1
|
Yu Z, Wang R, Xiang F, Zhang X, Yu S, Wang X. Clinical features and genotype in COQ4 associated hereditary spastic paraplegia: a case report and a literature reanalysis. Neurol Sci 2025; 46:2223-2228. [PMID: 39776381 DOI: 10.1007/s10072-024-07971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP). METHODS We reported a case of HSP with COQ4 variants, and a literature reanalysis was performed. RESULTS Three studies with a total of 1309 patients with HSP of unknown cause were included, and 13 (1%) patients were found to have biallelic COQ4 variants. Seven patients fulfilled pure HSP, and six patients fulfilled complicated HSP. The median age of these patients was 24 years (range 15 to 65 years), and the median year of disease onset was 14 years (range 1 to 55 years). The most common clinical manifestations were lower limb spasticity (100%), hyperreflexia (100%), Babinski sign (77%), reduced muscle strength (53.8%) cerebellar ataxia (23.1%), seizures (23.1%) and dysarthria (23.1%). Including our case, 16 different variants located in exon 2, exon 4, exon 5, exon 6, exon 7 and two introns of the COQ4 gene have been identified in patients with HSP. All started CoQ10 supplementation, but follow-up was reported in only one patient. CONCLUSION COQ4 variants were associated with childhood, adolescent, and adult onset HSP, which has a relatively mild course. The efficiency of CoQ10 supplement in patients with COQ4 associated HSP need to be classified in the future study.
Collapse
Affiliation(s)
- Zhe Yu
- Chinese PLA General Hospital, Beijing, China
| | | | - Feng Xiang
- Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Chinese PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Feng X, Guo M, Li J, Shen Z, Mo F, Tian Y, Wang B, Wang C. The structural characterization of a novel Chinese yam polysaccharide and its hypolipidemic activity in HFD-induced obese C57BL/6J mice. Int J Biol Macromol 2024; 265:130521. [PMID: 38553396 DOI: 10.1016/j.ijbiomac.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 → 2, 6, 1 → 4, 1 → 4, 6, 1→, or 1 → 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.
Collapse
Affiliation(s)
- Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Mingzhu Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Zhanyu Shen
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Fanghua Mo
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Tian
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Binghui Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
4
|
Sonuç Kartal G, Koç Yekedüz M, Köse E, Eminoğlu FT. Two Turkish patients with Primary Coenzyme Q10 Deficiency-7: case report and literature review. J Pediatr Endocrinol Metab 2024; 37:260-270. [PMID: 38353291 DOI: 10.1515/jpem-2023-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Primary Coenzyme Q10 Deficiency-7 (OMIM 616276) results from bi-allelic pathogenic variants in the COQ4 gene. Common clinical findings include hypotonia, seizures, respiratory distress, and cardiomyopathy. In this report, we present two patients diagnosed with Primary Coenzyme Q10 Deficiency-7 along with a review of previously published cases, with the aim being to provide a better understanding of the clinical and laboratory manifestations of the disease. CASE PRESENTATION A 3-month-and-22-day-old male was admitted to our outpatient clinic due to poor feeding and restlessness. He was born following an uneventful pregnancy to a nonconsanguineous marriage. A physical examination revealed hypotonia, a dolichocephaly, periorbital edema, and long eyelashes. Blood tests revealed metabolic acidosis and elevated serum lactate levels, while the genetic analysis revealed a variant previously reported as pathogenic, c.437T>G (p.Phe146Cys), in the COQ4 gene. Genetic tests were also conducted on both mother and father, and it revealed heterozygous variant, 0.437T>G (p.Phe146Cys), in the COQ4 gene. As a result of these findings, the patient was diagnosed with neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome (Primary Coenzyme Q10 Deficiency-7). A 1-year-old male was admitted to our clinic with complaints of hypotonia, seizures, and feeding difficulties. He was born following an uneventful pregnancy to a nonconsanguineous marriage. On his first day of life, he was admitted to the neonatal intensive care unit due to poor feeding and hypotonia. A physical examination revealed microcephaly, a high palate, poor feeding, weak crying, hypotonia, bilateral horizontal nystagmus, and inability to maintain eye contact. Laboratory findings were within normal limits, while a whole exome sequencing analysis revealed a homozygous variant previously reported as pathogenic, c.458C>T (p.A153V), in the COQ4 gene. The patient was diagnosed with Primary Coenzyme Q10 Deficiency-7. CONCLUSIONS Primary Coenzyme Q10 Deficiency-7 should be considered in the differential diagnosis of infants presenting with neurological and dysmorphic manifestations.
Collapse
Affiliation(s)
| | - Merve Koç Yekedüz
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
5
|
Pelosi L, Morbiato L, Burgardt A, Tonello F, Bartlett AK, Guerra RM, Ferizhendi KK, Desbats MA, Rascalou B, Marchi M, Vázquez-Fonseca L, Agosto C, Zanotti G, Roger-Margueritat M, Alcázar-Fabra M, García-Corzo L, Sánchez-Cuesta A, Navas P, Brea-Calvo G, Trevisson E, Wendisch VF, Pagliarini DJ, Salviati L, Pierrel F. COQ4 is required for the oxidative decarboxylation of the C1 carbon of coenzyme Q in eukaryotic cells. Mol Cell 2024; 84:981-989.e7. [PMID: 38295803 PMCID: PMC7616408 DOI: 10.1016/j.molcel.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 03/10/2024]
Abstract
Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.
Collapse
Affiliation(s)
- Ludovic Pelosi
- Université Grenoble Alpes, CNRS UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Laura Morbiato
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | | - Abigail K Bartlett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Bérengère Rascalou
- Université Grenoble Alpes, CNRS UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marco Marchi
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Luis Vázquez-Fonseca
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Caterina Agosto
- Pediatric Pain and Palliative Care Unit, Department of Women and Children's Health, University Hospital of Padova, 35128 Padova, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padua, Italy
| | | | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, 35128 Padova, Italy; Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padua, Padua 35131, Italy.
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
6
|
Nicoll CR, Alvigini L, Gottinger A, Cecchini D, Mannucci B, Corana F, Mascotti ML, Mattevi A. In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis. Nat Catal 2024; 7:148-160. [PMID: 38425362 PMCID: PMC7615680 DOI: 10.1038/s41929-023-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.
Collapse
Affiliation(s)
- Callum R. Nicoll
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Alvigini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Andrea Gottinger
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Domiziana Cecchini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | | | - Federica Corana
- ’Centro Grandi Strumenti’, University of Pavia, Pavia, Italy
| | - María Laura Mascotti
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Pelosi L, Morbiato L, Burgardt A, Tonello F, Bartlett AK, Guerra RM, Ferizhendi KK, Desbats MA, Rascalou B, Marchi M, Vázquez-Fonseca L, Agosto C, Zanotti G, Roger-Margueritat M, Alcázar-Fabra M, García-Corzo L, Sánchez-Cuesta A, Navas P, Brea-Calvo G, Trevisson E, Wendisch VF, Pagliarini DJ, Salviati L, Pierrel F. COQ4 is required for the oxidative decarboxylation of the C1 carbon of Coenzyme Q in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566839. [PMID: 38014142 PMCID: PMC10680789 DOI: 10.1101/2023.11.13.566839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role, but also via oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis, and shed new light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.
Collapse
Affiliation(s)
- Ludovic Pelosi
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Laura Morbiato
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | | - Abigail K. Bartlett
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M. Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Bérengère Rascalou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marco Marchi
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Luis Vázquez-Fonseca
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Caterina Agosto
- Pediatric Pain and Palliative Care Unit, Department of Women and Children’s Health, University Hospital of Padova, 35128, Padova, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padua, Italy
| | | | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padua, Padua 35131, Italy
- Lead contact
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
8
|
Kohler A, Barrientos A, Fontanesi F, Ott M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep 2023; 24:e57092. [PMID: 37828827 PMCID: PMC10626428 DOI: 10.15252/embr.202357092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Antoni Barrientos
- Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Neuroimaging in Primary Coenzyme-Q10-Deficiency Disorders. Antioxidants (Basel) 2023; 12:antiox12030718. [PMID: 36978966 PMCID: PMC10045115 DOI: 10.3390/antiox12030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesized lipid molecule. It is best known for its role as a cofactor within the mitochondrial respiratory chain where it functions in electron transfer and ATP synthesis. However, there are many other cellular pathways that also depend on the CoQ10 supply (redox homeostasis, ferroptosis and sulfide oxidation). The CoQ10 biosynthesis pathway consists of several enzymes, which are encoded by the nuclear DNA. The majority of these enzymes are responsible for modifications of the CoQ-head group (benzoquinone ring). Only three enzymes (PDSS1, PDSS2 and COQ2) are required for assembly and attachment of the polyisoprenoid side chain. The head-modifying enzymes may assemble into resolvable domains, representing COQ complexes. During the last two decades, numerous inborn errors in CoQ10 biosynthesis enzymes have been identified. Thus far, 11 disease genes are known (PDSS1, PDSS2, COQ2, COQ4, COQ5, COQ6, COQ7, COQ8A, COQ8B, COQ9 and HPDL). Disease onset is highly variable and ranges from the neonatal period to late adulthood. CoQ10 deficiency exerts detrimental effects on the nervous system. Potential consequences are neuronal death, neuroinflammation and cerebral gliosis. Clinical features include encephalopathy, regression, movement disorders, epilepsy and intellectual disability. Brain magnetic resonance imaging (MRI) is the most important tool for diagnostic evaluation of neurological damage in individuals with CoQ10 deficiency. However, due to the rarity of the different gene defects, information on disease manifestations within the central nervous system is scarce. This review aims to provide an overview of brain MRI patterns observed in primary CoQ10 biosynthesis disorders and to highlight disease-specific findings.
Collapse
|
10
|
Wang S, Jain A, Novales NA, Nashner AN, Tran F, Clarke CF. Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes. Antioxidants (Basel) 2022; 11:antiox11122308. [PMID: 36552517 PMCID: PMC9774615 DOI: 10.3390/antiox11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.
Collapse
|
11
|
Manicki M, Aydin H, Abriata LA, Overmyer KA, Guerra RM, Coon JJ, Dal Peraro M, Frost A, Pagliarini DJ. Structure and functionality of a multimeric human COQ7:COQ9 complex. Mol Cell 2022; 82:4307-4323.e10. [PMID: 36306796 PMCID: PMC10058641 DOI: 10.1016/j.molcel.2022.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.
Collapse
Affiliation(s)
- Mateusz Manicki
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Halil Aydin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53562, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53506, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub and Altos Labs Bay Area Institute of Science, San Francisco, CA, USA.
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Xu JJ, Hu M, Yang L, Chen XY. How plants synthesize coenzyme Q. PLANT COMMUNICATIONS 2022; 3:100341. [PMID: 35614856 PMCID: PMC9483114 DOI: 10.1016/j.xplc.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monooxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Mei Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Laugwitz L, Seibt A, Herebian D, Peralta S, Kienzle I, Buchert R, Falb R, Gauck D, Müller A, Grimmel M, Beck-Woedel S, Kern J, Daliri K, Katibeh P, Danhauser K, Leiz S, Alesi V, Baertling F, Vasco G, Steinfeld R, Wagner M, Caglayan AO, Gumus H, Burmeister M, Mayatepek E, Martinelli D, Tamhankar PM, Tamhankar V, Joset P, Steindl K, Rauch A, Bonnen PE, Froukh T, Groeschel S, Krägeloh-Mann I, Haack TB, Distelmaier F. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet 2022; 59:878-887. [PMID: 34656997 PMCID: PMC9807242 DOI: 10.1136/jmedgenet-2021-107729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Imke Kienzle
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Woedel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Karim Daliri
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran,Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Pegah Katibeh
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katharina Danhauser
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Steffen Leiz
- Pediatric Neurology, Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Fabian Baertling
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gessica Vasco
- Department of Neuroscience and Neurorehabilitation, Unit of Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Matias Wagner
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Ahmet Okay Caglayan
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hakan Gumus
- Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | | | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, 4056 Basel, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Penelope E Bonnen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Center for Rare Disease, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Mechanisms and Therapeutic Effects of Benzoquinone Ring Analogs in Primary CoQ Deficiencies. Antioxidants (Basel) 2022; 11:antiox11040665. [PMID: 35453349 PMCID: PMC9029335 DOI: 10.3390/antiox11040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a conserved polyprenylated lipid composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. CoQ biosynthesis involves multiple steps, including multiple modifications of the precursor ring 4-hydroxybenzoic acid. Mutations in the enzymes involved in CoQ biosynthesis pathway result in primary coenzyme Q deficiencies, mitochondrial disorders whose clinical heterogenicity reflects the multiple biological function of CoQ. Patients with these disorders do not always respond to CoQ supplementation, and CoQ analogs have not been successful as alternative approaches. Progress made in understanding the CoQ biosynthesis pathway and studies of supplementation with 4-hydroxybenzoic acid ring analogs have opened a new area in the field of primary CoQ deficiencies treatment. Here, we will review these studies, focusing on efficacy of the different 4-hydroxybenzoic acid ring analogs, models in which they have been tested, and their mechanisms of action. Understanding how these compounds ameliorate biochemical, molecular, and/or clinical phenotypes of CoQ deficiencies is important to develop the most rational treatment for CoQ deficient patients, depending on their molecular defects.
Collapse
|
15
|
Xie J, Jiang J, Guo Q. Primary Coenzyme Q10 Deficiency-7 and Pathogenic COQ4 Variants: Clinical Presentation, Biochemical Analyses, and Treatment. Front Genet 2022; 12:776807. [PMID: 35154243 PMCID: PMC8826242 DOI: 10.3389/fgene.2021.776807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary Coenzyme Q10 Deficiency-7 (COQ10D7) is a rare mitochondrial disorder caused by pathogenic COQ4 variants. In this review, we discuss the correlation of COQ4 genotypes, particularly the East Asian-specific c.370G > A variant, with the clinical presentations and therapeutic effectiveness of coenzyme Q10 supplementation from an exon-dependent perspective. Pathogenic COQ4 variants in exons 1–4 are associated with less life-threating presentations, late onset, responsiveness to CoQ10 therapy, and a relatively long lifespan. In contrast, pathogenic COQ4 variants in exons 5–7 are associated with early onset, unresponsiveness to CoQ10 therapy, and early death and are more fatal. Patients with the East Asian-specific c.370G > A variant displays intermediate disease severity with multi-systemic dysfunction, which is between that of the patients with variants in exons 1–4 and 5–7. The mechanism underlying this exon-dependent genotype-phenotype correlation may be associated with the structure and function of COQ4. Sex is shown unlikely to be associated with disease severity. While point-of-care high-throughput sequencing would be useful for the rapid diagnosis of pathogenic COQ4 variants, whereas biochemical analyses of the characteristic impairments in CoQ10 biosynthesis and mitochondrial respiratory chain activity, as well as the phenotypic rescue of the CoQ10 treatment, are necessary to confirm the pathogenicity of suspicious variants. In addition to CoQ10 derivatives, targeted drugs and gene therapy could be useful treatments for COQ10D7 depending on the in-depth functional investigations and the development of gene editing technologies. This review provides a fundamental reference for the sub-classification of COQ10D7 and aim to advance our knowledge of the pathogenesis, clinical diagnosis, and prognosis of this disease and possible interventions.
Collapse
Affiliation(s)
- Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Jiayang Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,School of Medicine, Huaqiao University, Quanzhou, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Xia Y, Zhou X, Liang L, Liu X, Li H, Xiong Z, Wang G, Song X, Ai L. Genetic evidence for the requirements of antroquinonol biosynthesis by Antrodia camphorata during liquid-state fermentation. J Ind Microbiol Biotechnol 2021; 49:6428402. [PMID: 34791342 PMCID: PMC9113095 DOI: 10.1093/jimb/kuab086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022]
Abstract
The solid-state fermentation of Antrodia camphorata could produce a variety of ubiquinone compounds, such as antroquinonol (AQ). However, AQ is hardly synthesized during liquid-state fermentation (LSF). To investigates the mechanism of AQ synthesis, three precursors (ubiquinone 0 UQ0, farnesol and farnesyl diphosphate FPP) were added in LSF. The results showed that UQ0 successfully induced AQ production; however, farnesol and FPP could not induce AQ synthesis. The precursor that restricts the synthesis of AQ is the quinone ring, not the isoprene side chain. Then, the Agrobacterium-mediated transformation system of A. camphorata was established and the genes for quinone ring modification (coq2-6) and isoprene synthesis (HMGR, fps) were overexpressed. The results showed that overexpression of genes for isoprene side chain synthesis could not increase the yield of AQ, but overexpression of coq2 and coq5 could significantly increase AQ production. This is consistent with the results of the experiment of precursors. It indicated that the A. camphorata lack the ability to modify the quinone ring of AQ during LSF. Of the modification steps, prenylation of UQ0 is the key step of AQ biosynthesis. The result will help us to understand the genetic evidence for the requirements of AQ biosynthesis in A. camphorata.
Collapse
Affiliation(s)
- Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuan Zhou
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lihong Liang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Li
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
17
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
18
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
19
|
Gonzalez-Franquesa A, Stocks B, Chubanava S, Hattel HB, Moreno-Justicia R, Peijs L, Treebak JT, Zierath JR, Deshmukh AS. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep 2021; 35:109180. [PMID: 34038727 DOI: 10.1016/j.celrep.2021.109180] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Helle B Hattel
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
20
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
21
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
22
|
Mero S, Salviati L, Leuzzi V, Rubegni A, Calderan C, Nardecchia F, Galatolo D, Desbats MA, Naef V, Gemignani F, Novelli M, Tessa A, Battini R, Santorelli FM, Marchese M. New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ 10 deficiency in muscle or skin fibroblasts. J Neurol 2021; 268:3381-3389. [PMID: 33704555 DOI: 10.1007/s00415-021-10509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
COQ4 is a component of an enzyme complex involved in the biosynthesis of coenzyme Q10 (CoQ10), a molecule with primary importance in cell metabolism. Mutations in the COQ4 gene are responsible for mitochondrial diseases showing heterogeneous age at onset, clinical presentations and association with CoQ10 deficiency. We herein expand the phenotypic and genetic spectrum of COQ4-related diseases, by reporting two patients harboring bi-allelic variants but not showing CoQ10 deficiency. One patient was found to harbor compound heterozygous mutations (specifically, c.577C>T/p.Pro193Ser and the previously reported c.718C>T/p.Arg240Cys) associated with progressive spasticity, while the other harbored two novel missense (c.284G>A/p.Gly95Asp and c.305G>A/p.Arg102His) associated with a neurodevelopmental disorder. Both patients presented motor impairment and ataxia. To further understand the role of COQ4, we performed functional studies in patient-derived fibroblasts, yeast and "crispant" zebrafish larvae. Micro-oxygraphy showed impaired oxygen consumption rates in one patient, while yeast complementation assays showed that all the mutations were presumably disease related. Moreover, characterization of the coq4 F0 CRISPR zebrafish line showed motor defects and cell reduction in a specific area of the hindbrain, a region reminiscent of the human cerebellum. Our expanded phenotype associated with COQ4 mutations allowed us to investigate, for the first time, the role of COQ4 in brain development in vivo.
Collapse
Affiliation(s)
- Serena Mero
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Vincenzo Leuzzi
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Calderan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Francesca Nardecchia
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | | | | | - Maria Novelli
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
24
|
Gueguen N, Baris O, Lenaers G, Reynier P, Spinazzi M. Secondary coenzyme Q deficiency in neurological disorders. Free Radic Biol Med 2021; 165:203-218. [PMID: 33450382 DOI: 10.1016/j.freeradbiomed.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is a ubiquitous lipid serving essential cellular functions. It is the only component of the mitochondrial respiratory chain that can be exogenously absorbed. Here, we provide an overview of current knowledge, controversies, and open questions about CoQ intracellular and tissue distribution, in particular in brain and skeletal muscle. We discuss human neurological diseases and mouse models associated with secondary CoQ deficiency in these tissues and highlight pharmacokinetic and anatomical challenges in exogenous CoQ biodistribution, recent improvements in CoQ formulations and imaging, as well as alternative therapeutical strategies to CoQ supplementation. The last section proposes possible mechanisms underlying secondary CoQ deficiency in human diseases with emphasis on neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Naig Gueguen
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Olivier Baris
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Marco Spinazzi
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Neuromuscular Reference Center, Department of Neurology, CHU Angers, 49933, Angers, France.
| |
Collapse
|
25
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
26
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
27
|
Berenguel Hernández AM, de la Cruz M, Alcázar-Fabra M, Prieto-Rodríguez A, Sánchez-Cuesta A, Martin J, Tormo JR, Rodríguez-Aguilera JC, Cortés-Rodríguez AB, Navas P, Reyes F, Vicente F, Genilloud O, Santos-Ocaña C. Design of High-Throughput Screening of Natural Extracts to Identify Molecules Bypassing Primary Coenzyme Q Deficiency in Saccharomyces cerevisiae. SLAS DISCOVERY 2019; 25:299-309. [PMID: 31751168 DOI: 10.1177/2472555219877185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coenzyme Q10 (CoQ10) deficiency syndrome is a rare disease included in the family of mitochondrial diseases, which is a heterogeneous group of genetic disorders characterized by defective energy production. CoQ10 biosynthesis in humans requires at least 11 gene products acting in a multiprotein complex within mitochondria. The high-throughput screening (HTS) method based on the stabilization of the CoQ biosynthesis complex (Q-synthome) produced by the COQ8 gene overexpression is proven here to be a successful method for identifying new molecules from natural extracts that are able to bypass the CoQ6 deficiency in yeast mutant cells. The main features of the new approach are the combination of two yeast targets defective in genes with different functions on CoQ6 biosynthesis to secure the versatility of the molecule identified, the use of glycerol as a nonfermentable carbon source providing a wide growth window, and the stringent conditions required to mark an extract as positive. The application of this pilot approach to a representative subset of 1200 samples of the Library of Natural Products of Fundación MEDINA resulted in the finding of nine positive extracts. The fractionation of three of the nine extracts allowed the identification of five molecules; two of them are present in molecule databases of natural extracts and three are nondescribed molecules. The use of this screening method opens the possibility of discovering molecules with CoQ10-bypassing action useful as therapeutic agents to fight against mitochondrial diseases in human patients.
Collapse
Affiliation(s)
| | | | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
29
|
Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking COQ6. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3904905. [PMID: 31379988 PMCID: PMC6652073 DOI: 10.1155/2019/3904905] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/30/2019] [Accepted: 05/26/2019] [Indexed: 11/18/2022]
Abstract
Coenzyme Q (CoQ), a redox-active lipid, is comprised of a quinone group and a polyisoprenoid tail. It is an electron carrier in the mitochondrial respiratory chain, a cofactor of other mitochondrial dehydrogenases, and an essential antioxidant. CoQ requires a large set of enzymes for its biosynthesis; mutations in genes encoding these proteins cause primary CoQ deficiency, a clinically and genetically heterogeneous group of diseases. Patients with CoQ deficiency often respond to oral CoQ10 supplementation. Treatment is however problematic because of the low bioavailability of CoQ10 and the poor tissue delivery. In recent years, bypass therapy using analogues of the precursor of the aromatic ring of CoQ has been proposed as a promising alternative. We have previously shown using a yeast model that vanillic acid (VA) can bypass mutations of COQ6, a monooxygenase required for the hydroxylation of the C5 carbon of the ring. In this work, we have generated a human cell line lacking functional COQ6 using CRISPR/Cas9 technology. We show that these cells cannot synthesize CoQ and display severe ATP deficiency. Treatment with VA can recover CoQ biosynthesis and ATP production. Moreover, these cells display increased ROS production, which is only partially corrected by exogenous CoQ, while VA restores ROS to normal levels. Furthermore, we show that these cells accumulate 3-decaprenyl-1,4-benzoquinone, suggesting that in mammals, the decarboxylation and C1 hydroxylation reactions occur before or independently of the C5 hydroxylation. Finally, we show that COQ6 isoform c (transcript NM_182480) does not encode an active enzyme. VA can be produced in the liver by the oxidation of vanillin, a nontoxic compound commonly used as a food additive, and crosses the blood-brain barrier. These characteristics make it a promising compound for the treatment of patients with CoQ deficiency due to COQ6 mutations.
Collapse
|
30
|
Lu M, Zhou Y, Wang Z, Xia Z, Ren J, Guo Q. Clinical phenotype, in silico and biomedical analyses, and intervention for an East Asian population-specific c.370G>A (p.G124S) COQ4 mutation in a Chinese family with CoQ10 deficiency-associated Leigh syndrome. J Hum Genet 2019; 64:297-304. [PMID: 30659264 DOI: 10.1038/s10038-019-0563-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
COQ4 mutations have recently been shown to cause a broad spectrum of mitochondrial disorders in association with CoQ10 deficiency. Herein, we report the clinical phenotype, in silico and biochemical analyses, and intervention for a novel c.370 G > A (p.G124S) COQ4 mutation in a Chinese family. This mutation is exclusively present in the East Asian population (allele frequency of ~0.001). The homozygous mutation caused CoQ10 deficiency-associated Leigh syndrome with an onset at 1-2 months of age, presenting as respiratory distress, lactic acidosis, dystonia, seizures, failure to thrive, and detectable lesions in the midbrain and basal ganglia. No renal impairment was involved. The levels of CoQ10 and mitochondrial respiratory chain complex (C) II + III activity were clearly lower in cultured fibroblasts derived from the patient than in those from unaffected carriers; the decreased CII + III activity could be increased by CoQ10 treatment. Follow-up studies suggested that our patient benefitted from the oral supplementation of CoQ10, which allowed her to maintain a relatively stable health status. Based on the genetic testing, preimplantation and prenatal diagnoses were performed, confirming that the next offspring of this family was unaffected. Our cases expand the phenotypic spectrum of COQ4 mutations and the genotypic spectrum of Leigh syndrome.
Collapse
Affiliation(s)
- Mei Lu
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China
- Department of Pediatrics, Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China
| | - Zengge Wang
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China
| | - Jun Ren
- Department of Dermatology, Zhongshan Hospital Xiamen University, Xiamen, Fujian, 361003, China.
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University & Xiamen Maternal and Child Health Hospital, Xiamen, Fujian, 361003, China.
| |
Collapse
|
31
|
Subramanian K, Jochem A, Le Vasseur M, Lewis S, Paulson BR, Reddy TR, Russell JD, Coon JJ, Pagliarini DJ, Nunnari J. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J Cell Biol 2019; 218:1353-1369. [PMID: 30674579 PMCID: PMC6446851 DOI: 10.1083/jcb.201808044] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.
Collapse
Affiliation(s)
- Kelly Subramanian
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI
| | - Maxence Le Vasseur
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Samantha Lewis
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | | | | | - Jason D Russell
- Morgridge Institute for Research, Madison, WI
- Genome Center of Wisconsin, Madison, WI
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Genome Center of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
32
|
Eisenberg-Bord M, Tsui HS, Antunes D, Fernández-Del-Río L, Bradley MC, Dunn CD, Nguyen TPT, Rapaport D, Clarke CF, Schuldiner M. The Endoplasmic Reticulum-Mitochondria Encounter Structure Complex Coordinates Coenzyme Q Biosynthesis. ACTA ACUST UNITED AC 2019; 2:2515256418825409. [PMID: 30937424 PMCID: PMC6441334 DOI: 10.1177/2515256418825409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Loss of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) complex that resides in contact sites between the yeast ER and mitochondria leads to impaired respiration; however, the reason for that is not clear. We find that in ERMES null mutants, there is an increase in the level of mRNAs encoding for biosynthetic enzymes of coenzyme Q6 (CoQ6), an essential electron carrier of the mitochondrial respiratory chain. We show that the mega complexes involved in CoQ6 biosynthesis (CoQ synthomes) are destabilized in ERMES mutants. This, in turn, affects the level and distribution of CoQ6 within the cell, resulting in reduced mitochondrial CoQ6. We suggest that these outcomes contribute to the reduced respiration observed in ERMES mutants. Fluorescence microscopy experiments demonstrate close proximity between the CoQ synthome and ERMES, suggesting a spatial coordination. The involvement of the ER-mitochondria contact site in regulation of CoQ6 biogenesis highlights an additional level of communication between these two organelles.
Collapse
Affiliation(s)
| | - Hui S Tsui
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Diana Antunes
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Hajj Chehade M, Pelosi L, Fyfe CD, Loiseau L, Rascalou B, Brugière S, Kazemzadeh K, Vo CDT, Ciccone L, Aussel L, Couté Y, Fontecave M, Barras F, Lombard M, Pierrel F. A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chem Biol 2019; 26:482-492.e7. [PMID: 30686758 DOI: 10.1016/j.chembiol.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.
Collapse
Affiliation(s)
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Cameron David Fyfe
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Laurent Loiseau
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France
| | - Bérengère Rascalou
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Sabine Brugière
- Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | | | - Chau-Duy-Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Lidia Ciccone
- SOLEIL Synchrotron, L'Orme des Merisiers, 91198 Gif-sur-Yvette, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Frédéric Barras
- Aix Marseille Université, CNRS, Laboratoire Chimie Bactérienne, Institut Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, Marseille 13009, France; SAMe Unit, Department de Microbiologie, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, PSL Research University, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France.
| |
Collapse
|
34
|
Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018; 62:377-398. [DOI: 10.1042/ebc20170107] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
Primary Coenzyme Q deficiencies represent a group of rare conditions caused by mutations in one of the genes required in its biosynthetic pathway at the enzymatic or regulatory level. The associated clinical manifestations are highly heterogeneous and mainly affect central and peripheral nervous system, kidney, skeletal muscle and heart. Genotype–phenotype correlations are difficult to establish, mainly because of the reduced number of patients and the large variety of symptoms. In addition, mutations in the same COQ gene can cause different clinical pictures. Here, we present an updated and comprehensive review of the clinical manifestations associated with each of the pathogenic variants causing primary CoQ deficiencies.
Collapse
|
35
|
Coenzyme Q 10 deficiencies: pathways in yeast and humans. Essays Biochem 2018; 62:361-376. [PMID: 29980630 PMCID: PMC6056717 DOI: 10.1042/ebc20170106] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Coenzyme Q (ubiquinone or CoQ) is an essential lipid that plays a role in mitochondrial respiratory electron transport and serves as an important antioxidant. In human and yeast cells, CoQ synthesis derives from aromatic ring precursors and the isoprene biosynthetic pathway. Saccharomyces cerevisiae coq mutants provide a powerful model for our understanding of CoQ biosynthesis. This review focusses on the biosynthesis of CoQ in yeast and the relevance of this model to CoQ biosynthesis in human cells. The COQ1–COQ11 yeast genes are required for efficient biosynthesis of yeast CoQ. Expression of human homologs of yeast COQ1–COQ10 genes restore CoQ biosynthesis in the corresponding yeast coq mutants, indicating profound functional conservation. Thus, yeast provides a simple yet effective model to investigate and define the function and possible pathology of human COQ (yeast or human gene involved in CoQ biosynthesis) gene polymorphisms and mutations. Biosynthesis of CoQ in yeast and human cells depends on high molecular mass multisubunit complexes consisting of several of the COQ gene products, as well as CoQ itself and CoQ intermediates. The CoQ synthome in yeast or Complex Q in human cells, is essential for de novo biosynthesis of CoQ. Although some human CoQ deficiencies respond to dietary supplementation with CoQ, in general the uptake and assimilation of this very hydrophobic lipid is inefficient. Simple natural products may serve as alternate ring precursors in CoQ biosynthesis in both yeast and human cells, and these compounds may act to enhance biosynthesis of CoQ or may bypass certain deficient steps in the CoQ biosynthetic pathway.
Collapse
|
36
|
Smith AC, Ito Y, Ahmed A, Schwartzentruber JA, Beaulieu CL, Aberg E, Majewski J, Bulman DE, Horsting-Wethly K, Koning DVD, Rodenburg RJ, Boycott KM, Penney LS. A family segregating lethal neonatal coenzyme Q 10 deficiency caused by mutations in COQ9. J Inherit Metab Dis 2018; 41:719-729. [PMID: 29560582 DOI: 10.1007/s10545-017-0122-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/12/2017] [Accepted: 11/30/2017] [Indexed: 11/27/2022]
Abstract
Primary CoQ10 deficiency is a clinically and genetically heterogeneous, autosomal recessive disorder resulting from mutations in genes involved in the synthesis of coenzyme Q10 (CoQ10). To date, mutations in nine proteins required for the biosynthesis of CoQ10 cause CoQ10 deficiency with varying clinical presentations. In 2009 the first patient with mutations in COQ9 was reported in an infant with a neonatal-onset, primary CoQ10 deficiency with multi-system disease. Here we describe four siblings with a previously undiagnosed lethal disorder characterized by oligohydramnios and intrauterine growth restriction, variable cardiomyopathy, anemia, and renal anomalies. The first and third pregnancy resulted in live born babies with abnormal tone who developed severe, treatment unresponsive lactic acidosis after birth and died hours later. Autopsy on one of the siblings demonstrated brain changes suggestive of the subacute necrotizing encephalopathy of Leigh disease. Whole-exome sequencing (WES) revealed the siblings shared compound heterozygous mutations in the COQ9 gene with both variants predicted to affect splicing. RT-PCR on RNA from patient fibroblasts revealed that the c.521 + 2 T > C variant resulted in splicing out of exons 4-5 and the c.711 + 3G > C variant spliced out exon 6, resulting in undetectable levels of COQ9 protein in patient fibroblasts. The biochemical profile of patient fibroblasts demonstrated a drastic reduction in CoQ10 levels. An additional peak on the chromatogram may represent accumulation of demethoxy coenzyme Q (DMQ), which was shown previously to accumulate as a result of a defect in COQ9. This family expands our understanding of this rare metabolic disease and highlights the prenatal onset, clinical variability, severity, and biochemical profile associated with COQ9-related CoQ10 deficiencies.
Collapse
Affiliation(s)
- Amanda C Smith
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Afsana Ahmed
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy A Schwartzentruber
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Chandree L Beaulieu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Erika Aberg
- Maritime Medical Genetics Service, IWK Health Centre, 5850 University Avenue, P.O. Box 9700, Halifax, NS, B3K 6R8, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Karina Horsting-Wethly
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Diana Vermunt-de Koning
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Lynette S Penney
- Maritime Medical Genetics Service, IWK Health Centre, 5850 University Avenue, P.O. Box 9700, Halifax, NS, B3K 6R8, Canada.
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
37
|
Stefely JA, Pagliarini DJ. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci 2017; 42:824-843. [PMID: 28927698 DOI: 10.1016/j.tibs.2017.06.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases.
Collapse
Affiliation(s)
- Jonathan A Stefely
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
Loiseau L, Fyfe C, Aussel L, Hajj Chehade M, Hernández SB, Faivre B, Hamdane D, Mellot-Draznieks C, Rascalou B, Pelosi L, Velours C, Cornu D, Lombard M, Casadesús J, Pierrel F, Fontecave M, Barras F. The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. J Biol Chem 2017; 292:11937-11950. [PMID: 28559279 DOI: 10.1074/jbc.m117.789164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC, which is required for efficient UQ biosynthesis, and which we have renamed ubiK Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli Last, in Salmonella enterica, ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both.
Collapse
Affiliation(s)
- Laurent Loiseau
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (LCB) UMR 7283, Institut de Microbiologie de la Méditerranée (IMM), 13402, Marseille, France
| | - Cameron Fyfe
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (LCB) UMR 7283, Institut de Microbiologie de la Méditerranée (IMM), 13402, Marseille, France
| | - Mahmoud Hajj Chehade
- University Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), UMR 5525, 38000 Grenoble, France; CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Sara B Hernández
- Departamento de Genética, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France
| | - Bérengère Rascalou
- University Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), UMR 5525, 38000 Grenoble, France; CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Ludovic Pelosi
- University Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), UMR 5525, 38000 Grenoble, France; CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Christophe Velours
- Institut de Biologie Integrative de la cellule, Plateforme Interactions des Macromolécules, I2BC, UMR 9198 CNRS, Bât 430F, 91405 Orsay Cedex, France
| | - David Cornu
- Institut de Biologie Integrative de la cellule, Plateforme SICaPS, I2BC, CNRS, Centre de Recherche de Gif, SICaPS, F-91198 Gif-sur-Yvette Cedex, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fabien Pierrel
- University Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), UMR 5525, 38000 Grenoble, France; CNRS, TIMC-IMAG, 38000 Grenoble, France.
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR8229 CNRS, Collège de France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75 231 Paris Cedex 05, France.
| | - Frédéric Barras
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (LCB) UMR 7283, Institut de Microbiologie de la Méditerranée (IMM), 13402, Marseille, France.
| |
Collapse
|
39
|
Romero-Moya D, Santos-Ocaña C, Castaño J, Garrabou G, Rodríguez-Gómez JA, Ruiz-Bonilla V, Bueno C, González-Rodríguez P, Giorgetti A, Perdiguero E, Prieto C, Moren-Nuñez C, Fernández-Ayala DJ, Victoria Cascajo M, Velasco I, Canals JM, Montero R, Yubero D, Jou C, López-Barneo J, Cardellach F, Muñoz-Cánoves P, Artuch R, Navas P, Menendez P. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q 10 Deficiency. Stem Cells 2017; 35:1687-1703. [PMID: 28472853 DOI: 10.1002/stem.2634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.
Collapse
Affiliation(s)
- Damià Romero-Moya
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gloria Garrabou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José A Rodríguez-Gómez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain
| | - Vanesa Ruiz-Bonilla
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Patricia González-Rodríguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Eusebio Perdiguero
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Constanza Moren-Nuñez
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Maria Victoria Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Iván Velasco
- Insituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México.,Laboratorio de Reprogramación Celular del IFC en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", México DF, México
| | - Josep Maria Canals
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Stem Cells and Regenerative Medicine Laboratory, Production and validation center of advanced therapies (Creatio) Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Neuroscience Institute, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Raquel Montero
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Delia Yubero
- Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - José López-Barneo
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Francesc Cardellach
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Rafael Artuch
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Spain
| |
Collapse
|
40
|
González-Mariscal I, Martín-Montalvo A, Ojeda-González C, Rodríguez-Eguren A, Gutiérrez-Ríos P, Navas P, Santos-Ocaña C. Balanced CoQ 6 biosynthesis is required for lifespan and mitophagy in yeast. MICROBIAL CELL 2017; 4:38-51. [PMID: 28357388 PMCID: PMC5349121 DOI: 10.15698/mic2017.02.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coenzyme Q is an essential lipid with redox capacity that is present in all
organisms. In yeast its biosynthesis depends on a multiprotein complex in which
Coq7 protein has both catalytic and regulatory functions. Coq7 modulates
CoQ6 levels through a phosphorylation cycle, where
dephosphorylation of three amino acids (Ser/Thr) by the mitochondrial
phosphatase Ptc7 increases the levels of CoQ6. Here we analyzed the
role of Ptc7 and the phosphorylation state of Coq7 in yeast mitochondrial
function. The conversion of the three Ser/Thr to alanine led to a permanently
active form of Coq7 that caused a 2.5-fold increase of CoQ6 levels,
albeit decreased mitochondrial respiratory chain activity and oxidative stress
resistance capacity. This resulted in an increase in endogenous ROS production
and shortened the chronological life span (CLS) compared to wild type. The null
PTC7 mutant (ptc7∆) strain showed a lower
biosynthesis rate of CoQ6 and a significant shortening of the CLS.
The reduced CLS observed in ptc7Δ was restored by the
overexpression of PTC7 but not by the addition of exogenous
CoQ6. Overexpression of PTC7 increased mitophagy
in a wild type strain. This finding suggests an additional Ptc7 function beyond
the regulation of CoQ biosynthesis. Genetic disruption of PTC7
prevented mitophagy activation in conditions of nitrogen deprivation. In brief,
we show that, in yeast, Ptc7 modulates the adaptation to respiratory metabolism
by dephosphorylating Coq7 to supply newly synthesized CoQ6, and by
activating mitophagy to remove defective mitochondria at stationary phase,
guaranteeing a proper CLS in yeast.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Aléjandro Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Cristina Ojeda-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Adolfo Rodríguez-Eguren
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Purificación Gutiérrez-Ríos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| |
Collapse
|
41
|
CLD1 Reverses the Ubiquinone Insufficiency of Mutant cat5/coq7 in a Saccharomyces cerevisiae Model System. PLoS One 2016; 11:e0162165. [PMID: 27603010 PMCID: PMC5014327 DOI: 10.1371/journal.pone.0162165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
Ubiquinone (Qn) functions as a mobile electron carrier in mitochondria. In humans, Q biosynthetic pathway mutations lead to Q10 deficiency, a life threatening disorder. We have used a Saccharomyces cerevisiae model of Q6 deficiency to screen for new modulators of ubiquinone biosynthesis. We generated several hypomorphic alleles of coq7/cat5 (clk-1 in Caenorhabditis elegans) encoding the penultimate enzyme in Q biosynthesis which converts 5-demethoxy Q6 (DMQ6) to 5-demethyl Q6, and screened for genes that, when overexpressed, suppressed their inability to grow on non-fermentable ethanol—implying recovery of lost mitochondrial function. Through this approach we identified Cardiolipin-specific Deacylase 1 (CLD1), a gene encoding a phospholipase A2 required for cardiolipin acyl remodeling. Interestingly, not all coq7 mutants were suppressed by Cld1p overexpression, and molecular modeling of the mutant Coq7p proteins that were suppressed showed they all contained disruptions in a hydrophobic α-helix that is predicted to mediate membrane-binding. CLD1 overexpression in the suppressible coq7 mutants restored the ratio of DMQ6 to Q6 toward wild type levels, suggesting recovery of lost Coq7p function. Identification of a spontaneous Cld1p loss-of-function mutation illustrated that Cld1p activity was required for coq7 suppression. This observation was further supported by HPLC-ESI-MS/MS profiling of monolysocardiolipin, the product of Cld1p. In summary, our results present a novel example of a lipid remodeling enzyme reversing a mitochondrial ubiquinone insufficiency by facilitating recovery of hypomorphic enzymatic function.
Collapse
|
42
|
Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L. Coenzyme Q biosynthesis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1079-1085. [PMID: 27060254 DOI: 10.1016/j.bbabio.2016.03.036] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Manuel Jesús Acosta
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Luis Vazquez Fonseca
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Roberta Zordan
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| |
Collapse
|
43
|
Ismail A, Leroux V, Smadja M, Gonzalez L, Lombard M, Pierrel F, Mellot-Draznieks C, Fontecave M. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6. PLoS Comput Biol 2016; 12:e1004690. [PMID: 26808124 PMCID: PMC4726752 DOI: 10.1371/journal.pcbi.1004690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023] Open
Abstract
Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone) precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6), a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations) or completely (a G248R-L382E double-mutation) blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.
Collapse
Affiliation(s)
- Alexandre Ismail
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
- Sup’Biotech, IONIS Education Group, Villejuif, France
| | - Vincent Leroux
- Paris Sciences et Lettres (PSL*), Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050, Paris, France
| | - Myriam Smadja
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Fabien Pierrel
- Université Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes, Grenoble, France
- CNRS, Laboratoire Adaptation et Pathogénie des Microorganismes, Grenoble, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| |
Collapse
|
44
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
45
|
Chung WK, Martin K, Jalas C, Braddock SR, Juusola J, Monaghan KG, Warner B, Franks S, Yudkoff M, Lulis L, Rhodes RH, Prasad V, Torti E, Cho MT, Shinawi M. Mutations inCOQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. J Med Genet 2015; 52:627-35. [DOI: 10.1136/jmedgenet-2015-103140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
|
46
|
Brea-Calvo G, Haack TB, Karall D, Ohtake A, Invernizzi F, Carrozzo R, Kremer L, Dusi S, Fauth C, Scholl-Bürgi S, Graf E, Ahting U, Resta N, Laforgia N, Verrigni D, Okazaki Y, Kohda M, Martinelli D, Freisinger P, Strom TM, Meitinger T, Lamperti C, Lacson A, Navas P, Mayr JA, Bertini E, Murayama K, Zeviani M, Prokisch H, Ghezzi D. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet 2015; 96:309-17. [PMID: 25658047 PMCID: PMC4320255 DOI: 10.1016/j.ajhg.2014.12.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022] Open
Abstract
Primary coenzyme Q10 (CoQ10) deficiencies are rare, clinically heterogeneous disorders caused by mutations in several genes encoding proteins involved in CoQ10 biosynthesis. CoQ10 is an essential component of the electron transport chain (ETC), where it shuttles electrons from complex I or II to complex III. By whole-exome sequencing, we identified five individuals carrying biallelic mutations in COQ4. The precise function of human COQ4 is not known, but it seems to play a structural role in stabilizing a multiheteromeric complex that contains most of the CoQ10 biosynthetic enzymes. The clinical phenotypes of the five subjects varied widely, but four had a prenatal or perinatal onset with early fatal outcome. Two unrelated individuals presented with severe hypotonia, bradycardia, respiratory insufficiency, and heart failure; two sisters showed antenatal cerebellar hypoplasia, neonatal respiratory-distress syndrome, and epileptic encephalopathy. The fifth subject had an early-onset but slowly progressive clinical course dominated by neurological deterioration with hardly any involvement of other organs. All available specimens from affected subjects showed reduced amounts of CoQ10 and often displayed a decrease in CoQ10-dependent ETC complex activities. The pathogenic role of all identified mutations was experimentally validated in a recombinant yeast model; oxidative growth, strongly impaired in strains lacking COQ4, was corrected by expression of human wild-type COQ4 cDNA but failed to be corrected by expression of COQ4 cDNAs with any of the mutations identified in affected subjects. COQ4 mutations are responsible for early-onset mitochondrial diseases with heterogeneous clinical presentations and associated with CoQ10 deficiency.
Collapse
Affiliation(s)
- Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas - Junta de Andalucía and Centro de Investigación Biomédica en Red de Enfermedades Raras, 41013 Sevilla, Spain
| | - Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Federica Invernizzi
- Unit of Molecular Neurogenetics, Foundation of the Carlo Besta Neurological Institute, Istituto di Ricovero e Cura a Carettere Scientifico, 20126 Milan, Italy
| | - Rosalba Carrozzo
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carettere Scientifico, 00165 Rome, Italy
| | - Laura Kremer
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Sabrina Dusi
- Unit of Molecular Neurogenetics, Foundation of the Carlo Besta Neurological Institute, Istituto di Ricovero e Cura a Carettere Scientifico, 20126 Milan, Italy
| | - Christine Fauth
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Nicoletta Resta
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Daniela Verrigni
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carettere Scientifico, 00165 Rome, Italy
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan; Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Diego Martinelli
- Unit of Metabolism, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carettere Scientifico, 00165 Rome, Italy
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, 72764 Reutlingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation of the Carlo Besta Neurological Institute, Istituto di Ricovero e Cura a Carettere Scientifico, 20126 Milan, Italy
| | - Atilano Lacson
- Walter Mackenzie Health Sciences Centre, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - Consejo Superior de Investigaciones Científicas - Junta de Andalucía and Centro de Investigación Biomédica en Red de Enfermedades Raras, 41013 Sevilla, Spain
| | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carettere Scientifico, 00165 Rome, Italy
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba 266-0007, Japan; Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, UK
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany.
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation of the Carlo Besta Neurological Institute, Istituto di Ricovero e Cura a Carettere Scientifico, 20126 Milan, Italy.
| |
Collapse
|
47
|
Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS, Loo JA, Clarke CF. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J Biol Chem 2015; 290:7517-34. [PMID: 25631044 DOI: 10.1074/jbc.m114.633131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1-COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.
Collapse
Affiliation(s)
- Christopher M Allan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Agape M Awad
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Jarrett S Johnson
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Dyna I Shirasaki
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Charles Wang
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Crysten E Blaby-Haas
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Joseph A Loo
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the Department of Biological Chemistry, and the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Catherine F Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute,
| |
Collapse
|
48
|
Mayr JA. Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 2015; 38:137-44. [PMID: 25082432 DOI: 10.1007/s10545-014-9748-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022]
Abstract
Mitochondrial membranes have a unique lipid composition necessary for proper shape and function of the organelle. Mitochondrial lipid metabolism involves biosynthesis of the phospholipids phosphatidylethanolamine, cardiolipin and phosphatidylglycerol, the latter is a precursor of the late endosomal lipid bis(monoacylglycero)phosphate. It also includes mitochondrial fatty acid synthesis necessary for the formation of the lipid cofactor lipoic acid. Furthermore the synthesis of coenzyme Q takes place in mitochondria as well as essential parts of the steroid and vitamin D metabolism. Lipid transport and remodelling, which are necessary for tailoring and maintaining specific membrane properties, are just partially unravelled. Mitochondrial lipids are involved in organelle maintenance, fission and fusion, mitophagy and cytochrome c-mediated apoptosis. Mutations in TAZ, SERAC1 and AGK affect mitochondrial phospholipid metabolism and cause Barth syndrome, MEGDEL and Sengers syndrome, respectively. In these disorders an abnormal mitochondrial energy metabolism was found, which seems to be due to disturbed protein-lipid interactions, affecting especially enzymes of the oxidative phosphorylation. Since a growing number of enzymes and transport processes are recognised as parts of the mitochondrial lipid metabolism, a further increase of lipid-related disorders can be expected.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, 5020, Austria,
| |
Collapse
|
49
|
Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 2015; 38:145-56. [PMID: 25091424 DOI: 10.1007/s10545-014-9749-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, Padova, 35128, Italy
| | | | | | | | | |
Collapse
|
50
|
González-Mariscal I, García-Testón E, Padilla S, Martín-Montalvo A, Pomares Viciana T, Vazquez-Fonseca L, Gandolfo Domínguez P, Santos-Ocaña C. The regulation of coenzyme q biosynthesis in eukaryotic cells: all that yeast can tell us. Mol Syndromol 2014; 5:107-18. [PMID: 25126044 DOI: 10.1159/000362897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis rate of CoQ6. This critical model is needed for a better understanding of CoQ biosynthesis. Taking into account that patients with CoQ10 deficiency maintain to some extent the machinery to synthesize CoQ, new promising strategies for the treatment of CoQ10 deficiency will require a better understanding of the regulation of CoQ biosynthesis in the future.
Collapse
Affiliation(s)
| | - Elena García-Testón
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Sergio Padilla
- Sanford Children's Health Research Center, Sanford Research USD, Sioux Falls, S. Dak., USA
| | | | - Teresa Pomares Viciana
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Luis Vazquez-Fonseca
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Pablo Gandolfo Domínguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide - CSIC, and CIBERER Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|