (THCA), taurochenodeoxycholic acid (TCDCA), taurolithocholic acid (TLCA), nordeoxycholic acid (NorDCA), and increased the contents of ursocholic acid (UCA), allocholic acid (ACA), and chenodeoxycholic acid (CDCA). In particular, the higher contents of UCA, ACA, and CDCA regulated by SJ were associated with lower liver injury. Overall, these results indicate that the 2.5% supplementation of SJ can be recommended as a functional feed additive for the alleviation of liver injury in swamp eel-fed high-carbohydrate diets.
Collapse
Affiliation(s)
- Chuanqi Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
- *Correspondence: Chuanqi Yu
| | - Lu Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Wanghe Cai
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Wenping Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zhonghua Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zirui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Mo Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Huanhuan Huo
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Yazhou Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutritional Physiology and Healthy Breeding, Nanchang, China
- Qiubai Zhou
| |
Collapse
|
13
|
Tie D, Fan Z, Chen D, Chen X, Chen Q, Chen J, Bo H. Mechanisms of Danggui Buxue Tang on Hematopoiesis via Multiple Targets and Multiple Components: Metabonomics Combined with Database Mining Technology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1155-1171. [PMID: 35475977 DOI: 10.1142/s0192415x22500471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the mechanism of action of Danggui Buxue Tang (DBT) with its multiple components and targets in the synergistic regulation of hematopoiesis. Mouse models of hematopoiesis were established using antibiotics. Metabolomics was used to detect body metabolites and enriched pathways. The active ingredients, targets, and pathways of DBT were analyzed using system pharmacology. The results of metabolomics and system pharmacology were integrated to identify the key pathways and targets. A total of 515 metabolites were identified using metabolomics. After the action of antibiotics, 49 metabolites were markedly changed: 23 were increased, 26 were decreased, and 11 were significantly reversed after DBT administration. Pathway enrichment analysis showed that these 11 metabolites were related to bile secretion, cofactor biosynthesis, and fatty acid biosynthesis. The results of the pharmacological analysis showed that 616 targets were related to DBT-induced anemia, which were mainly enriched in biological processes, such as bile secretion, biosynthesis of cofactors, and cholesterol metabolism. Combined with the results of metabolomics and system pharmacology, we found that bile acid metabolism and biotin synthesis were the key pathways for DBT. Forty-two targets of DBT were related to these two metabolic pathways. PPI analysis revealed that the top 10 targets were CYP3A4, ABCG2, and UGT1A8. Twenty-one components interacted with these 10 targets. In one case, a target corresponds to multiple components, and a component corresponds to multiple targets. DBT acts on multiple targets of ABCG2, UGT1A8, and CYP3A4 through multiple components, affecting the biosynthesis of cofactors and bile secretion pathways to regulate hematopoiesis.
Collapse
Affiliation(s)
- Defu Tie
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Zhaohui Fan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Dan Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Xiao Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, P. R. China
| |
Collapse
|
14
|
Sangaraju D, Katavolos P, Liang X, Chou C, Zabka TS, Dean B, Maher J. Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: A comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicol Appl Pharmacol 2022; 443:116008. [DOI: 10.1016/j.taap.2022.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
15
|
Ferlenghi F, Giorgio C, Incerti M, Guidetti L, Chiodelli P, Rusnati M, Tognolini M, Vacondio F, Mor M, Lodola A. Metabolic Soft Spot and Pharmacokinetics: Functionalization of C-3 Position of an Eph-Ephrin Antagonist Featuring a Bile Acid Core as an Effective Strategy to Obtain Oral Bioavailability in Mice. Pharmaceuticals (Basel) 2021; 15:ph15010041. [PMID: 35056098 PMCID: PMC8779995 DOI: 10.3390/ph15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
UniPR129, an L-β-homotryptophan conjugate of the secondary bile acid lithocholic acid (LCA), acts as an effective protein-protein interaction (PPI) inhibitor of the Eph-ephrin system but suffers from a poor oral bioavailability in mice. To improve UniPR129 bioavailability, a metabolic soft spot, i.e., the 3α-hydroxyl group on the LCA steroidal ring, was functionalized to 3-hydroxyimine. In vitro metabolism of UniPR129 and 3-hydroxyimine derivative UniPR500 was compared in mouse liver subcellular fractions, and main metabolites were profiled by high resolution (HR-MS) and tandem (MS/MS) mass spectrometry. In mouse liver microsomes (MLM), UniPR129 was converted into several metabolites: M1 derived from the oxidation of the 3-hydroxy group to 3-oxo, M2-M7, mono-hydroxylated metabolites, M8-M10, di-hydroxylated metabolites, and M11, a mono-hydroxylated metabolite of M1. Phase II reactions were only minor routes of in vitro biotransformation. UniPR500 shared several metabolic pathways with parent UniPR129, but it showed higher stability in MLM, with a half-life (t1/2) of 60.4 min, if compared to a t1/2 = 16.8 min for UniPR129. When orally administered to mice at the same dose, UniPR500 showed an increased systemic exposure, maintaining an in vitro valuable pharmacological profile as an EphA2 receptor antagonist and an overall improvement in its physico-chemical profile (solubility, lipophilicity), if compared to UniPR129. The present work highlights an effective strategy for the pharmacokinetic optimization of aminoacid conjugates of bile acids as small molecule Eph-ephrin antagonists.
Collapse
Affiliation(s)
- Francesca Ferlenghi
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Carmine Giorgio
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Matteo Incerti
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Lorenzo Guidetti
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Paola Chiodelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (P.C.); (M.R.)
| | - Marco Rusnati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (P.C.); (M.R.)
| | - Massimiliano Tognolini
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| | - Federica Vacondio
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
- Correspondence: (F.V.); (M.M.); Tel.: +39-0521-905076 (F.V.); +39-0521-905059 (M.M.)
| | - Marco Mor
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
- Correspondence: (F.V.); (M.M.); Tel.: +39-0521-905076 (F.V.); +39-0521-905059 (M.M.)
| | - Alessio Lodola
- Food and Drug Department, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy; (F.F.); (C.G.); (M.I.); (L.G.); (M.T.); (A.L.)
| |
Collapse
|
16
|
Qin X, Zhang Y, Lu J, Huang S, Liu Z, Wang X. CYP3A deficiency alters bile acid homeostasis and leads to changes in hepatic susceptibility in rats. Toxicol Appl Pharmacol 2021; 429:115703. [PMID: 34461081 DOI: 10.1016/j.taap.2021.115703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 3A (CYP3A) as an important enzyme metabolizes many drugs and a variety of endogenous substances. Bile acids (BA) regulate physiological function by activating BA receptors. In this study, CYP3A1/2 gene knockout (KO) and wild-type (WT) rats were used to investigate the regulatory effects of CYP3A on BA homeostasis and liver function. Compared with WT rats, BA concentrations in serum, liver and small intestine of CYP3A1/2 KO rats increased significantly, which was due to the decrease of catabolism and the increase of synthesis. In particular, the composition of serum BA (overall hydrophobicity) presented an age- and CYP3A-dependent manner. With the aging of WT rats, the serum BA became more hydrophobic, while this trend was delayed in CYP3A1/2 KO rats. Moreover, the level of serum total cholesterol, the precursor of BA synthesis, decreased by about 20% in CYP3A1/2 KO rats, which is due to the low synthesis but high biotransformation rate. The increase of BA pool further led to the change of transcription level of BA receptor in liver (pregnane X receptor) and small intestine (Takeda G-protein receptor 5), and affected the function and morphology of CYP3A1/2 KO rat liver. In conclusion, CYP3A is a key regulator of BA homeostasis in rats, especially in regulating BA pool size, composition and balance of anabolism, and prevents susceptibility to hepatotoxicity under BA overload.
Collapse
Affiliation(s)
- Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center of Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
17
|
Evaluation of 1β-Hydroxylation of Deoxycholic Acid as a Non-Invasive Urinary Biomarker of CYP3A Activity in the Assessment of Inhibition-Based Drug-Drug Interaction in Healthy Volunteers. J Pers Med 2021; 11:jpm11060457. [PMID: 34073662 DOI: 10.3390/jpm11060457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we aimed to evaluate the utility of endogenous 1β-hydroxy-deoxycholic acid/total deoxycholic acid ratio (1β-OH-DCA/ToDCA) in spot urine as a surrogate marker of cytochrome P450 3A (CYP3A) activity in the assessment inhibition-based drug-drug interactions in healthy volunteers. This was accomplished through an open-label, three-treatment parallel-arm study in healthy male volunteers from Zimbabwe. Each group received itraconazole (ITZ; 100 mg once daily; n = 10), fluconazole (FKZ; 50 mg once daily; n = 9), or alprazolam (APZ; 1 mg once daily; n = 8) orally. Midazolam (MDZ), dosed orally and intravenously, was used as a comparator to validate the exploratory measures of CYP3A activity and the effects of known inhibitors. Urinary metabolic ratios of 1β-OH-DCA/ToDCA before and after CYP3A inhibitor treatment showed a similar magnitude of inhibitory effects of the three treatments as that measured by oral MDZ clearance. The maximum inhibition effect of a 75% reduction in the 1β-OH-DCA/ToDCA ratio compared to the baseline was achieved in the ITZ group following six once-daily doses of 100 mg. The correlations of the two markers for CYP3A inhibitor treatment were significant (rs = 0.53, p < 0.01). The half-life of urinary endogenous 1β-OH-DCA/ToDCA was estimated as four days. These results suggested that 1β-OH-DCA/ToDCA in spot urine is a promising convenient, non-invasive, sensitive, and relatively quickly responsive endogenous biomarker that can be used for CYP3A inhibition-based drug-drug interaction in clinical studies.
Collapse
|
18
|
Magliocco G, Desmeules J, Bosilkovska M, Thomas A, Daali Y. The 1β-Hydroxy-Deoxycholic Acid to Deoxycholic Acid Urinary Metabolic Ratio: Toward a Phenotyping of CYP3A Using an Endogenous Marker? J Pers Med 2021; 11:jpm11020150. [PMID: 33672438 PMCID: PMC7923269 DOI: 10.3390/jpm11020150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we assessed the potential use of the 1β-hydroxy-deoxycholic acid (1β-OH-DCA) to deoxycholic acid (DCA) urinary metabolic ratio (UMR) as a CYP3A metric in ten male healthy volunteers. Midazolam (MDZ) 1 mg was administered orally at three sessions: alone (control session), after pre-treatment with fluvoxamine 50 mg (12 h and 2 h prior to MDZ administration), and voriconazole 400 mg (2 h before MDZ administration) (inhibition session), and after a 7-day pre-treatment with the inducer rifampicin 600 mg (induction session). The 1β-OH-DCA/DCA UMR was measured at each session, and correlations with MDZ metrics were established. At baseline, the 1β-OH-DCA/DCA UMR correlated significantly with oral MDZ clearance (r = 0.652, p = 0.041) and Cmax (r = -0.652, p = 0.041). In addition, the modulation of CYP3A was reflected in the 1β-OH-DCA/DCA UMR after the intake of rifampicin (induction ratio = 11.4, p < 0.01). During the inhibition session, a non-significant 22% decrease in 1β-OH-DCA/DCA was observed (p = 0.275). This result could be explained by the short duration of CYP3A inhibitors intake fixed in our clinical trial. Additional studies, particularly involving CYP3A inhibition for a longer period and larger sample sizes, are needed to confirm the 1β-OH-DCA/DCA metric as a suitable CYP3A biomarker.
Collapse
Affiliation(s)
- Gaëlle Magliocco
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Aurélien Thomas
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Forensic Toxicology and Chemistry Unit, CURML, 1000 Lausanne University Hospital, Geneva University Hospitals, Lausanne, 1205 Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, 1000 Lausanne, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
19
|
Yang B, Zha R, Zhao W, Gong D, Meng X, Zhang Z, Zhu L, Qi N, Wang B. Comparative transcriptome analysis of the fungus Gibberella zeae transforming lithocholic acid into ursodeoxycholic acid. Biotechnol Lett 2021; 43:415-422. [PMID: 33179169 DOI: 10.1007/s10529-020-03048-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
The comparative transcriptome analysis of the fungus Gibberella zeae which could efficiently catalyze the 7β-hydroxylation of LCA to produce UDCA was performed with LCA induction. This is the first time to report the comparative transcriptome of fungus under LCA treatment. Totally, 1364 differentially expressed genes including 770 up-regulated and 594 down-regulated genes were identified. In the 770 up-regulated genes, 12 genes with the function of hydroxylation were picked out by application of function screening, which were annotated as CYP450 or hydroxylase. Moreover, the qRT-PCR results of five up-regulated CYP450-like genes confirmed the credibility of RNA-Seq further. These results provide valuable information for the discovery of novel enzyme producing clinical drug UDCA from butchery byproduct LCA, and also might indicate some clues for the detoxification process of LCA in humans.
Collapse
Affiliation(s)
- Biling Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Renfen Zha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Daoyong Gong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xinhua Meng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Na Qi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
20
|
Yip C, Okada NC, Howerton A, Amei A, Abel-Santos E. Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochem Pharmacol 2021; 183:114314. [PMID: 33152344 PMCID: PMC7770080 DOI: 10.1016/j.bcp.2020.114314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Clostridioides difficile infections (CDI) are the leading cause of nosocomial antibiotic-associated diarrhea. C. difficile produces dormant spores that serve as infectious agents. Bile salts in the gastrointestinal tract signal spores to germinate into toxin-producing cells. As spore germination is required for CDI onset, anti-germination compounds may serve as prophylactics. CamSA, a synthetic bile salt, was previously shown to inhibit C. difficile spore germination in vitro and in vivo. Unexpectedly, a single dose of CamSA was sufficient to offer multi-day protection from CDI in mice without any observable toxicity. To study this intriguing protection pattern, we examined the pharmacokinetic parameters of CamSA. CamSA was stable to the gut of antibiotic-treated mice but was extensively degraded by the microbiota of non-antibiotic-treated animals. Our data also suggest that CamSA's systemic absorption is minimal since it is retained primarily in the intestinal lumen and liver. CamSA shows weak interactions with CYP3A4, a P450 hepatic isozyme involved in drug metabolism and bile salt modification. Like other bile salts, CamSA seems to undergo enterohepatic circulation. We hypothesize that the cycling of CamSA between the liver and intestines serves as a slow-release mechanism that allows CamSA to be retained in the gastrointestinal tract for days. This model explains how a single CamSA dose can prevent murine CDI even though spores are present in the animal's intestine for up to four days post-challenge.
Collapse
Affiliation(s)
- Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Naomi C Okada
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Amber Howerton
- Department of Physical and Life Sciences, Nevada State College, 1300 Nevada State Drive, Henderson, Nevada, 89002, United States
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States.
| |
Collapse
|
21
|
Velazquez JJ, LeGraw R, Moghadam F, Tan Y, Kilbourne J, Maggiore JC, Hislop J, Liu S, Cats D, Chuva de Sousa Lopes SM, Plaisier C, Cahan P, Kiani S, Ebrahimkhani MR. Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst 2020; 12:41-55.e11. [PMID: 33290741 PMCID: PMC8164844 DOI: 10.1016/j.cels.2020.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Farzaneh Moghadam
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joseph C Maggiore
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua Hislop
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Davy Cats
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Cahan
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ 85054, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
22
|
Distinct Postprandial Bile Acids Responses to a High-Calorie Diet in Men Volunteers Underscore Metabolically Healthy and Unhealthy Phenotypes. Nutrients 2020; 12:nu12113545. [PMID: 33228154 PMCID: PMC7699492 DOI: 10.3390/nu12113545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Bile acids (BAs) regulate dietary lipid hydrolysis and absorption in the proximal intestine. Several studies have highlighted a determinant role of circulating levels and/or metabolism of BAs in the pathogenesis of major cardiometabolic diseases. Whether changes in BA profiles are causative or are consequence of these diseases remains to be determined. Healthy male volunteers (n = 71) underwent a postprandial exploration following consumption of a hypercaloric high fat typical Western meal providing 1200 kcal. We investigated variations of circulating levels of 28 BA species, together with BA synthesis marker 7α-hydroxy-4-cholesten-3-one (C4) over an approximately diurnal 12 h period. Analysis of BA variations during the postprandial time course revealed two major phenotypes with opposite fluctuations, i.e., circulating levels of each individual species of unconjugated BAs were reduced after meal consumption whereas those of tauro- and glyco-conjugated BAs were increased. By an unbiased classification strategy based on absolute postprandial changes in BA species levels, we classified subjects into three distinct clusters; the two extreme clusters being characterized by the smallest absolute changes in either unconjugated-BAs or conjugated-BAs. Finally, we demonstrated that our clustering based on postprandial changes in BA profiles was associated with specific clinical and biochemical features, including postprandial triglyceride levels, BMI or waist circumference. Altogether, our study reveals that postprandial profiles/patterns of BAs in response to a hypercaloric high fat challenge is associated with healthy or unhealthy metabolic phenotypes that may help in the early identification of subjects at risk of developing metabolic disorders.
Collapse
|
23
|
Matthaei J, Bonat WH, Kerb R, Tzvetkov MV, Strube J, Brunke S, Sachse-Seeboth C, Sehrt D, Hofmann U, von Bornemann Hjelmborg J, Schwab M, Brockmöller J. Inherited and Acquired Determinants of Hepatic CYP3A Activity in Humans. Front Genet 2020; 11:944. [PMID: 32973880 PMCID: PMC7472781 DOI: 10.3389/fgene.2020.00944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Human CYP3A enzymes (including CYP3A4 and CYP4A5) metabolize about 40% of all drugs and numerous other environmental and endogenous substances. CYP3A activity is highly variable within and between humans. As a consequence, therapy with standard doses often results in too low or too high blood and tissue concentrations resulting in therapeutic failure or dose-related adverse reactions. It is an unanswered question how much of the big interindividual variation in CYP3A activity is caused by genetic or by environmental factors. This question can be answered by the twin study approach. Using midazolam as CYP3A probe drug, we studied 43 monozygotic and 14 dizygotic twins and measured midazolam and its metabolite 1-OH-midazolam. In addition, endogenous biomarkers of CYP3A activity, 4ß-OH-cholesterol and 6ß-OH-cortisol, were analyzed. Additive genetic effects accounted for only 15% of the variation in midazolam AUC, whereas 48% was attributed to common environmental factors. In contrast, 73, 56, and 31% of 1-OH-midazolam, 4ß-OH-cholesterol and 6ß-OH-cortisol variation was due to genetic effects. There was a low phenotypic correlation between the four CYP3A biomarkers. Only between midazolam and its 1-OH-metabolite, and between midazolam and 6ß-OH-cortisol we found significant bivariate genetic correlations. Midazolam AUC differed depending on the CYP3A4∗22 variant (p = 0.001) whereas plasma 4ß-OH-cholesterol was significantly lower in homozygous carriers of CYP3A5∗3 (p = 0.02). Apparently, non-genomic factors played a dominant role in the inter-individual variation of the CYP3A probe drug midazolam. A small intra-individual pharmacokinetic variation after repeated administration of midazolam was rated earlier as indication of high heritability of CYP3A activity, but according to present data that could also largely be due to constant environmental factors and/or heritability of liver blood flow. The higher heritabilities of 4ß-OH-cholesterol and of 1-OH-midazolam may deserve further research on the underlying factors beyond CYP3A genes. Clinical Trial Registration: ClinicalTrials.gov: NCT01845194 and EUDRA-CT: 2008-006223-31.
Collapse
Affiliation(s)
- Johannes Matthaei
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Wagner Hugo Bonat
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Reinhold Kerb
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Mladen Vassilev Tzvetkov
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Jakob Strube
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Stefanie Brunke
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Cordula Sachse-Seeboth
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Daniel Sehrt
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jürgen Brockmöller
- Institute for Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
24
|
Wang WX, Chen L, Wang GY, Zhang JL, Tan XW, Lin QH, Chen YJ, Zhang J, Zhu PP, Miao J, Su MM, Liu CX, Jia W, Lan K. Urinary Bile Acid Profile of Newborns Born by Cesarean Section Is Characterized by Oxidative Metabolism of Primary Bile Acids: Limited Roles of Fetal-Specific CYP3A7 in Cholate Oxidations. Drug Metab Dispos 2020; 48:662-672. [PMID: 32499339 DOI: 10.1124/dmd.120.000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
This work aims to investigate how the bile acid metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary bile acids (BAs). The total unconjugated BA profiles were quantitatively determined by enzyme digestion techniques in urine of 21 newborns born by cesarean section, 29 healthy parturient women, 30 healthy males, and 28 healthy nonpregnant females. As expected, because of a lack of developed gut microbiota, newborns exhibited poor metabolism of secondary BAs. Accordingly, the tertiary BAs contributed limitedly to the urinary excretion of BAs in newborns despite their tertiary-to-secondary ratios significantly increasing. As a result, the primary BAs of newborns underwent extensive oxidative metabolism, resulting in elevated urinary levels of some fetal-specific BAs, including 3-dehydroCA, 3β,7α,12α-trihydroxy-5β-cholan-24-oic acid, 3α,12-oxo-hydroxy-5β-cholan-24-oic acid, and nine tetrahydroxy-cholan-24-oic acids (Tetra-BAs). Parturient women had significantly elevated urinary levels of tertiary BAs and fetal-specific BAs compared with female control, indicating that they may be excreted into amniotic fluid for maternal disposition. An in vitro metabolism assay in infant liver microsomes showed that four Tetra-BAs and 3-dehydroCA were hydroxylated metabolites of cholate, glycocholate, and particularly taurocholate. However, the recombinant cytochrome P450 enzyme assay found that the fetal-specific CYP3A7 did not contribute to these oxidation metabolisms as much as expected compared with CYP3A4. In conclusion, newborns show a BA metabolism pattern predominated by primary BA oxidations due to immaturity of secondary BA metabolism. Translational studies following this finding may bring new ideas and strategies for both pediatric pharmacology and diagnosis and treatment of perinatal cholestasis-associated diseases. SIGNIFICANCE STATEMENT: The prenatal BA disposition is different from adults because of a lack of gut microbiota. However, how the BA metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary BAs remains poorly defined. This work demonstrated that the urinary BA profiles of newborns born by cesarean section are characterized by oxidative metabolism of primary BAs, in which the fetal-specific CYP3A7 plays a limited role in the downstream oxidation metabolism of cholate.
Collapse
Affiliation(s)
- Wen-Xia Wang
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Li Chen
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Guo-Yu Wang
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Jin-Ling Zhang
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Xian-Wen Tan
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Qiu-Hong Lin
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Yu-Jie Chen
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Jian Zhang
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Ping-Ping Zhu
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Jia Miao
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Ming-Ming Su
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Chang-Xiao Liu
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Wei Jia
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| | - Ke Lan
- Key laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy (W.-X.W., X.-W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.), Evidence-Based Pharmacy Center, Department of Pharmacy, West China Second University Hospital (L.C.), Labor And Delivery Room, West China Second University Hospital, (G.-Y.W., J.-L.Z.), Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (L.C., G.-Y.W., J.-L.Z.), and Institute of Clinical Pharmacology, West China Hospital, (J.M.), Sichuan University, Chengdu, China; Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.-M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.-X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (W.-X.W., X.W.T., Q.-H.L., Y.-J.C., J.Z., P.-P.Z., K.L.)
| |
Collapse
|
25
|
Lin Q, Tan X, Wang W, Zeng W, Gui L, Su M, Liu C, Jia W, Xu L, Lan K. Species Differences of Bile Acid Redox Metabolism: Tertiary Oxidation of Deoxycholate is Conserved in Preclinical Animals. Drug Metab Dispos 2020; 48:499-507. [PMID: 32193215 PMCID: PMC11022903 DOI: 10.1124/dmd.120.090464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
It was recently disclosed that CYP3A is responsible for the tertiary stereoselective oxidations of deoxycholic acid (DCA), which becomes a continuum mechanism of the host-gut microbial cometabolism of bile acids (BAs) in humans. This work aims to investigate the species differences of BA redox metabolism and clarify whether the tertiary metabolism of DCA is a conserved pathway in preclinical animals. With quantitative determination of the total unconjugated BAs in urine and fecal samples of humans, dogs, rats, and mice, it was confirmed that the tertiary oxidized metabolites of DCA were found in all tested animals, whereas DCA and its oxidized metabolites disappeared in germ-free mice. The in vitro metabolism data of DCA and the other unconjugated BAs in liver microsomes of humans, monkeys, dogs, rats, and mice showed consistencies with the BA-profiling data, confirming that the tertiary oxidation of DCA is a conserved pathway. In liver microsomes of all tested animals, however, the oxidation activities toward DCA were far below the murine-specific 6β-oxidation activities toward chenodeoxycholic acid (CDCA), ursodeoxycholic acid, and lithocholic acid (LCA), and 7-oxidation activities toward murideoxycholic acid and hyodeoxycholic acid came from the 6-hydroxylation of LCA. These findings provided further explanations for why murine animals have significantly enhanced downstream metabolism of CDCA compared with humans. In conclusion, the species differences of BA redox metabolism disclosed in this work will be useful for the interspecies extrapolation of BA biology and toxicology in translational researches. SIGNIFICANCE STATEMENT: It is important to understand the species differences of bile acid metabolism when deciphering biological and hepatotoxicology findings from preclinical studies. However, the species differences of tertiary bile acids are poorly understood compared with primary and secondary bile acids. This work confirms that the tertiary oxidation of deoxycholic acid is conserved among preclinical animals and provides deeper understanding of how and why the downstream metabolism of chenodeoxycholic acid dominates that of cholic acid in murine animals compared with humans.
Collapse
Affiliation(s)
- Qiuhong Lin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Xianwen Tan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wenxia Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wushuang Zeng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Lanlan Gui
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Mingming Su
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Changxiao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Wei Jia
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Liang Xu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, (M.S., W.J.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (Q.L., X.T., W.W., W.Z., L.G., K.L.)
| |
Collapse
|
26
|
Villette R, Kc P, Beliard S, Salas Tapia MF, Rainteau D, Guerin M, Lesnik P. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol 2020; 11:278. [PMID: 32308619 PMCID: PMC7145900 DOI: 10.3389/fphar.2020.00278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Remy Villette
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Pukar Kc
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Sophie Beliard
- Aix-Marseille Université, INSERM U1263, INRA, C2VN, Marseille, France.,APHM, La Conception Hospital, Marseille, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint Antoine, Département de Métabolomique Clinique, Paris, France
| | - Maryse Guerin
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS U1166, "Integrative Biology of Atherosclerosis" and Sorbonne Université, Paris, France
| |
Collapse
|
27
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
28
|
Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B 2019; 9:1087-1098. [PMID: 31867158 PMCID: PMC6900549 DOI: 10.1016/j.apsb.2019.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Vitamin D3 (VD3) is a multifunctional nutrient which can be either synthesized or absorbed from the diet. It plays a pivotal role in systemic calcium and phosphate homeostasis, as well as in various physiological and pathological processes. VD3 is converted to the active form, 1α,25-dihydroxyvitamin D3 (1,25-D3), by cytochrome P450 2R1 (CYP2R1)/CYP27A1 and CYP27B1 sequentially, and deactivated by multiple enzymes including CYP3A4. On the other hand, 1,25-D3 is capable of activating the transcription of CYP3A genes in humans, mice and rats. The vitamin D receptor (VDR)-mediated transactivation of human CYP3A4 and CYP3A5 resembles that known for pregnane X receptor (PXR). Activated VDR forms a heterodimer with retinoid X receptor α (RXRα), recruits co-activators, translocates to the cell nucleus, binds to the specific vitamin D responsive elements (VDRE), and activates the gene transcription. In mice, intestinal Cyp3a11 mRNA levels, but not those of hepatic CYP3As, were induced by in vivo administration of VDR and PXR agonists. In rats, intestinal Cyp3a1 and Cyp3a2 mRNAs were induced by 1,25-D3 or lithocholic acid (LCA), whereas hepatic Cyp3a2, but not Cyp3a1 and Cyp3a9, was modulated to 1,25-D3 treatment. In general, the VDR-mediated regulation of CYP3A presents species and organ specificity.
Collapse
|
29
|
Okazaki F, Tsuji Y, Seto Y, Ogami C, Yamamoto Y, To H. Effects of a rifampicin pre-treatment on linezolid pharmacokinetics. PLoS One 2019; 14:e0214037. [PMID: 31518346 PMCID: PMC6743782 DOI: 10.1371/journal.pone.0214037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
Linezolid is an oxazolidinone antibiotic that effectively treats methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Since rifampicin induces other antibiotic effects, it is combined with linezolid in therapeutic regimes. However, linezolid blood concentrations are reduced by this combination, which increases the risk of the emergence of antibiotic-resistant bacteria. We herein demonstrated that the combination of linezolid with rifampicin inhibited its absorption and promoted its elimination, but not through microsomal enzymes. Our results indicate that the combination of linezolid with rifampicin reduces linezolid blood concentrations via metabolic enzymes.
Collapse
Affiliation(s)
- Fumiyasu Okazaki
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasuhiro Tsuji
- Center for Pharmacist Education, School of Pharmacy, Nihon University, Chiba, Japan
| | - Yoshihiro Seto
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chika Ogami
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama, Toyama, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
30
|
Vitamin E analogues differentially inhibit human cytochrome P450 3A (CYP3A)-mediated oxidative metabolism of lithocholic acid: Impact of δ-tocotrienol on lithocholic acid cytotoxicity. Toxicology 2019; 423:62-74. [PMID: 31102695 DOI: 10.1016/j.tox.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
Lithocholic acid is a cytotoxic bile acid oxidized at the C-3 position by human cytochrome P450 3A (CYP3A) to form 3-ketocholanoic acid, but it is not known whether this metabolite is cytotoxic. Tocotrienols, in their various isomeric forms, are vitamin E analogues. In the present study, the hypothesis to be tested is that tocotrienols inhibit CYP3A-catalyzed lithocholic acid 3-oxidation, thereby influencing lithocholic acid cytotoxicity. Our enzyme catalysis experiments indicated that human recombinant CYP3A5 in addition to CYP3A4, liver microsomes, and intestinal microsomes catalyzed lithocholic acid 3-oxidation to form 3-ketocholanoic acid. Liver microsomes with the CYP3A5*1/*3 and CYP3A5*3/*3 genotypes were associated with decreased lithocholic acid 3-oxidation. α-Tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture, but not α-tocopherol (a vitamin E analogue), differentially inhibited lithocholic acid 3-oxidation catalyzed by liver and intestinal microsomes and recombinant CYP3A4 and CYP3A5. Compared to lithocholic acid 3-oxidation, CYP3A-catalyzed testosterone 6β-hydroxylation was inhibited to a lesser extent by α-tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture. δ-Tocotrienol inhibited lithocholic acid 3-oxidation by a mixed mode. Like lithocholic acid, 3-ketocholanoic acid was also cytotoxic in human intestinal and liver cell models. δ-Tocotrienol decreased the extent of lithocholic acid 3-oxidation and this inhibition was associated with enhanced cytotoxicity in LS180 cells treated with δ-tocotrienol and lithocholic acid. Overall, vitamin E analogues inhibited in vitro lithocholic acid 3-oxidation in an isomer-dependent manner, with inhibition occurring with tocotrienols, but not α-tocopherol. The enhanced lithocholic acid toxicity by δ-tocotrienol in a human intestinal cell model warrants future investigations in vivo.
Collapse
|
31
|
Goto T, Tohkin M, Yamazoe Y. Solving the interactions of steroidal ligands with CYP3A4 using a grid-base template system. Drug Metab Pharmacokinet 2019; 34:351-364. [PMID: 31563329 DOI: 10.1016/j.dmpk.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023]
Abstract
Using over fifty steroidal ligands, CYP3A4 Template system established in our previous study (DMPK 34: 113-125, 2019) has been evaluated for the applicability for prediction of regioselective metabolisms of steroids in the present study. Plural regional interactions near Site of Oxidation of CYP3A4 (Slide-down and Adaptation) are newly defined for steroid ligands in addition to previously characterized Trigger- and IJL-interactions on Template. Interaction of steroids at ring-A with CYP3A4 residue (Front-residue), at the facial side of Ring B of Template, determined the availability of ligand sitting at Rings A and B of Template. Steroids having 3-one-4-ene structures, which are not stacked on Front-residue, thus slide down for their 6-oxidations. Some steroids with 3β-ol structures undergo the further right-side movement (Adaptation) for their 7-oxidations. Similar overpassing phenomena are also expected for steroid 15/16-oxidations and 2/1-oxidations. Allowable width on ligand accommodation was also defined as Width-gauge of Template. Reciprocal comparison of sittings of steroids on Template with experimental data offered idea of CYP3A4-mediated oxidations of steroids through seven distinct types of placements on Template and of the relationship with their usage abundance. The present system would offer practical way for structural identification and verification of CYP3A4-mediated metabolisms of various types of steroids.
Collapse
Affiliation(s)
- Takahiro Goto
- Essential Medicines and Health Products, Access to Medicines, Vaccines and Pharmaceuticals, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland; Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Masahiro Tohkin
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Food Safety Commission, Cabinet Office, Government of Japan, Akasaka Park Bldg. 22F 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122 Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa, 210-9501, Japan.
| |
Collapse
|
32
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Glowacki LL, Hodges LD, Wynne PM, Wright PFA, Kalafatis N, Macrides TA. LC-MSMS characterisations of scymnol and oxoscymnol biotransformations in incubation mixtures of rat liver microsomes. Biochimie 2019; 160:130-140. [PMID: 30844411 DOI: 10.1016/j.biochi.2019.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022]
Abstract
The bile alcohol 5β-scymnol ([24R]-(+)-5β-cholestan-3α,7α,12α,24,26,27-hexol) is a therapeutic nutraceutical derived from marine sources, however very little is known about its potential for biotransformation as a xenobiotic in higher vertebrates. In this study, biotransformation products of scymnol catalysed by liver microsomes isolated from normal and streptozotocin (STZ)-treated male Wistar rats were characterised by liquid chromatography-tandem mass spectroscopy (LC-MSMS). In order of increasing polarity relative to the reversed phase sorbent, structural assignments were made for four biotransformation products, namely 3-oxoscymnol (5β-cholestan-3-one-7α,12α,24,26,27-pentol); 7-oxoscymnol (5β-cholestan-7-one-3α,12α,24,26,27-pentol); 3β-scymnol (5β-cholestan-3β,7α,12α,24,26,27-hexol) and 6β-hydroxyscymnol (5β-cholestan-3α,6β,7α,12α,24,26,27-heptol). In addition, a total of eight biotransformation products were characterised from microsomal incubations of crude oxoscymnol compounds, namely 7β-scymnol; 3,12-dioxoscymnol; 3,7-dioxoscymnol; 7,12-dioxoscymnol; 12-oxo-3β-scymnol; 7-oxo-3β-scymnol; 6β-hydroxy-12-oxoscymnol and 6β-hydroxy-7-oxoscymnol. Collectively, the results indicate hepatic enzyme-catalysed hydroxylation, dehydrogenation and epimerisation reactions on the steroid nucleus of scymnol, and provide an insight into biotransformation pathways for scymnol use as a therapeutic nutraceutical in higher vertebrates.
Collapse
Affiliation(s)
- Linda L Glowacki
- Natural Products Research Group, School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Lynn D Hodges
- Natural Products Research Group, School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Paul M Wynne
- Medicines Manufacturing Innovation Centre, Monash University, Parkville, Victoria, 3052, Australia
| | - Paul F A Wright
- Natural Products Research Group, School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Nicolette Kalafatis
- Natural Products Research Group, School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Theodore A Macrides
- Natural Products Research Group, School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
34
|
Zhang J, Gao LZ, Chen YJ, Zhu PP, Yin SS, Su MM, Ni Y, Miao J, Wu WL, Chen H, Brouwer KLR, Liu CX, Xu L, Jia W, Lan K. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug Metab Dispos 2019; 47:283-294. [PMID: 30606729 PMCID: PMC6378331 DOI: 10.1124/dmd.118.085670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota modifies endogenous primary bile acids (BAs) to produce exogenous secondary BAs, which may be further metabolized by cytochrome P450 enzymes (P450s). Our primary aim was to examine how the host adapts to the stress of microbe-derived secondary BAs by P450-mediated oxidative modifications on the steroid nucleus. Five unconjugated tri-hydroxyl BAs that were structurally and/or biologically associated with deoxycholate (DCA) were determined in human biologic samples by liquid chromatography-tandem mass spectrometry in combination with enzyme-digestion techniques. They were identified as DCA-19-ol, DCA-6β-ol, DCA-5β-ol, DCA-6α-ol, DCA-1β-ol, and DCA-4β-ol based on matching in-laboratory synthesized standards. Metabolic inhibition assays in human liver microsomes and recombinant P450 assays revealed that CYP3A4 and CYP3A7 were responsible for the regioselective oxidations of both DCA and its conjugated forms, glycodeoxycholate (GDCA) and taurodeoxycholate (TDCA). The modification of secondary BAs to tertiary BAs defines a host liver (primary BAs)-gut microbiota (secondary BAs)-host liver (tertiary BAs) axis. The regioselective oxidations of DCA, GDCA, and TDCA by CYP3A4 and CYP3A7 may help eliminate host-toxic DCA species. The 19- and 4β-hydroxylation of DCA species demonstrated outstanding CYP3A7 selectivity and may be useful as indicators of CYP3A7 activity.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ling-Zhi Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yu-Jie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ping-Ping Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Shan-Shan Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ming-Ming Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Yan Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wen-Lin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Hong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Kim L R Brouwer
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Chang-Xiao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Wei Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China (J.Z., L.Z.G., Y.J.C., P.P.Z., S.S.Y., L.X., K.L.); Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii (M.M.S., Y.N., W.J.); Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China (J.M.); Chengdu Institutes for Food and Drug Control, Chengdu, China (W.L.W., H.C.); UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina (K.L.R.B.); State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.X.L.); and Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (S.S.Y.)
| |
Collapse
|
35
|
Wilkens MR, Firmenich CS, Schnepel N, Muscher-Banse AS. A reduced protein diet modulates enzymes of vitamin D and cholesterol metabolism in young ruminants. J Steroid Biochem Mol Biol 2019; 186:196-202. [PMID: 30394334 DOI: 10.1016/j.jsbmb.2018.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Besides other adverse effects, a low protein diet has been shown to modulate cholesterol and vitamin D metabolism in monogastric species like rats and humans. As ruminants can increase the efficiency of the rumino-hepatic circulation of urea, it is assumed that goats should be able to compensate for a low dietary protein intake better. After a dietary protein restriction (9% vs. 20%) for six weeks, plasma concentrations of urea, albumin, 1,25-dihydroxyvitamin D3 and calcium were decreased, while plasma 25-hydroxyvitamin D3 (25-OHD3), and total cholesterol were significantly increased in young goats. Because this was not accompanied by any decrease in expression of CYP24A1 mRNA, we investigated mRNA expression of additional enzymes with known 24- and/or 25-hydroxylase activities (CYP2R1, CYP2J2, CYP3 A24, CYP27A1), receptors involved in their regulation (VDR, PXR, RXRα) and vitamin D binding protein (VDBP). CYP2R1expression was stimulated with the low dietary protein intake, negatively correlated with plasma urea and positively associated with serum 25-OHD3. The greater plasma concentrations of total cholesterol could be explained with the reduction of CYP2J2 and CYP27A1 expression. None of the receptors investigated were affected by the dietary protein restriction but mRNA expression of VDBP was slightly reduced. Taken together our results show that dietary protein restriction has an impact on vitamin D and cholesterol metabolism in ruminants, too. Therefore, further investigations are needed before dietary interventions aiming at diminishing nitrogen excretion can be implemented.
Collapse
Affiliation(s)
- Mirja R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - Caroline S Firmenich
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - Nadine Schnepel
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | - Alexandra S Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
36
|
Theiler-Schwetz V, Zaufel A, Schlager H, Obermayer-Pietsch B, Fickert P, Zollner G. Bile acids and glucocorticoid metabolism in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:243-251. [DOI: 10.1016/j.bbadis.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
|
37
|
Zhu P, Zhang J, Chen Y, Yin S, Su M, Xie G, Brouwer KLR, Liu C, Lan K, Jia W. Analysis of human C24 bile acids metabolome in serum and urine based on enzyme digestion of conjugated bile acids and LC-MS determination of unconjugated bile acids. Anal Bioanal Chem 2018; 410:5287-5300. [PMID: 29907951 PMCID: PMC6424582 DOI: 10.1007/s00216-018-1183-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/20/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023]
Abstract
Host-gut microbiota metabolic interactions are closely associated with health and disease. A manifestation of such co-metabolism is the vast structural diversity of bile acids (BAs) involving both oxidative stereochemistry and conjugation. Herein, we describe the development and validation of a LC-MS-based method for the analysis of human C24 BA metabolome in serum and urine. The method has high throughput covering the discrimination of oxidative stereochemistry of unconjugated species in a 15-min analytical cycle. The validated quantitative performance provided an indirect way to ascertain the conjugation patterns of BAs via enzyme-digestion protocols that incorporated the enzymes, sulfatase, β-glucuronidase, and choloylglycine hydrolase. Application of the method has led to the detection of at least 70 unconjugated BAs including 27 known species and 43 newly found species in the post-prandial serum and urine samples from 7 nonalcoholic steatohepatitis patients and 13 healthy volunteers. Newly identified unconjugated BAs included 3α, 12β-dihydroxy-5β-cholan-24-oic acid, 12α-hydroxy-3-oxo-5β-cholan-24-oic acid, and 3α, 7α, 12β-trihydroxy-5β-cholan-24-oic acid. High-definition negative fragment spectra of the other major unknown species were acquired to facilitate future identification endeavors. An extensive conjugation pattern is the major reason for the "invisibility" of the newly found BAs to other common analytical methods. Metabolomic analysis of the total unconjugated BA profile in combination with analysis of their conjugation patterns and urinary excretion tendencies have provided substantial insights into the interconnected roles of host and gut microbiota in maintaining BA homeostasis. It was proposed that the urinary total BA profile may serve as an ideal footprint for the functional status of the host-gut microbial BA co-metabolism. In summary, this work provided a powerful tool for human C24 BA metabolome analysis that bridges the gap between GC-MS techniques in the past age and LC-MS techniques currently prevailing in biomedical researches. Further applications of the present method in clinical, translational research, and other biomedical explorations will continue to boost the construction of a host-gut microbial co-metabolism network of BAs and thus facilitate the decryption of BA-mediated host-gut microbiota crosstalk in health and diseases. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pingping Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujie Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shanshan Yin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Mingming Su
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA
| | - Guoxiang Xie
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
- Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, 610000, China.
| | - Wei Jia
- Metabolomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96801, USA.
| |
Collapse
|
38
|
Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105:274-281. [PMID: 29860219 DOI: 10.1016/j.biopha.2018.05.135] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Curcumin is a natural polyphenol with beneficial effects on NAFLD patients and NAFLD is accompanied by metabolism decompensation. METHODS This study was focused on the effect of curcumin on the relationship between endogenous bile acids metabolism pathway and exogenous xenobiotics metabolism pathway in C57BL/6 mice of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet (HFHFr) and in cultured mice hepatocytes. RESULTS Our results showed curcumin treatment apparently attenuated the hepatic steatosis and reversed the abnormalities of serum biochemical parameters in HFHFr-fed mice. Curcumin effectively reversed the expression of CYP3A and CYP7A in fatty liver status to restore metabolism capability. In the meantime, lipid synthesis has been controlled by curcumin, evidenced by the expression of CD36, SREBP-1c and FAS. Further, FXR, SHP and Nrf2 expressions were remarkably dropped in HFHFr-fed mice and LXRα expression was significantly enhanced, while curcumin treatment was quite effective to restore this pathway. In addition, LXRα antagonist GGPP pretreatment weakened the curcumin effects on CYP3A, CYP7A and SREBP-1c. CONCLUSIONS These findings indicate that the Nrf2/FXR/LXRα pathway might synergistically regulate both endogenous and exogenous metabolism in NAFLD mice and LXRα may be a novel therapeutic target of curcumin for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Caixia Yan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 211198, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Nakagawa M, Uno S, Iriyama N, Matsunawa M, Makishima M, Takeuchi J, Tsuboi I, Hatta Y, Takei M. Combined treatment with benzo[a]pyrene and 1α,25-dihydroxyvitamin D 3 induces expression of plasminogen activator inhibitor 1 in monocyte/macrophage-derived cells. Toxicol Appl Pharmacol 2018. [PMID: 29524502 DOI: 10.1016/j.taap.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Benzo[a]pyrene (BaP) is an environmental pollutant found in cigarette smoke and is implicated as a causative agent of tobacco-related diseases, such as arteriosclerosis. In contrast, vitamin D signaling, which is principally mediated by conversion of vitamin D to the active form, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], decreases cardiovascular disease risk. However, combined treatment with BaP and 1,25(OH)2D3 enhances BaP toxicity, including BaP-DNA adduct formation. We further investigated the cross-talk between BaP and 1,25(OH)2D3 signaling pathways, and found that combined treatment with these compounds induces mRNA and protein expression of plasminogen activator inhibitor 1 (PAI-1) in monocyte/macrophage-derived THP-1 and U937 cells. Protein synthesis inhibitor treatment did not inhibit induction of the PAI-1 gene (SERPINE1) in these cells. BaP plus 1,25(OH)2D3 induced differentiation markers, inhibited cellular proliferation, and induced apoptosis and oxidative stress in these cells. Reactive oxygen species scavenger treatment suppressed apoptosis but not SERPINE1 induction in cells treated with BaP plus 1,25(OH)2D3. Thus, combined treatment with BaP and 1,25(OH)2D3 induced SERPINE1 mRNA expression in these cells through a mechanism that does not require de novo protein synthesis or reactive oxygen species production. These findings suggest that induction of the proinflammatory factor PAI-1 plays a role in BaP toxicity. Interestingly, PAI-1 knockdown decreased expression of the cell surface antigen CD14, a monocytic differentiation marker, in THP-1 cells treated with BaP plus 1,25(OH)2D3. PAI-1 induction may also be related to a function of monocytes/macrophages in response to xenobiotic and vitamin D signaling.
Collapse
Affiliation(s)
- Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shigeyuki Uno
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Manabu Matsunawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Jin Takeuchi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Isao Tsuboi
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
40
|
Messinis DE, Melas IN, Hur J, Varshney N, Alexopoulos LG, Bai JPF. Translational systems pharmacology-based predictive assessment of drug-induced cardiomyopathy. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:166-174. [PMID: 29341478 PMCID: PMC5869547 DOI: 10.1002/psp4.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Drug‐induced cardiomyopathy contributes to drug attrition. We compared two pipelines of predictive modeling: (1) applying elastic net (EN) to differentially expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to construct each drug's signaling pathway starting from its targets to downstream proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then subjecting the genes/proteins in the drugs' signaling networks to EN regression. We classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP‐augmented modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%; specificity: 89%) under leave‐one‐out cross validation. The ILP‐constructed signaling networks of drugs were better predictors than DEGs. Per literature, the microRNAs that reportedly regulate expression of our six top predictors are of diagnostic value for natural heart failure or doxorubicin‐induced cardiomyopathy. This translational predictive modeling might uncover potential biomarkers.
Collapse
Affiliation(s)
- Dimitris E Messinis
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ioannis N Melas
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Navya Varshney
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Jane P F Bai
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
41
|
Nomura Y, Murata H, Sasai H, Kimura A, Kurosawa T, Sasaki T, Murai T. Studies on the Unusual 1β-Hydroxylated Bile Acid Biosynthesis in Infants. Biol Pharm Bull 2018; 41:597-603. [DOI: 10.1248/bpb.b17-00986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Nomura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Hiroyuki Murata
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Hiroaki Sasai
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine
| | - Takao Kurosawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Takahiro Sasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
42
|
Aboagye E, Alger K, Archibald S, Bakar N, Barton N, Bergare J, Bloom J, Bragg R, Burke B, Burns M, Carroll L, Calatayud D, Cawthorne C, Cortezon-Tamarit F, Crean C, Crump M, Dilworth J, Domarkas J, Duckett S, Eggleston I, Elmore C, van Es E, Fekete M, Goodwin M, Green G, Grönberg G, Hayes C, Hayes M, Hollis S, Hueting R, Ivanov P, Johnston G, Kerr W, Kohler A, Knox G, Lawrie K, Lee R, Lewis W, Lin B, Lockley W, López-Torres E, Lv K, Maddocks S, Marsh B, Mendiola A, Mirabello V, Miranda C, Norcott P, O'Hagan D, Olaru A, Pascu S, Rayner P, Read D, Ridge K, Ritter T, Roberts I, Samuri N, Sarpaki S, Somers D, Taylor R, Tuttle T, Varcoe J, Willis C. Abstracts of the 25th
International Isotope Society (UK Group) symposium: Synthesis and applications of labelled compounds 2016. J Labelled Comp Radiopharm 2017. [DOI: 10.1002/jlcr.3523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Kindel TL, Krause C, Helm MC, McBride CL, Oleynikov D, Thakare R, Alamoudi J, Kothari V, Alnouti Y, Kohli R. Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy. Surg Endosc 2017; 32:805-812. [PMID: 28779240 DOI: 10.1007/s00464-017-5747-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bile acids (BAs) are post-prandial hormones that play an important role in glucose and lipid homeostasis as well as energy expenditure. Total and glycine-amidated BAs increase after sleeve gastrectomy (SG) and correlate to improved metabolic disease. No specific bile acid subtype has been shown conclusively to mediate the weight loss effect. Therefore, the objective of this study was to prospectively evaluate the comprehensive changes in meal-stimulated BAs after SG and determine if a specific change in the BA profile correlates to the early weight loss response. METHODS Patients were prospectively enrolled at the University of Nebraska Medical Center who were undergoing a SG for treatment of morbid obesity. Primary and secondary plasma bile acids and their amidated (glycine, G-, or taurine, T-) subtypes were measured at fasting, 30 and 60 min after a liquid meal performed pre-op, and at 6 and 12 weeks post-op. Area under the curve (AUC) was calculated for the hour meal test for each bile acid subtype. BAs that were significantly increased post-op were correlated to body mass index (BMI) loss. RESULTS Total BA AUC was significantly increased at 6 (p < 0.01) and 12 weeks post-op (p < 0.01) compared to pre-operative values. The increase in total BA AUC was due to a statistically significant increase in G-BAs. Nine different BA AUC subtypes were significantly increased at both 6 and 12 weeks post-op. Increased total and G-chenodeoxycholic acid AUC was significantly correlated to the 6 week BMI loss (p = 0.03). Increased G-hyocholic acid was significantly correlated to increased weight loss at both 6 (p = 0.05) and 12 weeks (p = 0.006). CONCLUSIONS SG induced an early and persistent post-prandial surge in multiple bile acid subtypes. Increased G-hyocholic consistently correlated with greater early BMI loss. This study provides evidence for a role of BAs in the surgical weight loss response after SG.
Collapse
Affiliation(s)
- Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, WI, 53226, USA.
| | - Crystal Krause
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa C Helm
- Department of Surgery, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, WI, 53226, USA
| | - Corrigan L McBride
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dmitry Oleynikov
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rhishikesh Thakare
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jawaher Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishal Kothari
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rohit Kohli
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Lee CS, Kimura A, Wu JF, Ni YH, Hsu HY, Chang MH, Nittono H, Chen HL. Prognostic roles of tetrahydroxy bile acids in infantile intrahepatic cholestasis. J Lipid Res 2017; 58:607-614. [PMID: 28073941 DOI: 10.1194/jlr.p070425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/18/2016] [Indexed: 12/22/2022] Open
Abstract
Tetrahydroxy bile acids (THBAs) are hydrophilic and are present at minimal or undetectable levels in healthy human adults, but are present at high levels in bile salt export pump (abcb11)-knockout mice. The roles of THBAs in human cholestatic diseases are unclear. We aimed to investigate the presence of THBAs in patients with infantile intrahepatic cholestasis and its correlation with outcome. Urinary bile acids (BAs) were analyzed by GC-MS. Data were compared between good (n = 21) (disease-free before 1 year old) and poor prognosis groups (n = 19). Good prognosis patients had a higher urinary THBA proportion than poor prognosis patients [25.89% (3.45-76.73%) vs. 1.93% (0.05-48.90%)]. A urinary THBA proportion >7.23% predicted good prognosis with high sensitivity (95.24%), specificity (84.21%), and area under the curve (0.91) (P < 0.0001). A THBA proportion 7.23% was an independent factor for decreased transplant-free survival (hazard ratio = 7.16, confidence interval: 1.24-41.31, P = 0.028). Patients with a confirmed ABCB11 or tight junction protein 2 gene mutation (n = 7) had a minimally detectable THBA proportion (0.23-2.99% of total BAs). Three patients with an ATP8B1 mutation had an elevated THBA proportion (7.51-37.26%). In conclusion, in addition to disease entity as a major determinant of outcome, a high THBA level was associated with good outcome in the infantile intrahepatic cholestasis patients.
Collapse
Affiliation(s)
- Chee-Seng Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Education and Bioethics, Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan .,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Education and Bioethics, Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
45
|
Impaired Hepatic Adaptation to Chronic Cholestasis induced by Primary Sclerosing Cholangitis. Sci Rep 2016; 6:39573. [PMID: 28008998 PMCID: PMC5180097 DOI: 10.1038/srep39573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Pathogenesis of primary sclerosing cholangitis (PSC) may involve impaired bile acid (BA) homeostasis. We analyzed expressions of factors mediating enterohepatic circulation of BA using ileal and colonic (ascending and sigmoid) biopsies obtained from patients with PSC with and without ulcerative colitis (UC) and explanted PSC livers. Two-fold increase of BA-activated farnesoid X receptor (FXR) protein levels were seen in ascending and sigmoid colon of PSC patients with correspondingly decreased apical sodium-dependent BA transporter (ASBT) gene expression. This was associated with increased OSTβ protein levels in each part of analyzed gut. An intestinal fibroblast growth factor (FGF19) protein expression was significantly enhanced in ascending colon. Despite increased hepatic nuclear receptors (FXR, CAR, SHP), and FGF19, neither CYP7A1 suppression nor CYP3A4 induction were observed. The lack of negative regulation of BA synthesis may be accountable for lower levels of cholesterol observed in PSC in comparison to primary biliary cholangitis (PBC). In conclusion, chronic cholestasis in PSC induces adaptive changes in expression of BA transporters and FXR in the intestine. However hepatic impairment of expected in chronic cholestasis downregulation of CYP7A1 and upregulation of CYP3A4 may promote BA-induced liver injury in PSC.
Collapse
|
46
|
Cieślak A, Kelly I, Trottier J, Verreault M, Wunsch E, Milkiewicz P, Poirier G, Droit A, Barbier O. Selective and sensitive quantification of the cytochrome P450 3A4 protein in human liver homogenates through multiple reaction monitoring mass spectrometry. Proteomics 2016; 16:2827-2837. [PMID: 27634100 DOI: 10.1002/pmic.201500386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/30/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
This study aimed at establishing a sensitive multiple reaction monitoring-mass spectrometry (MRM-MS) method for the quantification of the drug metabolizing cytochrome P450 (CYP)3A4 enzyme in human liver homogenates. Liver samples were subjected to trypsin digestion. MRM-MS analyses were performed using three transitions optimized on one purified synthetic peptide unique to CYP3A4 and the standardizing protein, calnexin. Coefficient of variations for the precision and reproducibility of the MRM-MS measurement were also determined. The method was applied to liver samples from ten non-cholestatic donors and 34 cholestatic patients with primary biliary cholangitis (n = 12; PBC), primary sclerosing cholangitis (n = 10; PSC) or alcoholic liver disease (n = 12; ALD). The established method presented high sensitivity with limit of detection lower than 5 fmol, and was successfully applied for the absolute and relative quantification of CYP3A4 in both whole liver homogenate and microsomal fractions. When all groups were analyzed together, a significant correlation was observed for the MRM-based CYP3A4 protein quantification in homogenates and microsomes (r = 0.49, p < 0.001). No statistically significant difference was detected between CYP3A4 levels in PSC, PBC, ALD and control samples. Finally, the MRM-MS quantification of CYP3A4 in homogenates also correlated (r = 0.44; p < 0.05) with the level of enzyme activity in the same samples, as determined by measuring the chenodeoxycholic to hyocholic acid conversion. The established method provides a sensitive tool to evaluate the CYP3A4 protein in human liver homogenates from patients with normal or chronic/severe hepatic injury.
Collapse
Affiliation(s)
- Anna Cieślak
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Isabelle Kelly
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Mélanie Verreault
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Ewa Wunsch
- Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Milkiewicz
- Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland.,Liver and Internal Medicine Unit, Department of Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Guy Poirier
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Arnaud Droit
- Proteomics Platform of the Québec Genomics Center, CHU de Québec Research Centre, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre and the Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
47
|
Hayes MA, Li XQ, Grönberg G, Diczfalusy U, Andersson TB. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity. Drug Metab Dispos 2016; 44:1480-9. [PMID: 27402728 DOI: 10.1124/dmd.116.070805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
The endogenous bile acid metabolite 1β-hydroxy-deoxycholic acid (1β-OH-DCA) excreted in human urine may be used as a sensitive CYP3A biomarker in drug development reflecting in vivo CYP3A activity. An efficient and stereospecific enzymatic synthesis of 1β-OH-DCA was developed using a Bacillus megaterium (BM3) cytochrome P450 (P450) mutant, and its structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A [(2)H4]-labeled analog of 1β-OH-DCA was also prepared. The major hydroxylated metabolite of deoxycholic acid (DCA) in human liver microsomal incubations was identified as 1β-OH-DCA by comparison with the synthesized reference analyzed by UPLC-HRMS. Its formation was strongly inhibited by CYP3A inhibitor ketoconazole. Screening of 21 recombinant human cytochrome P450 (P450) enzymes showed that, with the exception of extrahepatic CYP46A1, the most abundant liver P450 subfamily CYP3A, including CYP3A4, 3A5, and 3A7, specifically catalyzed 1β-OH-DCA formation. This indicated that 1β-hydroxylation of DCA may be a useful marker reaction for CYP3A activity in vitro. The metabolic pathways of DCA and 1β-OH-DCA in human hepatocytes were predominantly via glycine and, to a lesser extent, via taurine and sulfate conjugation. The potential utility of 1β-hydroxylation of DCA as a urinary CYP3A biomarker was illustrated by comparing the ratio of 1β-OH-DCA:DCA in a pooled spot urine sample from six healthy control subjects to a sample from one patient treated with carbamazepine, a potent CYP3A inducer; 1β-OH-DCA:DCA was considerably higher in the patient versus controls (ratio 2.8 vs. 0.4). Our results highlight the potential of 1β-OH-DCA as a urinary biomarker in clinical CYP3A DDI studies.
Collapse
Affiliation(s)
- Martin A Hayes
- Cardiovascular and Metabolic Diseases, Drug Metabolism and Pharmacokinetics (M.A.H., X.-Q.L., T.B.A.) and Respiratory, Inflammation and Autoimmune Disease, Medicinal Chemistry (G.G.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (U.D.); Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Xue-Qing Li
- Cardiovascular and Metabolic Diseases, Drug Metabolism and Pharmacokinetics (M.A.H., X.-Q.L., T.B.A.) and Respiratory, Inflammation and Autoimmune Disease, Medicinal Chemistry (G.G.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (U.D.); Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Gunnar Grönberg
- Cardiovascular and Metabolic Diseases, Drug Metabolism and Pharmacokinetics (M.A.H., X.-Q.L., T.B.A.) and Respiratory, Inflammation and Autoimmune Disease, Medicinal Chemistry (G.G.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (U.D.); Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Ulf Diczfalusy
- Cardiovascular and Metabolic Diseases, Drug Metabolism and Pharmacokinetics (M.A.H., X.-Q.L., T.B.A.) and Respiratory, Inflammation and Autoimmune Disease, Medicinal Chemistry (G.G.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (U.D.); Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- Cardiovascular and Metabolic Diseases, Drug Metabolism and Pharmacokinetics (M.A.H., X.-Q.L., T.B.A.) and Respiratory, Inflammation and Autoimmune Disease, Medicinal Chemistry (G.G.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (U.D.); Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
48
|
An ultra-high performance liquid chromatography–tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1023-1024:1-8. [DOI: 10.1016/j.jchromb.2016.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022]
|
49
|
Dasuri K, Pepping JK, Fernandez-Kim SO, Gupta S, Keller JN, Scherer PE, Bruce-Keller AJ. Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1228-35. [PMID: 26912411 DOI: 10.1016/j.bbadis.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/22/2023]
Abstract
HIV protease inhibitors are key components of HIV antiretroviral therapies, which are fundamental in the treatment of HIV infection. However, the protease inhibitors are well-known to induce metabolic dysfunction which can in turn escalate the complications of HIV, including HIV associated neurocognitive disorders. As experimental and epidemiological data support a therapeutic role for adiponectin in both metabolic and neurologic homeostasis, this study was designed to determine if increased adiponectin could prevent the detrimental effects of protease inhibitors in mice. Adult male wild type (WT) and adiponectin-overexpressing (ADTg) mice were thus subjected to a 4-week regimen of lopinavir/ritonavir, followed by comprehensive metabolic, neurobehavioral, and neurochemical analyses. Data show that lopinavir/ritonavir-induced lipodystrophy, hypoadiponectinemia, hyperglycemia, hyperinsulinemia, and hypertriglyceridemia were attenuated in ADTg mice. Furthermore, cognitive function and blood-brain barrier integrity were preserved, while loss of cerebrovascular markers and white matter injury were prevented in ADTg mice. Finally, lopinavir/ritonavir caused significant increases in expression of markers of brain inflammation and decreases in synaptic markers in WT, but not in ADTg mice. Collectively, these data reinforce the pathophysiologic link from metabolic dysfunction to loss of cerebrovascular and cognitive homeostasis; and suggest that preservation and/or replacement of adiponectin could prevent these key aspects of HIV protease inhibitor-induced toxicity in clinical settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Sunita Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States.
| |
Collapse
|
50
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|