1
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Vaquer CC, Suhaiman L, Pavarotti MA, Arias RJ, Pacheco Guiñazú AB, De Blas GA, Belmonte SA. The pair ceramide 1-phosphate/ceramide kinase regulates intracellular calcium and progesterone-induced human sperm acrosomal exocytosis. Front Cell Dev Biol 2023; 11:1148831. [PMID: 37065849 PMCID: PMC10102357 DOI: 10.3389/fcell.2023.1148831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Before fertilization, spermatozoa must undergo calcium-regulated acrosome exocytosis in response to physiological stimuli such as progesterone and zona pellucida. Our laboratory has elucidated the signaling cascades accomplished by different sphingolipids during human sperm acrosomal exocytosis. Recently, we established that ceramide increases intracellular calcium by activating various channels and stimulating the acrosome reaction. However, whether ceramide induces exocytosis on its own, activation of the ceramide kinase/ceramide 1-phosphate (CERK/C1P) pathway or both is still an unsolved issue. Here, we demonstrate that C1P addition induces exocytosis in intact, capacitated human sperm. Real-time imaging in single-cell and calcium measurements in sperm population showed that C1P needs extracellular calcium to induce [Ca2+]i increase. The sphingolipid triggered the cation influx through voltage-operated calcium (VOC) and store-operated calcium (SOC) channels. However, it requires calcium efflux from internal stores through inositol 3-phosphate receptors (IP3R) and ryanodine receptors (RyR) to achieve calcium rise and the acrosome reaction. We report the presence of the CERK in human spermatozoa, the enzyme that catalyzes C1P synthesis. Furthermore, CERK exhibited calcium-stimulated enzymatic activity during the acrosome reaction. Exocytosis assays using a CERK inhibitor demonstrated that ceramide induces acrosomal exocytosis, mainly due to C1P synthesis. Strikingly, progesterone required CERK activity to induce intracellular calcium increase and acrosome exocytosis. This is the first report, implicating the bioactive sphingolipid C1P in the physiological progesterone pathway leading to the sperm acrosome reaction.
Collapse
Affiliation(s)
- Cintia C. Vaquer
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laila Suhaiman
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Martín A. Pavarotti
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodolfo J. Arias
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Anahí B. Pacheco Guiñazú
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Gerardo A. De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- LaTIT. Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Silvia A. Belmonte, ,
| |
Collapse
|
3
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
4
|
Sheng Z, Ge S, Gao M, Jian R, Chen X, Xu X, Li D, Zhang K, Chen WH. Synthesis and Biological Activity of Embelin and its Derivatives: An Overview. Mini Rev Med Chem 2020; 20:396-407. [DOI: 10.2174/1389557519666191015202723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023]
Abstract
Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.)
of the Myrsinaceae family, and contains two carbonyl groups, a methine group and two hydroxyl
groups. With embelin as the lead compound, more than one hundred derivatives have been reported.
Embelin is well known for its ability to antagonize the X-linked inhibitor of apoptosis protein (XIAP)
with an IC50 value of 4.1 μM. The potential of embelin and its derivatives in the treatment of various
cancers has been extensively studied. In addition, these compounds display a variety of other biological
effects: antimicrobial, antioxidant, analgesic, anti-inflammatory, anxiolytic and antifertility activity.
This paper reviews the recent progress in the synthesis and biological activity of embelin and its derivatives.
Their cellular mechanisms of action and prospects in the research and development of new
drugs are also discussed.
Collapse
Affiliation(s)
- Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Siyuan Ge
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Min Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Rongchao Jian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xiaole Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
5
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Filosa R, Peduto A, Aparoy P, Schaible AM, Luderer S, Krauth V, Petronzi C, Massa A, de Rosa M, Reddanna P, Werz O. Discovery and biological evaluation of novel 1,4-benzoquinone and related resorcinol derivatives that inhibit 5-lipoxygenase. Eur J Med Chem 2013; 67:269-79. [DOI: 10.1016/j.ejmech.2013.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 12/21/2022]
|
7
|
Bini F, Frati A, Garcia-Gil M, Battistini C, Granado M, Martinesi M, Mainardi M, Vannini E, Luzzati F, Caleo M, Peretto P, Gomez-Muñoz A, Meacci E. New signalling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase. Neuropharmacology 2012; 63:524-37. [DOI: 10.1016/j.neuropharm.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 01/12/2023]
|
8
|
Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells. Exp Cell Res 2011; 317:2041-51. [DOI: 10.1016/j.yexcr.2011.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/26/2023]
|
9
|
Bi FC, Zhang QF, Liu Z, Fang C, Li J, Su JB, Greenberg JT, Wang HB, Yao N. A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLoS One 2011; 6:e18079. [PMID: 21483860 PMCID: PMC3069040 DOI: 10.1371/journal.pone.0018079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. PRINCIPAL FINDINGS OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. CONCLUSIONS OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.
Collapse
Affiliation(s)
- Fang-Cheng Bi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ce Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Hewson CA, Watson JR, Liu WL, Fidock MD. A differential role for ceramide kinase in antigen/FcɛRI-mediated mast cell activation and function. Clin Exp Allergy 2011; 41:389-98. [DOI: 10.1111/j.1365-2222.2010.03682.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Bornancin F. Ceramide kinase: the first decade. Cell Signal 2010; 23:999-1008. [PMID: 21111813 DOI: 10.1016/j.cellsig.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.
Collapse
Affiliation(s)
- Frédéric Bornancin
- Novartis Institutes for BioMedical Research, CH-4056 Basle, Switzerland.
| |
Collapse
|
12
|
Mitsutake S, Kumada H, Soga M, Hurue Y, Asanuma F, Nagira M, Deguchi M, Date T, Yokose U, Inagaki Y, Sugiura M, Kohama T, Igarashi Y. Ceramide kinase is not essential but might act as an Ca2+-sensor for mast cell activation. Prostaglandins Other Lipid Mediat 2010; 93:109-12. [PMID: 20678580 DOI: 10.1016/j.prostaglandins.2010.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Ceramide kinase (CerK) catalyzes the conversion of ceramide to ceramide 1-phosphate (C1P). We previously revealed that CerK is involved in the activation of mast cells. In this study, we performed an advanced investigation into the role of CerK on the activation of mast cells using CERK-/- mice. Although CERK-/- mice were less prone to exhibiting a passive cutaneous anaphylactic shock (PCA)-reaction compared to wild type (WT) mice, the differences were not significant. In bone marrow-derived mast cells (BMMC) activated by cross-linking antigen (Ag)/IgE, not high, but low concentrations of Ag had a reduced effect on degranulation in BMMC from CERK-/- mice compared to effects on BMMC from WT mice. Similarly, when the BMMCs were activated with calcium ionophore to focus on the downstream signaling of Ca(2+)-elevation, only a low concentration of ionophore had a reduced effect on degranulation in the BMMC from CERK-/- mice compared to the effect on BMMC from WT mice. Furthermore, the CerK inhibitor K1 reduced the differences in degranulation observed between the BMMC from CERK-/- and WT mice in a dose-dependent manner, demonstrating a contribution for CerK and its product C1P in degranulation. Although CerK is not essential for activation of mast cells, especially a potent and acute activation such as a PCA reaction, CerK might act as an modulator for mild and chronic activation of mast cells, thus increasing sensitivity to cytoplasmic Ca(2+).
Collapse
Affiliation(s)
- Susumu Mitsutake
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Sciences, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010; 9:15. [PMID: 20137073 PMCID: PMC2828451 DOI: 10.1186/1476-511x-9-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
15
|
Hinkovska-Galcheva V, Shayman JA. Ceramide-1-phosphate in phagocytosis and calcium homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:131-40. [PMID: 20919651 DOI: 10.1007/978-1-4419-6741-1_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingolipids are well established sources of important signaling molecules. For example, ceramide (Cer) has been described as a potent inhibitor of cell growth and inducer of apoptosis. In contrast, ceramide-1-phosphate (C1P) has been reported to have mitogenic properties and to inhibit apoptosis. Our understanding of the distinct biological roles of C1P in the regulation of DNA synthesis, inflammation, membrane fusion and intracellular Ca2+ increase has rapidly expanded. C1P is a bioactive sphingolipid formed by the phosphorylation of ceramide catalyzed by ceramide kinase (CERK). This chapter specifically focuses on the role of C1P in phagocytosis and Ca2+ homeostasis. Studies of the metabolism of C1P during phagocytosis, may lead to a better understanding of its role in signaling. Potentially, the inhibition of CERK and C1P formation may be a therapeutic target for inflammation.
Collapse
|
16
|
Sheridan H, Walsh JJ, Jordan M, Cogan C, Frankish N. A series of 1, 2-coupled indane dimers with mast cell stabilisation and smooth muscle relaxation properties. Eur J Med Chem 2009; 44:5018-22. [PMID: 19793620 DOI: 10.1016/j.ejmech.2009.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Asthma is characterised by bronchoconstriction and inflammation, with infiltration and activation of inflammatory cells such as eosinophils and mast cells, and subsequent release of inflammatory mediators. Much of the therapy directed at the treatment of asthma is either to provide symptomatic relief through bronchodilation or to reduce inflammation to prevent or delay airway remodelling. In an attempt to address both of these issues, a novel series of 1,2-indane dimers has been synthesized and evaluated for smooth muscle relaxant and mast cell stabilising activities. We have identified two lead compounds, 5 and 15, which have substantial mast cell stabilisation activity.
Collapse
Affiliation(s)
- H Sheridan
- Trinity College Dublin, Department of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Westland Row, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
17
|
Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158:982-93. [PMID: 19563535 DOI: 10.1111/j.1476-5381.2009.00281.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sphingolipids are formed via the metabolism of sphingomyelin, a constituent of the plasma membrane, or by de novo synthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in inflammation. This can involve, for example, activation of pro-inflammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-inflammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-affinity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on inflammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in inflammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and inflammatory bowel disease, which involve important inflammatory components. A significant body of research now indicates that sphingolipids are intimately involved in the inflammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological inflammation.
Collapse
Affiliation(s)
- Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
18
|
Shimizu M, Tada E, Makiyama T, Yasufuku K, Moriyama Y, Fujino H, Nakamura H, Murayama T. Effects of ceramide, ceramidase inhibition and expression of ceramide kinase on cytosolic phospholipase A2α; additional role of ceramide-1-phosphate in phosphorylation and Ca2+ signaling. Cell Signal 2009; 21:440-7. [DOI: 10.1016/j.cellsig.2008.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/24/2008] [Indexed: 01/27/2023]
|
19
|
Graf C, Klumpp M, Habig M, Rovina P, Billich A, Baumruker T, Oberhauser B, Bornancin F. Targeting ceramide metabolism with a potent and specific ceramide kinase inhibitor. Mol Pharmacol 2008; 74:925-32. [PMID: 18612076 DOI: 10.1124/mol.108.048652] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ceramide kinase (CerK) produces the bioactive lipid ceramide-1-phosphate (C1P) and appears as a key enzyme for controlling ceramide levels. In this study, we discovered and characterized adamantane-1-carboxylic acid (2-benzoylamino-benzothiazol-6-yl)amide (NVP-231), a potent, specific, and reversible CerK inhibitor that competitively inhibits binding of ceramide to CerK. NVP-231 is active in the low nanomolar range on purified as well as cellular CerK and abrogates phosphorylation of ceramide, resulting in decreased endogenous C1P levels. When combined with another ceramide metabolizing inhibitor, such as tamoxifen, NVP-231 synergistically increased ceramide levels and reduced cell growth. Therefore, NVP-231 represents a novel and promising compound for controlling ceramide metabolism that may provide insight into CerK physiological function.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Graf C, Rovina P, Bornancin F. A secondary assay for ceramide kinase inhibitors based on cell growth inhibition by short-chain ceramides. Anal Biochem 2008; 384:166-9. [PMID: 18831956 DOI: 10.1016/j.ab.2008.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/30/2022]
Abstract
We recently reported that ectopic expression of ceramide kinase (CerK) in various cell lines increases their sensitivity to cell death induced by the exogenous addition of short-chain (e.g., C2) ceramides (Cer). Here we show that this higher sensitivity results from CerK catalytic activity and production of C2-ceramide 1-phosphate (C2-C1P). If CerK activity is inhibited by the potent inhibitor NVP-231, C2-C1P is not produced and viability returns to control levels. The EC(50) of NVP-231 in this assay is in the low nanomolar range, consistent with the IC(50) determined in activity assays in vitro using purified CerK. NVP-995, a structurally related but inactive compound, does not protect against C2-Cer-induced cell death. This assay is robust and easy to implement and scale up, thereby providing a valuable secondary screen assay for CerK inhibitors.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, A-1235 Vienna, Austria
| | | | | |
Collapse
|
21
|
Graf C, Zemann B, Rovina P, Urtz N, Schanzer A, Reuschel R, Mechtcheriakova D, Müller M, Fischer E, Reichel C, Huber S, Dawson J, Meingassner JG, Billich A, Niwa S, Badegruber R, Van Veldhoven PP, Kinzel B, Baumruker T, Bornancin F. Neutropenia with impaired immune response to Streptococcus pneumoniae in ceramide kinase-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3457-66. [PMID: 18292572 DOI: 10.4049/jimmunol.180.5.3457] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nussbaumer P. Medicinal chemistry aspects of drug targets in sphingolipid metabolism. ChemMedChem 2008; 3:543-51. [PMID: 18061920 DOI: 10.1002/cmdc.200700252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Peter Nussbaumer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Brunner Strasse 59, 1235 Vienna, Austria.
| |
Collapse
|
23
|
Takabe K, Paugh SW, Milstien S, Spiegel S. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60:181-95. [PMID: 18552276 PMCID: PMC2695666 DOI: 10.1124/pr.107.07113] [Citation(s) in RCA: 569] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
24
|
Don AS, Rosen H. A fluorescent plate reader assay for ceramide kinase. Anal Biochem 2007; 375:265-71. [PMID: 18206978 DOI: 10.1016/j.ab.2007.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 01/27/2023]
Abstract
Ceramide kinase and its product ceramide 1-phosphate have been implicated in cellular proliferation and survival, activation of cytosolic phospholipase A(2), mast cell degranulation, and phagocytosis. Current assays for ceramide kinase activity employ [(32)P]ATP, with separation of labeled product from excess ATP by organic extraction and thin-layer chromatography. We have developed a fluorescent plate reader assay for ceramide kinase that uses commercially available C6-NBD ceramide (N-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-D-erythro-sphingosine). Our assay is based on the differential partitioning of substrate and product following a single chloroform/methanol extraction. The product, which partitions into the aqueous phase at physiological pH, is quantitated directly in a plate reader. The substrate may be delivered using either fatty acid-free albumin or detergent/lipid mixed micelles, and we have found that the use of albumin rather than detergent micelles allows one to detect lipid interactions with the enzyme that might otherwise go unnoticed. Our method is useful for assaying ceramide kinase activity both in vitro and in cultured cells, and it offers several advantages over the conventional assay, including greater speed, the ability to run a larger number of assay replicates at one time, and the elimination of environmental and safety issues associated with the use of radioactive materials.
Collapse
Affiliation(s)
- Anthony S Don
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Lamour NF, Stahelin RV, Wijesinghe DS, Maceyka M, Wang E, Allegood JC, Merrill AH, Cho W, Chalfant CE. Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. J Lipid Res 2007; 48:1293-304. [PMID: 17392267 DOI: 10.1194/jlr.m700083-jlr200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramide kinase (CERK) is a critical mediator of eicosanoid synthesis, and its product, ceramide-1-phosphate (C1P), is required for the production of prostaglandins in response to several inflammatory agonists. In this study, mass spectrometry analysis disclosed that the main forms of C1P in cells were C(16:0) C1P and C(18:0) C1P, suggesting that CERK uses ceramide transported to the trans-Golgi apparatus by ceramide transport protein (CERT). To this end, downregulation of CERT by RNA interference technology dramatically reduced the levels of newly synthesized C1P (kinase-derived) as well as significantly reduced the total mass levels of C1P in cells. Confocal microscopy, subcellular fractionation, and surface plasmon resonance analysis were used to further localize CERK to the trans-Golgi network, placing the generation of C1P in the proper intracellular location for the recruitment of cytosolic phospholipase A(2)alpha. In conclusion, these results demonstrate that CERK localizes to areas of eicosanoid synthesis and uses a ceramide "pool" transported in an active manner via CERT.
Collapse
Affiliation(s)
- Nadia F Lamour
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kihara A, Mitsutake S, Mizutani Y, Igarashi Y. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2007; 46:126-44. [PMID: 17449104 DOI: 10.1016/j.plipres.2007.03.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Nishi 6-Choume, Sapporo, Japan.
| | | | | | | |
Collapse
|
27
|
Munagala N, Nguyen S, Lam W, Lee J, Joly A, McMillan K, Zhang W. Identification of Small Molecule Ceramide Kinase Inhibitors Using A Homogeneous Chemiluminescence High Throughput Assay. Assay Drug Dev Technol 2007; 5:65-73. [PMID: 17355200 DOI: 10.1089/adt.2006.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid kinases have emerged as potentially important therapeutic targets in oncology and inflammation. Ceramide kinase (CERK) is a lipid kinase that catalyzes the formation of ceramide-1-phosphate from ceramide, a sphingolipid that is a key mediator of cellular apoptosis. Ceramide-1-phosphate has been shown to enhance the production of pro-inflammatory eicosonoids, to promote cell proliferation, and potentially to reduce intracellular ceramide levels by inhibition of acidic sphingomyelinases. Here we describe a homogeneous chemiluminescence assay that directly measures the ceramide-dependent ATP depletion by recombinant full-length human CERK. As compared to reported CERK assays that have limitations on compound throughput, the chemiluminescence assay has been miniaturized to a 1,536-well microtiter plate format and utilized to screen an ultra-large compound library (>4 million compounds). Multiple chemical scaffolds have been identified as CERK kinase inhibitors and characterized mechanistically, which to our knowledge represent the first known small molecule CERK inhibitors with nanomolar activities. These compounds can serve as tools to further elucidate the CERK pathway and its role in ceramide metabolism and human diseases.
Collapse
|
28
|
Pandey S, Murphy RF, Agrawal DK. Recent advances in the immunobiology of ceramide. Exp Mol Pathol 2006; 82:298-309. [PMID: 17045585 PMCID: PMC1934927 DOI: 10.1016/j.yexmp.2006.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 07/24/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Ceramide, a sphingosine-based lipid molecule, has emerged as a key regulator of a wide spectrum of biological processes such as cellular differentiation, proliferation, apoptosis and senescence. Sphingomyelinase-dependent hydrolysis of sphingomyelin and de novo synthesis involving the coordinated action of serinepalmitoyl transferase and ceramide synthase are the two major pathways involved in ceramide synthesis. Clustering of plasma membrane rafts into ceramide-enriched platforms serves as an important transmembrane signaling mechanism for cell surface receptors. Ceramides have been implicated in apoptosis, stress signaling cascades as well as ion channels. There is accumulating evidence that targeted manipulation of ceramide metabolism pathway has immense therapeutic potential and may eventually prove to be a boon in the design of novel strategies and development of innovative treatments for diverse conditions including cardiovascular diseases, cancer and Alzheimer's disease. As yet uncharacterized natural ceramide analogs and novel inhibitors of ceramide metabolism might prove to have potent effects in the drugs. In this review, we discuss significant advances that continue to provide intriguing insights into the complex cellular and molecular mechanisms underlying ceramide-mediated signaling cascades.
Collapse
Affiliation(s)
- Saumya Pandey
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Richard F. Murphy
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K. Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
- Department of Internal Medicine, Creighton University School of Medicine, Omaha, Nebraska, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
29
|
Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G. Inhibitors of sphingolipid metabolism enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1957-77. [PMID: 17049336 DOI: 10.1016/j.bbamem.2006.08.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/18/2006] [Indexed: 01/09/2023]
Abstract
Sphingolipids are a family of lipids that play essential roles both as structural cell membrane components and in cell signalling. The cellular contents of the various sphingolipid species are controlled by enzymes involved in their metabolic pathways. In this context, the discovery of small chemical entities able to modify these enzyme activities in a potent and selective way should offer new pharmacological tools and therapeutic agents.
Collapse
Affiliation(s)
- Antonio Delgado
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Organic Chemistry, Chemical and Environmental Research Institute of Barcelona, (IIQAB-C.S.I.C), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1864-84. [PMID: 17052686 DOI: 10.1016/j.bbamem.2006.08.009] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/16/2006] [Indexed: 12/14/2022]
Abstract
Sphingolipids are comprised of a backbone sphingoid base that may be phosphorylated, acylated, glycosylated, bridged to various headgroups through phosphodiester linkages, or otherwise modified. Organisms usually contain large numbers of sphingolipid subspecies and knowledge about the types and amounts is imperative because they influence membrane structure, interactions with the extracellular matrix and neighboring cells, vesicular traffic and the formation of specialized structures such as phagosomes and autophagosomes, as well as participate in intracellular and extracellular signaling. Fortunately, "sphingolipidomic" analysis is becoming feasible (at least for important subsets such as all of the backbone "signaling" subspecies: ceramides, ceramide 1-phosphates, sphingoid bases, sphingoid base 1-phosphates, inter alia) using mass spectrometry, and these profiles are revealing many surprises, such as that under certain conditions cells contain significant amounts of "unusual" species: N-mono-, di-, and tri-methyl-sphingoid bases (including N,N-dimethylsphingosine); 3-ketodihydroceramides; N-acetyl-sphingoid bases (C2-ceramides); and dihydroceramides, in the latter case, in very high proportions when cells are treated with the anticancer drug fenretinide (4-hydroxyphenylretinamide). The elevation of DHceramides by fenretinide is befuddling because the 4,5-trans-double bond of ceramide has been thought to be required for biological activity; however, DHceramides induce autophagy and may be important in the regulation of this important cellular process. The complexity of the sphingolipidome is hard to imagine, but one hopes that, when partnered with other systems biology approaches, the causes and consequences of the complexity will explain how these intriguing compounds are involved in almost every aspect of cell behavior and the malfunctions of many diseases.
Collapse
Affiliation(s)
- Wenjing Zheng
- School of Biology, Chemistry and Biochemistry, Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Inagaki Y, Mitsutake S, Igarashi Y. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein. Biochem Biophys Res Commun 2006; 343:982-7. [PMID: 16581028 DOI: 10.1016/j.bbrc.2006.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/08/2006] [Indexed: 11/24/2022]
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide the first evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Yuichi Inagaki
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | | | | |
Collapse
|