1
|
Yadav R, Obinata H, Venkataraman K. Delineating the intricacies of polymorphisms, structures, functions and therapeutic applications of biological high-density lipoprotein-apolipoprotein M: A review. Int J Biol Macromol 2025; 310:143187. [PMID: 40246118 DOI: 10.1016/j.ijbiomac.2025.143187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Apolipoprotein-M (ApoM), primarily associated with high-density lipoproteins (HDL), plays a crucial role in lipid metabolism and cardiovascular health. It facilitates the transport of lipids such as cholesterol and sphingosine-1-phosphate (S1P), contributing to reverse cholesterol transport (RCT), which removes excess cholesterol from peripheral tissues to the liver for excretion. Through its association with HDL and S1P, ApoM exerts anti-inflammatory, anti-thrombotic, and anti-apoptotic effects. The ApoM-S1P complex regulates various cellular, immunological, and physiological processes via S1P receptors, and its dysregulation is linked to metabolic and inflammatory disorders. Reduced plasma ApoM levels are associated with atherosclerosis, diabetes, and chronic systemic inflammation. ApoM levels and paraoxonase-1 activity in early pregnancy correlate with gestational hypertension risk, potentially affecting fetal vascular health. ApoM also functions as a S1P chaperone, and recent research highlights the roles of ApoM/S1P axis and the ApoA1-ApoM (A1M) complex in glucose and lipid metabolism, emphasizing its therapeutic relevance in cardiovascular diseases (CVD), cancer, and diabetes. The ApoM-Fc fusion protein exhibits promising therapeutic potential by reducing fibrosis, enhancing endothelial function, and promoting tissue regeneration. HDL-ApoM macromolecules bind bacterial endotoxins and aids in its clearance. This review explores ApoM gene organization, isoforms, point mutations, protein structure, functions and their relevance for developing novel therapeutics.
Collapse
Affiliation(s)
- Rahul Yadav
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, INDIA
| | - Hideru Obinata
- Education and Research Support Center, Graduate School of Medicine, Gunma University, Gunma, JAPAN
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, INDIA.
| |
Collapse
|
2
|
Nielsen VW, Bundgaard Vad O, Holgersen N, Paludan-Müller C, Meseguer Monfort L, Beyer AF, Jemec GBE, Kjærsgaard Andersen R, Egeberg A, Thyssen JP, Svendsen JH, Rosenø NAL, Hansen PR, Thomsen SF, Salling Olesen M. Genetic Susceptibility to Hidradenitis Suppurativa and Predisposition to Cardiometabolic Disease. JAMA Dermatol 2025; 161:22-30. [PMID: 39382891 PMCID: PMC11465120 DOI: 10.1001/jamadermatol.2024.3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024]
Abstract
Importance Hidradenitis suppurativa (HS) is associated with an increased prevalence of cardiovascular diseases compared with the general population. Any association between polygenic risk for HS, risk of incident cardiometabolic outcomes, and the plasma proteome is unclear. Objective To investigate the genetic correlation between HS and cardiometabolic disease. Design, Setting, and Participants This cohort study used a polygenic risk score (PRS) for HS to examine the risks of coronary artery disease (CAD) and diabetes and identify changes in the plasma proteome in individuals of European ancestry from the UK Biobank. Participants were enrolled from January 1, 2006, to December 31, 2010. End of follow-up was January 1, 2023. Correlations were assessed between HS susceptibility and cardiometabolic traits using linkage disequilibrium score regression. Odds ratios were assessed in logistic regressions. The risk of incident CAD and diabetes was estimated in cause-specific survival models designed as time-to-event analyses. Exposure The PRS for HS. Main Outcomes and Measures Main outcomes were CAD and diabetes diagnosis measured by logistic regressions and incident disease measured by Cox proportional hazards regression models adjusted for sex, age, body mass index, and smoking status. Results The study included 391 481 individuals (median [IQR] age, 58 [51-64] years; 209 235 [53%] female). Genetic variants for HS correlated significantly with variants associated with CAD, diabetes, and plasma levels of high-density lipoprotein cholesterol, triglycerides, and C-reactive protein. Compared with the low-risk group, a high PRS for HS (≥75th percentile) conferred odds ratios of 1.09 (95% CI, 1.06-1.12; P < .001) for CAD and 1.13 (95% CI, 1.10-1.17; P < .001) for diabetes. Estimates remained consistent when examining only incident CAD and diabetes. The PRS for HS was significantly associated with altered expression of 58 plasma proteins. Integrating this proteomic profile and the PRS for HS in a machine learning model improved prediction of CAD and diabetes compared with a reference model based on sex, age, and body mass index. Conclusions and Relevance These findings suggest that a high genetic risk of HS is associated with increased risk of subsequent CAD and diabetes and altered composition of the plasma proteome. Additional investigation into the identified proteins and their potential roles as drug targets is warranted.
Collapse
Affiliation(s)
- Valdemar Wendelboe Nielsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Oliver Bundgaard Vad
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj Holgersen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Paludan-Müller
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Meseguer Monfort
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Filt Beyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Borut Ernst Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Kjærsgaard Andersen
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Department of Immunology and Microbiology, Leo Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- LEO Pharma, Ballerup, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nana Aviaaja Lippert Rosenø
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Simon Francis Thomsen
- Department of Dermato-Venereology and Wound Healing Centre, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
4
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hanff TC, Cohen JB, Zhao L, Javaheri A, Zamani P, Prenner SB, Rietzschel E, Jia Y, Walsh A, Maranville J, Wang Z, Adam L, Ramirez-Valle F, Schafer P, Seiffert D, Gordon DA, Cvijic ME, Cappola TP, Chirinos JA. Quantitative Proteomic Analysis of Diabetes Mellitus in Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2021; 6:89-99. [PMID: 33665511 PMCID: PMC7907637 DOI: 10.1016/j.jacbts.2020.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus (DM) is associated with a higher risk of heart failure hospitalization and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Using SomaScan assays and proteomics analysis of plasma from participants in the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial and the Penn Heart Failure Study, this study identified 10 proteins with significantly different expression in patients with HFpEF and DM. Of these, apolipoprotein M was found to mediate 72% (95% CI: 36% to 100%; p < 0.001) of the association between DM and the risk of cardiovascular death, aborted cardiac arrest, and heart failure hospitalization.
Collapse
Affiliation(s)
- Thomas C. Hanff
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordana B. Cohen
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lei Zhao
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Ali Javaheri
- Division of Cardiovascular Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart B. Prenner
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases, Ghent University, Ghent, Belgium
| | - Yi Jia
- SomaLogic, Boulder, Colorado, USA
| | - Alice Walsh
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Leonard Adam
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | | | | | | | | | - Thomas P. Cappola
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julio A. Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Kobayashi T, Kurano M, Nanya M, Shimizu T, Ohkawa R, Tozuka M, Yatomi Y. Glycation of HDL Polymerizes Apolipoprotein M and Attenuates Its Capacity to Bind to Sphingosine 1-Phosphate. J Atheroscler Thromb 2021; 28:730-741. [PMID: 32999208 PMCID: PMC8265924 DOI: 10.5551/jat.55699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim:
Recently, it has been established that most of the pleiotropic effects of high-density lipoprotein (HDL) are attributed to sphingosine 1-phosphate (S1P), which rides on HDL via apolipoprotein M (ApoM). In subjects with diabetes mellitus, both the pleiotropic effects of HDL and its role in reverse cholesterol transport are reported to be impaired. To elucidate the mechanisms underlying the impaired pleiotropic effects of HDL in subjects with diabetes, from the aspects of S1P and ApoM.
Methods:
The incubation of HDL in a high-glucose condition resulted in the dimerization of ApoM. Moreover, the treatment of HDL with methylglyoxal resulted in the modulation of the ApoM structure, as suggested by the results of western blot analysis, isoelectric focusing electrophoresis, and two-dimensional gel electrophoresis, which was reversed by treatment with anti-glycation reagents.
Results:
The glycation of HDL resulted in impaired binding of the glycated HDL to S1P, and the S1P on glycated HDL degraded faster. In the case of human subjects, on the other hand, although both the serum ApoM levels and the ApoM content in HDL were lower in subjects with diabetes, we did not observe the polymerization of ApoM.
Conclusions:
Modulation of the quantity and quality of ApoM might explain, at least in part, the impaired functions of HDL in subjects with diabetes mellitus. ApoM might be a useful target for laboratory testing and/or the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Tamaki Kobayashi
- Department of Clinical Laboratory Medicine, The University of Tokyo.,Analytical Laboratory Chemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo
| | - Mai Nanya
- Department of Clinical Laboratory Medicine, The University of Tokyo
| | - Tomo Shimizu
- Research and Development Division, Tsukuba Research Institute, Sekisui Medical Co., Ltd
| | - Ryunosuke Ohkawa
- Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children's Hospital
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo
| |
Collapse
|
7
|
Christoffersen C. Apolipoprotein M-A Marker or an Active Player in Type II Diabetes? Front Endocrinol (Lausanne) 2021; 12:665393. [PMID: 34093440 PMCID: PMC8176018 DOI: 10.3389/fendo.2021.665393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Apolipoprotein M (apoM) is a member of the lipocalin superfamily and an important carrier of the small bioactive lipid sphingosine-1-phosphate (S1P). The apoM/S1P complex is attached to all lipoproteins, but exhibits a significant preference for high-density lipoproteins. Although apoM, S1P, and the apoM/S1P complex have been discovered more than a decade earlier, the overall function of the apoM/S1P complex remains controversial. Evidence suggests that the complex plays a role in inflammation and cholesterol metabolism and is important for maintaining a healthy endothelial barrier, regulating the turnover of triglycerides from lipoproteins, and reducing cholesterol accumulation in vessel walls. Recent studies have also addressed the role of apoM and S1P in the development of diabetes and obesity. However, limited evidence is available, and the data published so far deviates. This review discusses the specific elements indicative of the protective or harmful effects of apoM, S1P, and the apoM/S1P complex on type 2 diabetes development. Since drugs targeting the S1P system and its receptors are available and could be potentially used for treating diabetes, this research topic is a pertinent one.
Collapse
Affiliation(s)
- Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Christina Christoffersen,
| |
Collapse
|
8
|
Hua F. New insights into diabetes mellitus and its complications: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1689. [PMID: 33490201 PMCID: PMC7812242 DOI: 10.21037/atm-20-7243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes is a metabolic disorder accompanied by complications of multiple organs and systems. Diabetic nephropathy (DN) is one of the most prevalent lethal complications of diabetes. Although numerous biomarkers have be clarified for early diagnosis of DN, renal biopsy is still the gold standard. As a noninvasive imaging diagnostic method, blood oxygen level-dependent (BOLD) MRI can help understand the kidney oxygenation status and fibrosis process and monitor the efficacy of new drugs for DN via monitoring renal blood oxygen levels. Recent studies have shown that noncoding RNAs including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) were all involved in the development of DN, which could be exploited as therapeutic strategy to control DN. Dyslipidemia is also a common complication of diabetes. Apolipoprotein M (apoM), as a novel apolipoprotein, may be related to the development and progression of diabetes, which need to further investigation. Obstructive sleep apnea (OSA) is another common complication of diabetes and is an independent risk factor for cardiovascular disease (CVD). At present, there is no simple, effective and rapid diagnostic method to early identification of OSA in patients with diabetes. A nomogram consisted of waist-to-hip ratio, smoking status, body mass index, serum uric acid, HOMA-IR and history of fatty liver might be an alternative method to early assess the risk of OSA.
Collapse
Affiliation(s)
- Fei Hua
- Department of Endocrinology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Li Y, Zhou J, Qiu J, Huang Z, Wang W, Wu P, Feng A. Berberine reduces gut-vascular barrier permeability via modulation of ApoM/S1P pathway in a model of polymicrobial sepsis. Life Sci 2020; 261:118460. [PMID: 32961234 DOI: 10.1016/j.lfs.2020.118460] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
AIMS The hyperpermeability of gut-vascular barrier (GVB) plays a role in gut-derived sepsis. The goal of this study was to evaluate if berberine might improve hepatic apolipoprotein M (ApoM) generation and raise plasma ApoM level to protect the compromised GVB. MATERIALS AND METHODS The compromised GVB was induced by sepsis. Hepatic ApoM mRNA and phosphoenolpyruvate carboxykinase (PEPCK) mRNA and plasma ApoM level were assayed by qRT-PCR and ELISA, respectively. The permeability of intestinal capillary in vivo and of rat intestinal microvascular endothelial cells (RIMECs) in vitro was assayed by FITC-dextran. The blood glucose was detected by a glucometer. Plasma insulin, TNF-α and IL-1β were assayed by ELISA. The plasmalemma vesicle-associated protein-1 (PV1), β-catenin and occludin in RIMECs were assayed by Western blot. KEY FINDINGS Sepsis decreased hepatic ApoM mRNA and plasma ApoM level, but raised hepatic PEPCK mRNA and plasma glucose, insulin, TNF-α, and IL-1β levels. The increased vascular endothelial permeability was abrogated by recombinant rat ApoM in vivo or ApoM-bound S1P in vitro. ApoM-bound S1P decreased PV1 but increased occludin and β-catenin expression in LPS-treated RIMECs. Berberine in a dose-dependent manner raised hepatic ApoM mRNA and plasma ApoM level, but decreased septic hyperglycemia, insulin resistance and plasma TNF-α and IL-1β levels. Berberine reduced sepsis-induced PEPCK and TLR4 mRNA overexpression in the liver. SIGNIFICANCE This study demonstrated berberine inhibited TLR4-mediated hyperglycemia, insulin resistance and proinflammatory molecule production, thereby increasing ApoM gene expression and plasma ApoM. Berberine protected the damaged GVB via modulation of ApoM/S1P pathway.
Collapse
Affiliation(s)
- Yanning Li
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Jiasheng Qiu
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Zudong Huang
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Ping Wu
- Department of Gastroenterology, Maoming People's Hospital, Maoming Clinical Medical School, Guangdong Medical University, Guangdong Province, China
| | - Aiwen Feng
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China.
| |
Collapse
|
10
|
Kurano M, Tsukamoto K, Hara M, Tsuneyama K, Nishikawa T, Ikeda H, Yatomi Y. Modulation of sphingosine 1-phosphate by hepatobiliary cholesterol handling. FASEB J 2020; 34:14655-14670. [PMID: 32918529 DOI: 10.1096/fj.202001397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Hepatobiliary cholesterol handling, mediated by Niemann-Pick C1-like 1 protein (NPC1L1) and ABCG5/8, is well-known to contribute to the homeostasis of cholesterol. We attempted to elucidate the impact of hepatobiliary cholesterol handling on the homeostasis of sphingolipids and lysophospholipids, especially sphingosine 1-phosphate (S1P). We induced the overexpression of NPC1L1 or ABCG5/8 in the mouse liver. Hepatic NPC1L1 overexpression increased the plasma and hepatic S1P levels, while it decreased the biliary S1P levels, and all of these changes were inhibited by ezetimibe. The ability of HDL to activate Akt in the endothelial cells was augmented by hepatic NPC1L1 overexpression. NPC1L1-mediated S1P transport was confirmed by both in vitro and in vivo studies conducted using C17 S1P, an exogenous S1P analog. Upregulation of apolipoprotein M (apoM) was involved in these modulations, although apoM was not necessary for these modulations. Moreover, the increase in the plasma S1P levels also observed in ABCG5/8-overexpressing mice was dependent on the elevation of the plasma apoM levels. In regard to other sphingolipids and lysophospholipids, ceramides were similarly modulated by NPC1L1 to S1P, while other lipids were differently influenced by NPC1L1 or ABCG5/8 from S1P. Hepatobiliary cholesterol handling might also regulate the functional lipids, such as S1P.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masumi Hara
- Department of Medicine IV, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Yu Y, Zhang J, Yao S, Pan L, Luo G, Xu N. Apolipoprotein M overexpression through adeno-associated virus gene transfer improves insulin secretion and insulin sensitivity in Goto-Kakizaki rats. J Diabetes Investig 2020; 11:1150-1158. [PMID: 32243104 PMCID: PMC7477524 DOI: 10.1111/jdi.13261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/01/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS/OBJECTIVE The development of type 2 diabetes is a result of insulin resistance in various tissues, including skeletal muscle and liver. Apolipoprotein M (ApoM) plays an important role in the function of high-density lipoprotein, and also affects hepatic lipid and glucose metabolism. In this study, we aimed to investigate whether ApoM overexpression modulates glucose metabolism and improves insulin sensitivity. MATERIALS AND METHODS The Goto-Kakizaki (GK) rats were transfected with adeno-associated virus (AAV) encoding rat ApoM gene or control blank. The oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp (HEC) experiment were used to assess the insulin sensitivity of GK rats. RESULTS The results show that ApoM messenger ribonucleic acid and protein were significantly overexpressed in the pancreatic tissues. Overexpression of ApoM decreased fasting blood glucose and random blood glucose, improved glucose tolerance, and increased bodyweight and insulin levels in GK rats. The glucose infusion rate of rats in the AAV encoding rat ApoM gene group during HEC test was 1.04-, 1.23- and 1.95-fold higher than that in the AAV control blank group at 1-3 weeks after injection of AAV, respectively. A Wes-ProteinSimple assay and quantification was carried out to assess phosphorylated protein kinase B/protein kinase B protein levels in the muscle tissues of ApoM-overexpressing GK rats, and they were found to be higher than those of the control group at the seventh week after AAV injection. CONCLUSIONS ApoM overexpression through adeno-associated virus gene transfer might improve insulin secretion and insulin sensitivity in GK rats.
Collapse
Affiliation(s)
- Yang Yu
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Jun Zhang
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Shuang Yao
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Lili Pan
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Guanghua Luo
- Comprehensive Laboratorythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Ning Xu
- Section of Clinical Chemistry and PharmacologyInstitute of Laboratory MedicineLunds UniversityLundSweden
| |
Collapse
|
12
|
Liu D, Pan JM, Pei X, Li JS. Interaction Between Apolipoprotein M Gene Single-Nucleotide Polymorphisms and Obesity and its Effect on Type 2 Diabetes Mellitus Susceptibility. Sci Rep 2020; 10:7859. [PMID: 32398715 PMCID: PMC7217861 DOI: 10.1038/s41598-020-64467-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/31/2020] [Indexed: 11/24/2022] Open
Abstract
This study investigated the correlation of four single nucleotide polymorphisms (SNPs) in Apolipoprotein M (ApoM) with the risk of type 2 diabetes mellitus (T2DM) and effects of the interactions of this gene and obesity. The effects of SNP and obesity interaction on T2DM was examined by generalized multifactor dimensionality reduction (GMDR) combined with the logistic regression model. T2DM patient-control haplotype was analyzed in silico using the haplotype analysis algorithm SHEsis. The rs805296-C allele or 724-del allele indicted high risk of T2DM. The incidence of T2DM in individuals with rs805296-C allele polymorphism (TC + CC) was higher than those without (TT), adjusted OR (95%CI) = 1.29 (1.10–1.66) (p < 0.001). Moreover, the individuals with 724-delallele have a higher risk of T2DM compared to those with 724-ins variants, adjusted OR (95%CI) = 1.66 (1.40–2.06), p < 0.001. GMDR analysis suggested that the interaction model composed of the two factors, rs805296 and obesity, was the best model with statistical significance (P value from sign test [Psign]=0.0107). The T2DM risk in obese individuals having TC or CC genotype was higher than non-obese individuals with TT genotype (OR = 2.38, 95% CI = 1.58–3.53). Haplotype analysis suggests that rs805297-C and rs9404941-C alleles haplotype indicate high risk of T2DM, OR (95%CI) = 1.62 (1.29–2.16), p < 0.001. Our results suggested that rs805296 and 724-del minor allele of ApoM gene, interaction of rs805296 and obesity, rs805297-C and rs9404941-C alleles haplotype were indicators of high T2DM risk.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, The third people's Hospital of Hainan Province, Sanya, China.
| | - Jian-Min Pan
- Department of general surgery, The third people's Hospital of Hainan Province, Sanya, China
| | - Xiang Pei
- Department of Endocrinology, The third people's Hospital of Hainan Province, Sanya, China
| | - Jun-Sen Li
- Department of Endocrinology, The third people's Hospital of Hainan Province, Sanya, China
| |
Collapse
|
13
|
Luo G, Xu N. Apolipoprotein M: Research Progress and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:85-103. [PMID: 32705596 DOI: 10.1007/978-981-15-6082-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apolipoprotein M (apoM) was first identified and characterized to the apolipoprotein family in 1999. Human apoM gene is located in a highly conserved segment in the major histocompatibility complex (MHC) class III locus on chromosome 6 and codes for an about 23 kDa protein that structurally belongs to the lipocalin superfamily. ApoM is selectively expressed in hepatocytes and in the tubular epithelium of kidney. In human plasma, apoM is mainly confined to the high-density lipoprotein (HDL) particles, but it may also occur in other lipoprotein classes, such as in the triglyceride-rich particles after fat intake. It has been demonstrated that apoM is critical for the formation of HDL, notably pre-beta HDL1. The antiatherogenic function of HDL is well established, and its ability to promote cholesterol efflux from foam cells in the atherosclerotic lesions is generally regarded as one of the key mechanisms behind this protective function. However, HDL could also display a variety of properties that may affect the complex atherosclerotic processes by other mechanisms, thus being involved in processes related to antioxidant defense, immune system, and systemic effects in septicemia, which may be partly contributed via its apolipoproteins and/or phospholipids. Moreover, it has been demonstrated that apoM functions as a natural carrier of sphingosin-1-phosphate (S1P) in vivo which may be related to its antiatherosclerotic and protective effects on endothelial cell barrier and anti-inflammatory properties. These may also provide a link between the diverse effects of HDL.
Collapse
Affiliation(s)
- Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden.
| |
Collapse
|
14
|
Regulation of the metabolism of apolipoprotein M and sphingosine 1-phosphate by hepatic PPARγ activity. Biochem J 2018; 475:2009-2024. [PMID: 29712716 DOI: 10.1042/bcj20180052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Apolipoprotein M (apoM) is a carrier and a modulator of sphingosine 1-phosphate (S1P), an important multifunctional bioactive lipid. Since peroxisome proliferator-activated receptor γ (PPARγ) is reportedly associated with the function and metabolism of S1P, we investigated the modulation of apoM/S1P homeostasis by PPARγ. First, we investigated the modulation of apoM and S1P homeostasis by the overexpression or knockdown of PPARγ in HepG2 cells and found that both the overexpression and the knockdown of PPARγ decreased apoM expression and S1P synthesis. When we activated or suppressed the PPARγ more mildly with pioglitazone or GW9662, we found that pioglitazone suppressed apoM expression and S1P synthesis, while GW9662 increased them. Next, we overexpressed PPARγ in mouse liver through adenoviral gene transfer and observed that both the plasma and hepatic apoM levels and the plasma S1P levels decreased, while the hepatic S1P levels increased, in the presence of enhanced sphingosine kinase activity. Treatment with pioglitazone decreased both the plasma and hepatic apoM and S1P levels only in diet-induced obese mice. Moreover, the overexpression of apoM increased, while the knockdown of apoM suppressed PPARγ activities in HepG2 cells. These results suggested that PPARγ regulates the S1P levels by modulating apoM in a bell-shaped manner, with the greatest levels of apoM/S1P observed when PPARγ was mildly expressed and that hepatic apoM/PPARγ axis might maintain the homeostasis of S1P metabolism.
Collapse
|
15
|
Zhang P, Gao J, Pu C, Feng G, Wang L, Huang L, Zhang Y. ApoM/HDL-C and apoM/apoA-I ratios are indicators of diabetic nephropathy in healthy controls and type 2 diabetes mellitus. Clin Chim Acta 2017; 466:31-37. [PMID: 28073663 DOI: 10.1016/j.cca.2017.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Apolipoprotein M (apoM) concentrations were decreased in type 2 diabetes mellitus (T2DM). ApoM was selectively expressed in renal tubular epithelial cells. We investigated the changes in plasma apoM concentrations in diabetic nephropathy (DN) patients and the potential of apoM as a biomarker of DN. METHODS A total of 96 DN patients and 100 age- and sex-matched diabetic non-nephropathy (non-DN) patients and 110 healthy controls were included. All T2DM patients were divided into 3 groups according to urinary albumin excretion: normoalbuminuria (n=100), microalbuminuria (n=50) and macroalbuminuria (n=46). Plasma apoM concentrations were measured by enzyme-linked immunosorbent assay. RESULTS DN Patients had higher plasma apoM concentrations than those in non-DN patients (22.23±11.69 vs. 18.96±7.85ng/μl, P<0.05). In addition, microalbuminuria group showed higher plasma apoM concentrations than those in normoalbuminuria group (22.67±11.40 vs. 18.96±7.85ng/μl, P<0.05). The areas under curve (AUC) of apoM using a receiver-operating characteristic (ROC) curve analysis showed that plasma apoM concentrations were not indicators for identification of DN from healthy people (AUC=0.478, P=0.585) and from T2DM (AUC=0.563, P=0.125). DN patients had higher ratios of apoM/HDL-C and apoM/apoA1 than those in healthy controls and in non-DN patients. ApoM/HDL-C and apoM/apoA1 ratios could be used as indicators for identification of DN from healthy people (AUC=0.597, P=0.016; AUC=0.665, P=0.000, respectively) and from T2DM (AUC=0.580, P=0.050; AUC=0.601, P=0.015, respectively). CONCLUSIONS ApoM/HDL-C and apoM/apoA1 ratios could be used as indicators for identification of DN from healthy people and from T2DM patients.
Collapse
Affiliation(s)
- Puhong Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Wannan Medical College, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, China; Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, China
| | - Chun Pu
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, China
| | - Gang Feng
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, China
| | - Lizhuo Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, China; Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, China
| | - Lizhu Huang
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, China
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, China; Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, China.
| |
Collapse
|
16
|
Zhang P, Gao J, Pu C, Feng G, Wang L, Huang L, Tao Q, Zhang Y. Effects of hyperlipidaemia on plasma apolipoprotein M levels in patients with type 2 diabetes mellitus: an independent case-control study. Lipids Health Dis 2016; 15:158. [PMID: 27633510 PMCID: PMC5025546 DOI: 10.1186/s12944-016-0325-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/03/2016] [Indexed: 11/11/2022] Open
Abstract
Background Apolipoprotein M (apoM) is mainly enriched in high-density lipoprotein (HDL) cholesterol and is slightly present in low-density lipoprotein (LDL) cholesterol and very low-density lipoprotein cholesterol. apoM is involved in HDL formation and HDL-mediated reverse cholesterol transport. apoM is also associated with hyperlipidaemia and type 2 diabetes mellitus (T2DM). Significantly high plasma apoM levels are detected in hyperlipidaemia mice with a defective LDL receptor. By contrast, low plasma apoM levels are observed in patients with T2DM, which is often accompanied with hyperlipidaemia. However, the underlying mechanism of this condition is poorly understood. This research aims to examine the changes in apoM levels in patients with hyperlipidaemia and to determine the effects of hyperlipidaemia on plasma apoM levels in patients with T2DM. Methods This study included patients with hyperlipidaemia (n = 79), patients with T2DM but without hyperlipidaemia (n = 125), patients with T2DM and hyperlipidaemia (n = 98), and healthy controls (n = 105). Their plasma apoM concentrations were measured with enzyme-linked immunosorbent assay. Results The average plasma apoM concentrations were 18 % higher in the hyperlipidaemia group (26.63 ± 10.35 ng/μL) than in the healthy controls (22.61 ± 10.81 ng/μL, P <0.01). The plasma apoM concentrations were lower in the T2DM without hyperlipidaemia group (18.54 ± 10.33 ng/μL, P <0.01) and the T2DM with hyperlipidaemia group (19.83 ± 7.41 ng/μL, P <0.05) than in the healthy controls. Similar to apoA-I (1.29 ± 0.33 g/L vs. 1.28 ± 0.31 g/L, P >0.05), the plasma apoM concentrations in the T2DM with hyperlipidaemia group did not significantly differ from those in the T2DM without hyperlipidaemia group (P >0.05). Multivariate linear regression analysis showed that hyperlipidaemia (β = 5.18, P = 0.007) is an independent promoting factor of plasma apoM levels and diabetes (β = −3.09, P = 0.005) is an inhibiting factor of plasma apoM levels. Conclusion Plasma apoM concentrations are higher in patients with hyperlipidaemia than in healthy controls. Low plasma apoM levels in patients with T2DM are likely caused by diabetes but are not induced by hyperlipidaemia.
Collapse
Affiliation(s)
- Puhong Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wuhu, China
| | - Jialin Gao
- Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wuhu, China.,Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chun Pu
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Gang Feng
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, People's Republic of China.,Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wuhu, China
| | - Lizhu Huang
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qingsong Tao
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, People's Republic of China. .,Anhui Province Key Laboratory of Biological Macro-molecules Research (Wannan Medical College), Wuhu, China.
| |
Collapse
|
17
|
Zhang PH, Gao JL, Pu C, Feng G, Wang LZ, Huang LZ, Zhang Y. A single-nucleotide polymorphism C-724 /del in the proter region of the apolipoprotein M gene is associated with type 2 diabetes mellitus. Lipids Health Dis 2016; 15:142. [PMID: 27576735 PMCID: PMC5006532 DOI: 10.1186/s12944-016-0307-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apolipoprotein M (apoM) was the carrier of the biologically active lipid mediator sphingosine-1-phospate in high density lipoprotein cholesterol (HDL-C) and played a critical role in formation and maturation of prebeta-HDL-C particles. The plasma apoM levels were decreased obviously in patients with type 2 diabetes mellitus (T2DM). A new single-nucleotide polymorphism (SNP) C-724del in apoM promoter was associated with a higher risk for coronary artery diseases (CAD) and myocardial infarction, could reduce promoter activities and apoM expression in vitro. The primary aim of the present case-controls study was to investigate the effect of apoM SNP C-724del on apoM expression in vivo and its association with T2DM susceptibility in an eastern Han Chinese cohort. METHODS Two hundred and fifty-nine T2DM patients and seventy-six healthy controls were included in this study. Amplifying DNA of apoM proximal promoter region including SNP C-724del by Real-Time Polymerase Chain Reaction (RT-PCR) and amplicons sequencing. The plasma apoM concentrations were assayed by enzyme linked immunosorbentassay (ELISA). RESULTS Four polymorphic sites, rs805297 (C-1065A), rs9404941 (T-855C), rs805296 (T-778C), C-724del were confirmed. rs805297 (C-1065A) and rs9404941 (T-855C) showed no statistical difference in allele frequencies and genotype distributions between T2DM patients and healthy controls just as previous studies. It's worth noting that the difference of rs805296 (T-778C) between these two groups was not found in this study. In SNP C-724del, the frequency of del allele and mutant genotypes (del/del, C/del) were higher in T2DM patients compared with healthy controls (p = 0.035; P = 0.040, respectively), while the plasma apoM levels of C-724del mutant allele carriers compared with the wide-type homozygotes carriers were not statistically different in T2DM patients (18.20 ± 8.53 ng/uL vs 20.44 ± 10.21 ng/uL, P = 0.245). CONCLUSION The polymorphism C-724del in the promoter region of the apoM gene could confer the risk of T2DM among eastern Han Chinese. Unfortunately, the lowing of plasma apoM levels of C-724del mutant allele carriers compared with the wide-type homozygotes carriers in T2DM patients was not statistically different in present study, so further researchs were needed by enlarging the sample.
Collapse
Affiliation(s)
- Pu-Hong Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, People's Republic of China
| | - Jia-Lin Gao
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, People's Republic of China.,Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Chun Pu
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Gang Feng
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Li-Zhuo Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, People's Republic of China.,Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, People's Republic of China
| | - Li-Zhu Huang
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, People's Republic of China. .,Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, People's Republic of China.
| |
Collapse
|
18
|
Zhang H, Pluhackova K, Jiang Z, Böckmann RA. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. Sci Rep 2016; 6:30655. [PMID: 27476912 PMCID: PMC4967915 DOI: 10.1038/srep30655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator carried by the HDL-associated apoM protein in blood, regulating many physiological processes by activating the G protein-coupled S1P receptor in mammals. Despite the solved crystal structure of the apoM-S1P complex, the mechanism of S1P release from apoM as a part of the S1P pathway is unknown. Here, the dynamics of the wild type apoM-S1P complex as well as of mutants were investigated by means of atomistic molecular dynamics simulations. The potential of mean force for S1P unbinding from apoM reflected a large binding strength of more than 60 kJ/mol. This high unbinding free energy for S1P underlines the observed specificity of the physiological effects of S1P as it suggests that the spontaneous release of S1P from apoM is unlikely. Instead, S1P release and thus the control of this bioactive lipid probably requires the tight interaction with other molecules, e.g. with the S1P receptor. Mutations of specific S1P anchoring residues of apoM decreased the energetic barrier by up to 20 kJ/mol. Moreover, the ligand-free apoM protein is shown to adopt a more open upper hydrophilic binding pocket and to result in complete closure of the lower hydrophobic cavity, suggesting a mechanism for adjusting the gate for ligand access.
Collapse
Affiliation(s)
- Hansi Zhang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Zhenyan Jiang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| |
Collapse
|
19
|
di Masi A, Trezza V, Leboffe L, Ascenzi P. Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 2016; 228:191-205. [PMID: 26951925 DOI: 10.1016/j.jconrel.2016.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023]
Abstract
Lipocalins are an evolutionarily conserved family of proteins that bind and transport a variety of exogenous and endogenous ligands. Lipocalins share a conserved eight anti-parallel β-sheet structure. Among the different lipocalins identified in humans, α-1-acid glycoprotein (AGP), apolipoprotein D (apoD), apolipoprotein M (apoM), α1-microglobulin (α1-m) and retinol-binding protein (RBP) are plasma proteins. In particular, AGP is the most important transporter for basic and neutral drugs, apoD, apoM, and RBP mainly bind endogenous molecules such as progesterone, pregnenolone, bilirubin, sphingosine-1-phosphate, and retinol, while α1-m binds the heme. Human serum albumin (HSA) is a monomeric all-α protein that binds endogenous and exogenous molecules like fatty acids, heme, and acidic drugs. Changes in the plasmatic levels of lipocalins and HSA are responsible for the onset of pathological conditions associated with an altered drug transport and delivery. This, however, does not necessary result in potential adverse effects in patients because many drugs can bind both HSA and lipocalins, and therefore mutual compensatory binding mechanisms can be hypothesized. Here, molecular and clinical aspects of ligand transport by plasma lipocalins and HSA are reviewed, with special attention to their role as alterative carriers in health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy.
| | - Viviana Trezza
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Paolo Ascenzi
- Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy
| |
Collapse
|
20
|
Jiang B, Zhang X, Di D, Luo G, Shi Y, Zhang J, Berggren-Söderlund M, Nilsson-Ehle P, Xu N. Hyperglycemia-induced downregulation of apolipoprotein M expression is not via the hexosamine pathway. Lipids Health Dis 2015; 14:110. [PMID: 26377577 PMCID: PMC4574082 DOI: 10.1186/s12944-015-0103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously demonstrated that hyperglycemia could suppress apolipoprotein M (apoM) synthesis both in vivo and in vitro; however, the mechanism of hyperglycemia-induced downregulation of apoM expression is unknown yet. METHODS In the present study we further examined if hexosamine pathway, one of the most important pathways of glucose turnover, being involved in modulating apoM expression in the hyperglycemia condition. We examined the effect of glucosamine, a prominent component of hexosamine pathway and intracellular mediator of insulin resistance, on apoM expression in HepG2 cells and in rat's models. In the present study we also determined apolipoprotein A1 (apoA1) as a control gene. RESULTS Our results demonstrated that glucosamine could even up-regulate both apoM and apoA1 expressions in HepG2 cell cultures. The glucosamine induced upregulation of apoM expression could be blocked by addition of azaserine, an inhibitor of hexosamine pathway. Moreover, intravenous infusion of glucosamine could enhance hepatic apoM expression in rats, although serum apoM levels were not significantly influences. CONCLUSIONS It is concluded that both exogenous and endogenous glucosamine were essential for the over-expression of apoM, which may suggest that the increased intracellular content of glucosamine does not be responsible for the depressed apoM expression at hyperglycemia condition.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Cardiothoracic Surgery in the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery in the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China.
| | - Dongmei Di
- Department of Cardiothoracic Surgery in the Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Guanghua Luo
- Comprehensive Laboratory, Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Yuanping Shi
- Comprehensive Laboratory, Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Jun Zhang
- Comprehensive Laboratory, Third Affiliated Hospital, Soochow University, Changzhou, 213003, China
| | - Maria Berggren-Söderlund
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85, Lund, Sweden
| | - Peter Nilsson-Ehle
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85, Lund, Sweden
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85, Lund, Sweden.
| |
Collapse
|
21
|
HUANG LIZHU, GAO JIALIN, PU CHUN, ZHANG PUHONG, WANG LIZHUO, FENG GANG, ZHANG YAO. Apolipoprotein M: Research progress, regulation and metabolic functions (Review). Mol Med Rep 2015; 12:1617-24. [DOI: 10.3892/mmr.2015.3658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/16/2015] [Indexed: 11/06/2022] Open
|
22
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
23
|
Memon AA, Bennet L, Zöller B, Wang X, Palmér K, Dahlbäck B, Sundquist J, Sundquist K. The association between apolipoprotein M and insulin resistance varies with country of birth. Nutr Metab Cardiovasc Dis 2014; 24:1174-1180. [PMID: 24984825 DOI: 10.1016/j.numecd.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Risk of type 2 diabetes mellitus (T2DM) differs according to ethnicity. Levels of apolipoprotein M (ApoM) have been shown to be decreased in T2DM. However, its role in different ethnicities is not known. We examined the differences in plasma ApoM levels in Swedish residents born in Iraq (Iraqis) and Sweden (Swedes) in relation to T2DM and insulin resistance (IR). METHODS AND RESULTS Iraqis and Swedes, aged 45-65 years residing in Rosengård area of Malmö were randomly selected from census records and underwent an oral glucose tolerance test. Plasma levels of ApoM were quantified in 162 participants (Iraqis, n = 91; Swedes, n = 71) by a sandwich ELISA method. Age-, sex-, and body mass index (BMI) adjusted plasma ApoM levels differed by country of birth, with Swedes having 18% higher levels compared to Iraqis (p = 0.001). ApoM levels (mean ± SD) were significantly decreased in Swedes with T2DM (0.73 ± 0.18) compared to those with normal glucose tolerance (NGT) (0.89 ± 0.24; p = 0.03). By contrast, no significant difference in ApoM levels was found between Iraqis with T2DM (0.70 ± 0.17) and those with NGT (0.73 ± 0.13; p = 0.41). In multivariate linear regression analysis with an interaction term between IR and country of birth, low ApoM levels remained significantly associated with IR in Swedes (p = 0.008), independently of age, sex, BMI, family history of diabetes, HDL, LDL, and triglycerides, but not in Iraqis (p = 0.35). CONCLUSION Our results show that ApoM levels differ according to country of birth and are associated with IR and T2DM only in Swedes.
Collapse
Affiliation(s)
- A A Memon
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden.
| | - L Bennet
- Genetic and Molecular Epidemiology, Lund University, Malmö, Sweden
| | - B Zöller
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden
| | - X Wang
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden
| | - K Palmér
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden
| | - B Dahlbäck
- Department of Laboratory Medicine, Skåne University Hospital, Lund University, Sweden
| | - J Sundquist
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden; Stanford Prevention Research Centre, Stanford University School of Medicine, Stanford, CA, USA
| | - K Sundquist
- Center for Primary Health Care Research, Wallenberg Laboratory, 6th floor, Inga Marie Nilssons gata 53, Skåne University Hospital, Lund University/Region Skåne, S-205 02 Malmö, Sweden; Stanford Prevention Research Centre, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Zheng L, Feng Y, Shi Y, Zhang J, Mu Q, Qin L, Berggren-Söderlund M, Nilsson-Ehle P, Zhang X, Luo G, Xu N. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats. PLoS One 2014; 9:e105681. [PMID: 25144649 PMCID: PMC4140822 DOI: 10.1371/journal.pone.0105681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Apolipoprotein M (ApoM) is a constituent of high-density lipoproteins (HDL). It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. AIMS To assess the effects of increased free fatty acids (FFAs) levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. METHODS Adult male Sprague-Dawley (SD) rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR) were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK) rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. RESULTS Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8) was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. CONCLUSION These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yuehua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yuanping Shi
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qinfeng Mu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Li Qin
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Maria Berggren-Söderlund
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| | - Peter Nilsson-Ehle
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, Lund, Sweden
| |
Collapse
|
25
|
Luo G, Feng Y, Zhang J, Mu Q, Shi Y, Qin L, Zheng L, Berggren-Söderlund M, Nilsson-Ehle P, Zhang X, Xu N. Rosiglitazone enhances apolipoprotein M (Apom) expression in rat's liver. Int J Med Sci 2014; 11:1015-1021. [PMID: 25136257 PMCID: PMC4135224 DOI: 10.7150/ijms.8330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/14/2014] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein M (APOM) has been suggested as a vasculoprotective constituent of high density lipoprotein (HDL), which plays a crucial role behind the mechanism of HDL-mediated anti-atherosclerosis. Previous studies demonstrated that insulin resistance could associate with decreased APOM expressions. In agreement with our previous reports, here, we further confirmed that the insulin sensitivity was also reduced in rats treated with high concentrations of glucose; such effect could be reversed by administration of rosiglitazone, a peroxisome proliferator-activated receptor-γ (PPARγ). The present study shows that Apom expression is significantly affected by either rosiglitazone or hyperglycemia alone without cross interaction with each other, which indicates that the pathway of Apom expression regulating by hyperglycemia might be differed from that by rosiglitazone. Further study indicated that hyperglycemia could significantly inhibit mRNA levels of Lxrb (P=0.0002), small heterodimer partner 1 (Shp1) (P<0.0001), liver receptor homologue-1 (Lrh1) (P=0.0012), ATP-binding cassette transporter 1 (Abca1) (P=0.0012) and Pparb/d (P=0.0043). Two-way ANOVA analysis demonstrated that the interactions between rosiglitazone and infusion of 25% glucose solution on Shp1 (P=0.0054) and Abca1 (4E, P=0.0004) mRNA expression was statistically significant. It is concluded that rosiglitazone could increase Apom expression, of which the detailed mechanism needs to be further investigated. The downregulation of Apom by hyperglycemia might be mainly through decreasing expression of Pparg and followed by inhibiting Lxrb in rats.
Collapse
Affiliation(s)
- Guanghua Luo
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yuehua Feng
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Jun Zhang
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Qinfeng Mu
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yuanping Shi
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Li Qin
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Lu Zheng
- 1. Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Maria Berggren-Söderlund
- 3. Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - Peter Nilsson-Ehle
- 3. Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - Xiaoying Zhang
- 2. Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ning Xu
- 3. Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| |
Collapse
|
26
|
Nojiri T, Kurano M, Tokuhara Y, Ohkubo S, Hara M, Ikeda H, Tsukamoto K, Yatomi Y. Modulation of sphingosine-1-phosphate and apolipoprotein M levels in the plasma, liver and kidneys in streptozotocin-induced diabetic mice. J Diabetes Investig 2014; 5:639-48. [PMID: 25422763 PMCID: PMC4234226 DOI: 10.1111/jdi.12232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/24/2014] [Accepted: 03/16/2014] [Indexed: 12/19/2022] Open
Abstract
AIMS/INTRODUCTION Sphingosine-1-phosphate (S1P), a multifunctional bioactive lipid mediator, is involved in various diseases. Apolipoprotein M (ApoM) carries S1P on high-density lipoprotein and modulates S1P metabolism to increase the total S1P mass in the body. Both S1P and ApoM are involved in diabetes. MATERIALS AND METHODS The present study examined the modulation of S1P and ApoM levels in the plasma, liver and kidneys in streptozotocin-induced diabetes (STZ) mice, and the effects of insulin on the S1P and ApoM levels in the plasma and liver in STZ mice and normal mice. We also examined the effects of insulin and glucose on the ApoM levels in HepG2 cells. RESULTS In STZ mice, both the plasma S1P and ApoM levels were higher than those in control mice. The hepatic S1P and ApoM contents were also elevated. The hepatic S1P and ApoM contents were reduced by insulin treatment, whereas high-dose insulin decreased the plasma S1P and ApoM levels. In mice without streptozotocin treatment, the administration of insulin decreased the plasma S1P and ApoM levels, and the hepatic content of ApoM, whereas the hepatic level of S1P was not altered. Treatment with insulin and incubation under a low glucose level decreased the ApoM levels in HepG2 cells. Regarding the kidney, the renal levels of S1P and ApoM were increased in STZ mice, and insulin treatment partially restored this increment. CONCLUSIONS In STZ mice, the levels of S1P and ApoM in the plasma, liver, and kidneys were increased. Insulin treatment somehow reversed this modulation in STZ mice.
Collapse
Affiliation(s)
- Takahiro Nojiri
- Department of Clinical Laboratory, The University of Tokyo Hospital Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Yasunori Tokuhara
- Department of Clinical Laboratory, The University of Tokyo Hospital Tokyo, Japan ; The Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Shigeo Ohkubo
- Department of Clinical Laboratory, The University of Tokyo Hospital Tokyo, Japan
| | - Masumi Hara
- Department of Medicine IV, Mizonokuchi Hospital, Teikyo University School of Medicine Kawasaki, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory, The University of Tokyo Hospital Tokyo, Japan ; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Metabolism, Diabetes and Nephrology, Aizu Medical Center, Fukushima Medical University Fukushima, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital Tokyo, Japan ; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| |
Collapse
|
27
|
Zhao JY, Hu YW, Li SF, Hu YR, Ma X, Wu SG, Wang YC, Gao JJ, Sha YH, Zheng L, Wang Q. Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells. Lipids Health Dis 2014; 13:50. [PMID: 24642298 PMCID: PMC3999941 DOI: 10.1186/1476-511x-13-50] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/13/2014] [Indexed: 11/27/2022] Open
Abstract
Background Apolipoprotein M (apoM), as a novel apolipoprotein which is mainly expressed in liver and kidney tissues, is associated with development and progression of atherosclerosis and diabetes. Our group have recently shown that Dihydrocapsaicin(DHC)can significantly decrease atherosclerotic plaque formation in apoE−/− mice. However, the effect and possible mechanism of DHC on apoM expression remain unclear. Methods HepG2 cells were treated with 0 μM, 25 μM, 50 μM and 100 μM DHC for 24 h or were treated with 100 μM DHC for 0, 6, 12, and 24 h, respectively. The mRNA levels and protein levels were measured by real-time quantitative PCR and western blot analysis, respectively. Results We found that DHC markedly decreased expression of apoM at both mRNA and protein level in HepG2 cells in a dose-dependent and time-dependent manner. Expression of Foxa2 was decreased while expression of LXRα was increased by DHC treatment in HepG2 cells. In addittion, overexpression of Foxa2 markedly compensated the inhibition effect induced by DHC on apoM expression. LXRα small interfering RNA significantly abolished the inhibition effect which induced by DHC on apoM expression. The liver of C57BL/6 mice treated with DHC had significantly lower expression of apoM. Furthermore, the liver had lower expression of Foxa2 while had higher expression of LXRα. Conclusions DHC could down-regulate apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | | |
Collapse
|
28
|
Liu H, Choi JW, Yun JW. Gender differences in rat plasma proteome in response to high-fat diet. Proteomics 2011; 12:269-83. [DOI: 10.1002/pmic.201100127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/19/2011] [Accepted: 10/17/2011] [Indexed: 11/09/2022]
|
29
|
Wei J, Shi Y, Zhang X, Feng Y, Luo G, Zhang J, Mu Q, Tang Y, Yu Y, Pan L, Nilsson-Ehle P, Xu N. Estrogen upregulates hepatic apolipoprotein M expression via the estrogen receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:1146-1151. [PMID: 21816233 DOI: 10.1016/j.bbalip.2011.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022]
Abstract
Apolipoprotein M (apoM) is present predominantly in high-density lipoprotein (HDL) in human plasma, thus possibly involved in the regulation of HDL metabolism and the process of atherosclerosis. Although estrogen replacement therapy increases serum levels of apoAI and HDL, it does not seem to reduce the cardiovascular risk in postmenopausal women. Therefore, we investigated the effects of estrogen on apoM expression in vitro and in vivo. HepG2 cells were incubated with different concentrations of estrogen with or without the estrogen receptor antagonist, fulvestrant, and apoM expression in the cells was determined. Hepatic apoM expression and serum levels of apoM were also determined in normal and in ovariectomized rats treated with either placebo or estradiol benzoate, using sham operated rats as controls. Estrogen significantly increased mRNA levels of apoM and apoAI in HepG2 cell cultures in a dose- and time-dependent manner; the upregulation of both apolipoproteins was fully abolished by addition of estrogen receptor antagonist. In normal rats, estrogen treatment led to an increase in plasma lipid levels including HDL cholesterol, a marked upregulation of apoM mRNA and a significant increase in serum levels of apoM. The same pattern of regulation was found in ovariectomized rats treated with estrogen. Thus, estrogen upregulates apoM expression both in vivo and in vitro by mechanism(s) involving the estrogen receptor.
Collapse
Affiliation(s)
- Jiang Wei
- Third Affiliated Hospital of Suzhou University, Changzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Luo G, Zhang X, Mu Q, Chen L, Zheng L, Wei J, Berggren-Söderlund M, Nilsson-Ehle P, Xu N. Expression and localization of apolipoprotein M in human colorectal tissues. Lipids Health Dis 2010; 9:102. [PMID: 20846402 PMCID: PMC2945960 DOI: 10.1186/1476-511x-9-102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/16/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND It has been well documented that apolipoprotein M (apoM) is principally expressed in the liver and kidney. However we found that there was weak apoM expression in other tissues or organs too, which could not be ignored. In the present study, we therefore examined apoM expression in human colorectal tissues including cancer tissues, cancer adjacent normal tissues, polyp tissues and normal mucosa as well as inflammatory mucosa. METHODS Tissue samples were collected from patients who underwent surgical resection or endoscopic examination. ApoM mRNA levels were determined by the real-time RT-PCR and apoM protein mass were examined by the immunohistochemistry. RESULTS ApoM protein can be detected in all colorectal tissues. However, apoM protein mass were significantly lower in the cancer tissues than its matched adjacent normal tissues, polyp tissues, normal mucosa and inflammatory mucosa. In parallel, apoM mRNA levels in the colorectal cancer tissues (0.0536 ± 0.0131) were also significantly lower than those in their adjacent normal tissues (0.1907 ± 0.0563) (P = 0.033). Interestingly, apoM mRNA levels in colorectal cancer tissues were statistic significant higher in the patients with lymph node metastasis than the patients without lymph node metastasis (P = 0.008). Patients under Dukes' C and D stages had much higher apoM mRNA levels than patients under Dukes' A and B stages (P = 0.034). CONCLUSION It is concluded that apoM could also be expressed in human colorectal tissues besides liver and kidney. ApoM mRNA levels in the colorectal cancer tissues were significantly increased in the patients with lymph node metastasis. Whether increased apoM expression in the patients with lymph node metastasis being related to patients' prognosis and the physiopathological importance of apoM expression in colorectal tissues need further investigation.
Collapse
Affiliation(s)
- Guanghua Luo
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Xiaoying Zhang
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Qinfeng Mu
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Lujun Chen
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Jiang Wei
- Comprehensive Laboratory, Third Affiliated Hospital, Suzhou University, Changzhou 213003, China
| | - Maria Berggren-Söderlund
- Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - Peter Nilsson-Ehle
- Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - Ning Xu
- Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| |
Collapse
|
31
|
Mosialou I, Zannis VI, Kardassis D. Regulation of human apolipoprotein m gene expression by orphan and ligand-dependent nuclear receptors. J Biol Chem 2010; 285:30719-30. [PMID: 20660599 DOI: 10.1074/jbc.m110.131771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein M (apoM) plays an important role in the biogenesis and the metabolism of anti-atherogenic HDL particles in plasma and is expressed primarily in the liver and the kidney. We investigated the role of hormone nuclear receptors in apoM gene regulation in hepatic cells. Overexpression via adenovirus-mediated gene transfer and siRNA-mediated gene silencing established that hepatocyte nuclear factor 4 (HNF-4) is an important regulator of apoM gene transcription in hepatic cells. apoM promoter deletion analysis combined with DNA affinity precipitation and chromatin immunoprecipitation assays revealed that HNF-4 binds to a hormone-response element (HRE) in the proximal apoM promoter (nucleotides -33 to -21). Mutagenesis of this HRE decreased basal hepatic apoM promoter activity to 10% of control and abolished the HNF4-mediated transactivation of the apoM promoter. In addition to HNF-4, homodimers of retinoid X receptor and heterodimers of retinoid X receptor with receptors for retinoic acid, thyroid hormone, fibrates (peroxisome proliferator-activated receptor), and oxysterols (liver X receptor) were shown to bind with different affinities to the proximal HRE in vitro and in vivo. Ligands of these receptors strongly induced human apoM gene transcription and apoM promoter activity in HepG2 cells, whereas mutations in the proximal HRE abolished this induction. These findings provide novel insights into the role of apoM in the regulation of HDL by steroid hormones and into the development of novel HDL-based therapies for diseases such as diabetes, obesity, metabolic syndrome, and coronary artery disease that affect a large proportion of the population in Western countries.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion 71003, Greece
| | | | | |
Collapse
|
32
|
Chandrasekaran K, Swaminathan K, Chatterjee S, Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol In Vitro 2009; 24:387-96. [PMID: 19892008 DOI: 10.1016/j.tiv.2009.10.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/15/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Hyperglycemia which characterizes diabetes, leads to several abnormalities in the cellular pathways. We examined the toxicity of glucose in human hepatoma HepG2 cells. HepG2 cells when incubated with 50mM glucose for 72h showed altered morphology i.e. presence of detached and shrunken rounded cells. Glucose treated HepG2 cells also exhibited a significant decrease in viability. Caspase-3 activity and Annexin V staining were significantly increased in glucose treated HepG2 cells, suggesting an apoptotic mode of cell death. Glucose induced apoptosis in HepG2 cells was a consequence of increased oxidative stress as evidenced by the increased reactive oxygen species (ROS) level, lipid peroxidation, protein carbonyl and 3-nitrotyrosine adduct formation. The intracellular antioxidant glutathione was found to be increased in HepG2 cells treated with glucose, possibly to aid the cells to overcome the persistent oxidative stress elicited by glucose in HepG2 cells. N-Acetyl cysteine, a precursor of glutathione and an antioxidant was effective in reversing the morphological changes, increasing the viability, decreasing the ROS level and 4-hydroxynonenal and 3-nitrotyrosine adduct formation, thus validating the role of oxidative stress as a major mechanism for glucose induced apoptosis in HepG2 cells. These results suggest that glucose induces apoptosis in liver cells through increased oxidative stress.
Collapse
Affiliation(s)
- Karthikeyan Chandrasekaran
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600 044, India
| | | | | | | |
Collapse
|
33
|
Plomgaard P, Dullaart RPF, de Vries R, Groen AK, Dahlbäck B, Nielsen LB. Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J Intern Med 2009; 266:258-67. [PMID: 19457058 DOI: 10.1111/j.1365-2796.2009.02095.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Studies in mice suggest that plasma apoM is lowered in hyperinsulinaemic diabetes and that apoM stimulates formation of pre-beta-HDL. Pre-beta-HDL is an acceptor of cellular cholesterol and may be critical for reverse cholesterol transport. Herein, we examined whether patients with type 2 diabetes have reduced plasma apoM and whether apoM is associated with pre-beta-HDL formation and cellular cholesterol efflux. DESIGN In 78 patients with type 2 diabetes and 89 control subjects, we measured plasma apoM with ELISA, pre-beta-HDL and pre-beta-HDL formation, phospholipid transfer protein (PLTP) activity and the ability of plasma to promote cholesterol efflux from cultured fibroblasts. RESULTS ApoM was approximately 9% lower in patients with type 2 diabetes compared to controls (0.025 +/- 0.006 vs. 0.027 +/- 0.007 g L(-1), P = 0.01). The difference in apoM was largely attributable to diabetes-associated obesity. ApoM was positively related to both HDL (r = 0.16; P = 0.04) and LDL cholesterol (r = 0.28; P = 0.0003). Pre-beta-HDL and pre-beta-HDL formation were not different between diabetic and control subjects. ApoM predicted pre-beta-HDL (r = 0.16; P = 0.04) and pre-beta-HDL formation (r = 0.19; P = 0.02), even independently of positive relationships with apoA-I, HDL-cholesterol and PLTP activity. Cellular cholesterol efflux to plasma was positively related to pre-beta-HDL and PLTP activity but not significantly to apoM. CONCLUSIONS Plasma apoM is modestly reduced in type 2 diabetes. Pre-beta-HDL and pre-beta-HDL formation are positively associated with apoM, supporting the hypothesis that apoM plays a role in HDL remodelling in humans. Lower apoM may provide a mechanism to explain why pre-beta-HDL formation is not increased in type 2 diabetes despite elevated PLTP activity.
Collapse
Affiliation(s)
- P Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Dullaart RP, Plomgaard P, de Vries R, Dahlbäck B, Nielsen LB. Plasma apolipoprotein M is reduced in metabolic syndrome but does not predict intima media thickness. Clin Chim Acta 2009; 406:129-33. [DOI: 10.1016/j.cca.2009.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/18/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
|
35
|
Nielsen LB, Christoffersen C, Ahnström J, Dahlbäck B. ApoM: gene regulation and effects on HDL metabolism. Trends Endocrinol Metab 2009; 20:66-71. [PMID: 19200746 DOI: 10.1016/j.tem.2008.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 01/21/2023]
Abstract
The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid and glucose metabolism. Although the concentration of plasma apoM correlates with that of cholesterol, apoM was not identified as a risk factor for cardiovascular disease in two prospective studies. In genetically modified mice, however, changes in plasma apoM concentration caused quantitative and qualitative changes in HDLs, and overexpression of the apoM gene reduced atherosclerosis. In conclusion, it seems that apoM plays a part in lipoprotein metabolism; however, the biological impact of apoM in humans remains to be determined.
Collapse
Affiliation(s)
- Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK 2100, Denmark.
| | | | | | | |
Collapse
|
36
|
Wu X, Niu N, Brismar K, Zhu X, Wang X, Efendic S, Du T, Liu Y, Gu HF, Liu Y. Apolipoprotein M promoter polymorphisms alter promoter activity and confer the susceptibility to the development of type 1 diabetes. Clin Biochem 2008; 42:17-21. [PMID: 19007767 DOI: 10.1016/j.clinbiochem.2008.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/10/2008] [Accepted: 10/11/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Apolipoprotein M plays an important role in the formation of prebeta-HDL and cholesterol efflux to HDL. In the present study, we investigate the potential association between the ApoM promoter polymorphisms and type 1 diabetes. DESIGN AND METHODS The study was conducted in Peking Union Medical College, Beijing, China and Karolinska Institutet, Stockholm, Sweden. Two populations, including 493 Han Chinese subjects (177 T1D patients/316 controls) and 225 Swedish (124/101), are enrolled in the present study. Three single nucleotide polymorphisms (SNP) C-1065A, T-855C and T-778C in the promoter region of the ApoM gene are genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol. Promoter activity was measured by reporter gene assay. RESULTS SNP T-778C was strongly associated with T1D in both Han Chinese (p=0.002, OR=2.188, CI 95%=1.338-3.581) and Swedish (p=0.021, OR=2.865, CI 95%=1.128-7.278) populations. The luciferase activity of -778C promoter was 1.41 times as high as that of -778T promoter (9.90+/-1.92 vs. 7.04+/-0.76, p=0.001). CONCLUSIONS Allele C of SNP T-778C may increase promoter activity and confer the risk susceptibility to the development of T1D.
Collapse
Affiliation(s)
- Xiaopan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dongdan 3 Tiao, Beijing 100005, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Skupien J, Kepka G, Gorczynska-Kosiorz S, Gebska A, Klupa T, Wanic K, Nowak N, Borowiec M, Sieradzki J, Malecki MT. Evaluation of Apolipoprotein M Serum Concentration as a Biomarker of HNF-1alpha MODY. Rev Diabet Stud 2008; 4:231-5. [PMID: 18338076 DOI: 10.1900/rds.2007.4.231] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Apolipoprotein M (apoM) is a 26-kDa protein expressed mainly in the liver and kidneys. It is present predominantly in high-density lipoproteins (HDL). ApoM expression is influenced by the hepatocyte nuclear factor-1alpha (HNF-1alpha), which is a transcription factor associated with the pathogenesis of MODY. Some earlier data suggested that apoM levels were lower in the serum of HNF-1alpha MODY subjects, than in that of other diabetics and healthy controls. The aim of this study was to evaluate apoM as a biomarker for HNF-1alpha MODY. We included in this study 48 HNF-1alpha mutation carriers (40 diabetic patients and 8 subjects with normal glucose levels in the fasted state) from the Polish Nationwide Registry of MODY. In addition, we examined 55 T2DM patients and 55 apparently healthy volunteers who had normal fasting glucose levels. ApoM was measured by the sandwich dot-blot technique with recombinant apoM (Abnova) as a protein standard, mouse anti-human apoM monoclonal primary antibody and rat anti-mouse HRP-conjugated secondary antibody (BD Biosciences). Mean apoM level in the MODY group was 13.6 mug/ml, SD 1.9 (13.5 mug/ml, SD 1.7 in diabetic subjects and 13.9 mug/ml, SD 2.0 in non-diabetic mutation carriers respectively). In the T2DM group, mean apoM level was 13.7 mug/ml, SD 2.1, while it reached 13.8 mug/ml, SD 2.0 in healthy controls. There was no difference between apoM serum concentrations in all the study groups. In summary, our study showed no association between HNF-1alpha mutations resulting in MODY phenotype and apoM levels. Thus, we cannot confirm the clinical usefulness of apoM as a biomarker of HNF-1alpha MODY.
Collapse
Affiliation(s)
- Jan Skupien
- Department and Chair of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|