1
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
2
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
3
|
Ramazzotti G, Fiume R, Chiarini F, Campana G, Ratti S, Billi AM, Manzoli L, Follo MY, Suh PG, McCubrey J, Cocco L, Faenza I. Phospholipase C-β1 interacts with cyclin E in adipose- derived stem cells osteogenic differentiation. Adv Biol Regul 2018; 71:1-9. [PMID: 30420274 DOI: 10.1016/j.jbior.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 12/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are multipotent mesenchymal stem cells that have the ability to differentiate into several cell types, including chondrocytes, osteoblasts, adipocytes, and neural cells. Given their easy accessibility and abundance, they became an attractive source of mesenchymal stem cells, as well as candidates for developing new treatments for reconstructive medicine and tissue engineering. Our study identifies a new signaling pathway that promotes ADSCs osteogenic differentiation and links the lipid signaling enzyme phospholipase C (PLC)-β1 to the expression of the cell cycle protein cyclin E. During osteogenic differentiation, PLC-β1 expression varies concomitantly with cyclin E expression and the two proteins interact. These findings contribute to clarify the pathways involved in osteogenic differentiation and provide evidence to develop therapeutic strategies for bone regeneration.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Roberta Fiume
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics - Bologna Unit, c/o Istituto Ortopedico Rizzoli, via di Barbiano 1-10, 40138, Bologna, Italy
| | - Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Ratti
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Anna Maria Billi
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Matilde Y Follo
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Pann-Gill Suh
- Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, Republic of Korea
| | | | - Lucio Cocco
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Irene Faenza
- Section of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Billi AM, McCubrey JA, Suh PG, Manzoli L, Cocco L, Follo MY. Nuclear inositide signaling and cell cycle. Adv Biol Regul 2018; 67:1-6. [PMID: 29102395 DOI: 10.1016/j.jbior.2017.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Phosphatidylinositols (PIs) are responsible for several signaling pathways related to many cellular functions, such as cell cycle regulation at different check-points, cell proliferation, cell differentiation, membrane trafficking and gene expression. PI metabolism is not only present at the cytoplasmic level, but also at the nuclear one, where different signaling pathways affect essential nuclear mechanisms in eukaryotic cells. In this review we focus on nuclear inositide signaling in relation to cell cycle regulation. Many evidences underline the pivotal role of nuclear inositide signaling in cell cycle regulation and cell proliferation associated to different strategic physiopathological mechanisms in several cell systems and diseases.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, MS#629, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory Department of Biomedical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Ratti S, Mongiorgi S, Ramazzotti G, Follo MY, Mariani GA, Suh PG, McCubrey JA, Cocco L, Manzoli L. Nuclear Inositide Signaling Via Phospholipase C. J Cell Biochem 2017; 118:1969-1978. [PMID: 28106288 DOI: 10.1002/jcb.25894] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCβ1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCβ1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCβ1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCβ1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCβ1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCβ1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCβ1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCβ1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCβ1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia A Mariani
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville 27834, North Carolina
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
6
|
Poli A, Billi AM, Mongiorgi S, Ratti S, McCubrey JA, Suh PG, Cocco L, Ramazzotti G. Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. J Cell Physiol 2015; 231:1645-55. [DOI: 10.1002/jcp.25273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandro Poli
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Anna Maria Billi
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Sara Mongiorgi
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Stefano Ratti
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine; East Carolina University; Greenville North Carolina
| | - Pann-Ghill Suh
- School of Life Sciences; Ulsan National Institute of Science and Technology; Ulsan Republic of Korea
| | - Lucio Cocco
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
7
|
García del Caño G, Montaña M, Aretxabala X, González-Burguera I, López de Jesús M, Barrondo S, Sallés J. Nuclear phospholipase C-β1 and diacylglycerol LIPASE-α in brain cortical neurons. Adv Biol Regul 2014; 54:12-23. [PMID: 24076015 DOI: 10.1016/j.jbior.2013.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Phosphoinositide (PtdIns) signaling involves the generation of lipid second messengers in response to stimuli in a receptor-mediated manner at the plasma membrane. In neuronal cells of adult brain, the standard model proposes that activation of metabotropic receptors coupled to Phospholipase C-β1 (PLC-β1) is linked to endocannabinoid signaling through the production of diacylglycerol (DAG), which could be systematically metabolized by 1,2-diacylglycerol Lipases (DAGL) to produce an increase of 2-arachidonoyl-glycerol (2-AG), the most abundant endocannabinoid in the brain. However, the existence of a nuclear PtdIns metabolism independent from that occurring elsewhere in the cell is now widely accepted, suggesting that the nucleus constitutes both a functional and a distinct compartment for PtdIns metabolism. In this review, we shall highlight the main achievements in the field of neuronal nuclear inositol lipid metabolism with particular attention to progress made linked to the 2-AG biosynthesis. Our aim has been to identify potential sites of 2-AG synthesis other than the neuronal cytoplasmic compartment by determining the subcellular localization of PLC-β1 and DAGL-α, which is much more abundant than DAGL-β in brain. Our data show that PLC-β1 and DAGL-α are detected in discrete brain regions, with a marked predominance of pyramidal morphologies of positive cortical cells, consistent with their role in the biosynthesis and release of 2-AG by pyramidal neurons to control their synaptic inputs. However, as novelty, we showed here an integrated description of the localization of PLC-β1 and DAGL-α in the neuronal nuclear compartment. We discuss our comparative analysis of the expression patterns of PLC-β1 and DAGL-α, providing some insight into the potential autocrine role of 2-AG production in the neuronal nuclear compartment that probably subserve additional roles to the recognized activation of the CB1 cannabinoid receptor.
Collapse
Affiliation(s)
- Gontzal García del Caño
- Departamento de Neurociencias, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Mario Montaña
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Xabier Aretxabala
- Departamento de Neurociencias, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Imanol González-Burguera
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain
| | - Maider López de Jesús
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Sergio Barrondo
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain
| | - Joan Sallés
- Departamento de Farmacología, Facultad de Farmacia (Vitoria-Gasteiz), Universidad del País Vasco (UPV/EHU), Spain; CIBERSAM, Spain.
| |
Collapse
|
8
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Banfic H, Bedalov A, York JD, Visnjic D. Inositol pyrophosphates modulate S phase progression after pheromone-induced arrest in Saccharomyces cerevisiae. J Biol Chem 2012. [PMID: 23179856 DOI: 10.1074/jbc.m112.412288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated the activation of phosphoinositide-specific phospholipase C (Plc) in nuclei of mammalian cells during synchronous progression through the cell cycle, but the downstream targets of Plc-generated inositol 1,4,5-trisphosphate are poorly described. Phospholipid signaling in the budding yeast Saccharomyces cerevisiae shares similarities with endonuclear phospholipid signaling in mammals, and many recent studies point to a role for inositol phosphates, including InsP(5), InsP(6), and inositol pyrophosphates, in mediating the action of Plc. In this study, we investigated the changes in inositol phosphate levels in α-factor-treated S. cerevisiae, which allows cells to progress synchronously through the cell cycle after release from a G(1) block. We found an increase in the activity of Plc1 early after release from the block with a concomitant increase in the levels of InsP(7) and InsP(8). Treatment of cells with the Plc inhibitor U73122 prevented increases in inositol phosphate levels and blocked progression of cells through S phase after pheromone arrest. The enzymatic activity of Kcs1 in vitro and HPLC analysis of [(3)H]inositol-labeled kcs1Δ cells confirmed that Kcs1 is the principal kinase responsible for generation of pyrophosphates in synchronously progressing cells. Analysis of plc1Δ, kcs1Δ, and ddp1Δ yeast mutants further confirmed the role that a Plc1- and Kcs1-mediated increase in pyrophosphates may have in progression through S phase. Our data provide genetic, metabolic, and biochemical evidence that synthesis of inositol pyrophosphates through activation of Plc1 and Kcs1 plays an important role in the signaling response required for cell cycle progression after mating pheromone arrest.
Collapse
Affiliation(s)
- Hrvoje Banfic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
10
|
Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N, Cocco L. Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 2012; 59:335-361. [PMID: 22374096 DOI: 10.1007/978-94-007-3015-1_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes. In order to utilize these very druggable pathways for human benefit there is a need to identify how nuclear inositides are regulated specifically within this compartment and what downstream nuclear effectors process and integrate inositide signalling cascades in order to specifically control nuclear function. Here we describe some of the facets of nuclear inositide metabolism with a focus on their relationship to cell cycle control and differentiation.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C. Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 2011; 46:436-57. [DOI: 10.3109/10409238.2011.609530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Xu J, Xie J, Jourquin J, Colvin DC, Does MD, Quaranta V, Gore JC. Influence of cell cycle phase on apparent diffusion coefficient in synchronized cells detected using temporal diffusion spectroscopy. Magn Reson Med 2011; 65:920-6. [PMID: 21413058 PMCID: PMC3433804 DOI: 10.1002/mrm.22704] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/24/2010] [Accepted: 10/03/2010] [Indexed: 11/10/2022]
Abstract
The relationship between the apparent diffusion coefficient of tissue water measured by MR methods and the physiological status of cells is of particular relevance for better understanding and interpretation of diffusion-weighted MRI. In addition, there is considerable interest in developing diffusion-dependent imaging methods capable of providing novel information on tissue microstructure, including intracellular changes. To this end, both the conventional pulsed gradient spin-echo methods and the oscillating gradient spin-echo method, which probes diffusion over very short distance (<
Collapse
|
Affiliation(s)
- Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cocco L, Follo MY, Faenza I, Fiume R, Ramazzotti G, Weber G, Martelli AM, Manzoli FA. Physiology and pathology of nuclear phospholipase C β1. ACTA ACUST UNITED AC 2010; 51:2-12. [PMID: 21035488 DOI: 10.1016/j.advenzreg.2010.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
The existence and function of inositide signaling in the nucleus is well documented and we know that the existence of the inositide cycle inside the nucleus has a biological role. An autonomous lipid-dependent signaling system, independently regulated from its plasma membrane counterpart, acts in the nucleus and modulates cell cycle progression and differentiation.We and others focused on PLCβ1, which is the most extensively investigated PLC isoform in the nuclear compartment. PLCβ1 is a key player in the regulation of nuclear inositol lipid signaling, and, as discussed above, its function could also be involved in nuclear structure because it hydrolyses PtdIns(4,5)P2, a well accepted regulator of chromatin remodelling. The evidence, in a number of patients with myelodysplastic syndromes, that the mono-allelic deletion of PLCβ1 is associated with an increased risk of developing acute myeloid leukemia paves the way for an entirely new field of investigation. Indeed the genetic defect evidenced, in addition to being a useful prognostic tool, also suggests that altered expression of this enzyme could have a role in the pathogenesis of this disease, by causing an imbalance between proliferation and apoptosis. The epigenetics of PLCβ1 expression in MDS has been reviewed as well.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ramazzotti G, Faenza I, Fiume R, Matteucci A, Piazzi M, Follo MY, Cocco L. The physiology and pathology of inositide signaling in the nucleus. J Cell Physiol 2010; 226:14-20. [DOI: 10.1002/jcp.22334] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Fiume R, Ramazzotti G, Teti G, Chiarini F, Faenza I, Mazzotti G, Billi AM, Cocco L. Involvement of nuclear PLCbeta1 in lamin B1 phosphorylation and G2/M cell cycle progression. FASEB J 2009; 23:957-66. [PMID: 19028838 DOI: 10.1096/fj.08-121244] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Inositide-specific phospholipase Cbeta1 (PLCbeta1) signaling in cell proliferation has been investigated thoroughly in the G(1) cell cycle phase. However, little is known about its involvement in G(2)/M progression. We used murine erythroleukemia cells to investigate the role of PLCbeta1 in G(2)/M cell cycle progression and screened a number of candidate intermediate players, particularly mitogen-activated protein kinase (MAPK) and protein kinase C (PKC), which can, potentially, transduce serum mitogenic stimulus and induce lamin B1 phosphorylation, leading to G(2)/M progression. We report that PLCbeta1 colocalizes and physically interacts with lamin B1. Studies of the effects of inhibitors and selective si-RNA mediated silencing showed a role of JNK, PKCalpha, PKCbetaI, and the beta1 isoform of PI-PLC in cell accumulation in G(2)/M [as observed by fluorescence-activated cell sorter (FACS)]. To shed light on the mechanism, we considered that the final signaling target was lamin B1 phosphorylation. When JNK, PKCalpha, or PLCbeta1 were silenced, lamin B1 exhibited a lower extent of phosphorylation, as compared to control. The salient features to emerge from these studies are a common pathway in which JNK is likely to represent a link between mitogenic stimulus and activation of PLCbeta1, and, foremost, the finding that the PLCbeta1-mediated pathway represents a functional nuclear inositide signaling in the G(2)/M transition.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signaling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The activity of extracellular signal-regulated kinase is required during G2/M phase before metaphase–anaphase transition in synchronized leukemia cell lines. Int J Hematol 2009; 89:159-166. [DOI: 10.1007/s12185-008-0248-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/04/2008] [Accepted: 12/15/2008] [Indexed: 01/04/2023]
|
17
|
Visnjic D, Banfic H. Nuclear phospholipid signaling: phosphatidylinositol-specific phospholipase C and phosphoinositide 3-kinase. Pflugers Arch 2007; 455:19-30. [PMID: 17558519 DOI: 10.1007/s00424-007-0288-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Over the last 20 years, numerous studies have demonstrated the existence of nuclear phosphoinositide signaling distinct from the one at the plasma membrane. The activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphoinositide 3-kinase (PI3K), the generation of diacylglycerol, and the accumulation of the 3-phosphorylated phosphoinositides have been documented in the nuclei of different cell types. In this review, we summarize some recent studies of the subnuclear localization, mechanisms of activation, and the possible physiological roles of the nuclear PI-PLC and PI-3 kinases in the regulation of cell cycle, survival, and differentiation.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000, Zagreb, Croatia
| | | |
Collapse
|
18
|
Lukinovic‐Skudar V, Matkovic K, Banfic H, Visnjic D. Two waves of the nuclear phospholipase C activity in serum-stimulated HL-60 cells during G(1) phase of the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:514-21. [PMID: 17363325 PMCID: PMC2080767 DOI: 10.1016/j.bbalip.2007.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/22/2007] [Accepted: 02/07/2007] [Indexed: 12/01/2022]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) is activated in cell nuclei during the cell cycle progression. We have previously demonstrated two peaks of an increase in the nuclear PI-PLC activities in nocodazole-synchronized HL-60 cells. In this study, the activity of nuclear PI-PLC was investigated in serum-stimulated HL-60 cells. In serum-starved HL-60 cells, two peaks of the activity of nuclear PI-PLC were detected at 30 min and 11 h after the re-addition of serum with no parallel increase in PLC activity in cytosol, postnuclear membranes or total cell lysates. An increase in the serine phosphorylation of b splicing variant of PI-PLCbeta(1) was detected with no change in the amount of PI-PLCbeta(1b) in nuclei isolated at 30 min and 11 h after the addition of serum. PI-PLC inhibitor ET-18-OCH(3) and MEK inhibitor PD 98059 completely abolished serum-mediated increase at both time-points. The addition of inhibitors either immediately or 6 h after the addition of serum had inhibitory effects on the number of cells entering S phase. These results demonstrate that two waves of nuclear PI-PLCbeta(1b) activity occur in serum-stimulated cells during G(1) phase of the cell cycle and that the later increase in the PLC activity is equally important for the progression into the S phase.
Collapse
Affiliation(s)
- Vesna Lukinovic‐Skudar
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia
| | - Katarina Matkovic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia
| | - Hrvoje Banfic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
19
|
Irvine RF. Nuclear inositide signalling -- expansion, structures and clarification. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1761:505-8. [PMID: 16574480 PMCID: PMC1486819 DOI: 10.1016/j.bbalip.2006.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/16/2006] [Indexed: 11/18/2022]
Abstract
The extent and content of this review issue highlights how our understanding of lipid signalling in the nucleus has grown, both in what we actually know, and the breadth of signalling pathways that we now have to consider. Here, a few key issues with regard to nuclear inositide signalling are briefly addressed.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
20
|
Bunce MW, Bergendahl K, Anderson RA. Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:560-9. [PMID: 16750654 DOI: 10.1016/j.bbalip.2006.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 03/03/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Over the last decades, evidence has accumulated suggesting that there is a distinct nuclear phosphatidylinositol pathway. One of the best examined nuclear lipid pathways is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) by PLC resulting in activation of nuclear PKC and production of inositol polyphosphates. However, there is a growing number of data that phosphoinositides are not only precursor for soluble inositol phosphates and diacylglycerol, instead they can act as second messengers themselves. They have been implicated to play a role in different important nuclear signaling events such as cell cycle progression, apoptosis, chromatin remodeling, transcriptional regulation and mRNA processing. This review focuses on the role of specifically PI4,5P(2) in the nucleus as a second messenger as well as a precursor for PI3,4,5P3, inositol polyphosphates and diacylglycerol.
Collapse
Affiliation(s)
- Matthew W Bunce
- Department of Pharmacology, University of Wisconsin Medical School, 1300 University Ave., Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Abstract
The presence of inositol phospholipids in the nuclei of mammalian cells has by now been well established, as has the presence of the enzymes responsible for their metabolism. However, our understanding of the role of these nuclear phosphoinositides in regulating cellular events has lagged far behind that for its cytosolic counterpart. It is clear, though, that the nuclear phosphoinositide pool is independent of the cytosolic pool and is, therefore, likely to be regulating a unique set of cellular events. As with its cytosolic phosphoinositides, many nuclear phosphoinositides and their metabolic enzymes are located at distinct sub-cellular structures. This arrangement spatially limits the production and activity of inositol phospholipids and is believed to be a major mechanism for regulating their function. Here, we will introduce the components of nuclear inositol phospholipid signal transduction and discuss how their spatial arrangement may dictate which nuclear functions they are modulating.
Collapse
Affiliation(s)
- Michael L Gonzales
- Department of Pharmacology, Program in Molecular and Cellular Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|