1
|
Carpanedo L, Rund KM, Wende LM, Kampschulte N, Schebb NH. LC-HRMS analysis of phospholipids bearing oxylipins. Anal Chim Acta 2024; 1326:343139. [PMID: 39260917 DOI: 10.1016/j.aca.2024.343139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Several oxylipins including hydroxy- and epoxy-polyunsaturated fatty acids act as lipid mediators. In biological samples they can be present as non-esterified form, but the major part occurs esterified in phospholipids (PL) or other lipids. Esterified oxylipins are quantified indirectly after alkaline hydrolysis as non-esterified oxylipins. However, in this indirect analysis the information in which lipid class oxylipins are bound is lost. In this work, an untargeted liquid chromatography high-resolution mass spectrometry (LC-HRMS) method for the direct analysis of PL bearing oxylipins was developed. RESULTS Optimized reversed-phase LC separation achieved a sufficient separation of isobaric and isomeric PL from different lipid classes bearing oxylipin positional isomers. Individual PL species bearing oxylipins were identified based on retention time, precursor ion and characteristic product ions. The bound oxylipin could be characterized based on product ions resulting from the α-cleavage occurring at the hydroxy/epoxy group. PL sn-1/sn-2 isomers were identified based on the neutral loss of the fatty acyl in the sn-2 position. A total of 422 individual oxPL species from 7 different lipid classes i.e., PI, PS, PC, PE, PC-P, PC-O, and PE-P were detected in human serum and cells. This method enabled to determine in which PL class supplemented oxylipins are incorporated in HEK293 cells: 20:4;15OH, 20:4;14Ep, and 20:5;14Ep were mostly bound to PI. 20:4;8Ep and 20:5;8Ep were esterified to PC and PE while other oxylipins were mainly found in PC. SIGNIFICANCE The developed LC-HRMS method enables the comprehensive detection as well as the semi-quantification of isobaric and isomeric PL species bearing oxylipins. With this method, we show that the position of the oxidation has a great impact and directs the incorporation of oxylipins into the different PL classes in human cells.
Collapse
Affiliation(s)
- Laura Carpanedo
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Luca M Wende
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
2
|
Zhou Z, Huang X, Zhang YY, Cui S, Wang Y, Dong M, Zhou D, Zhu B, Qin L. In Silico-Predicted Dynamic Oxlipidomics MS/MS Library: High-Throughput Discovery and Characterization of Unknown Oxidized Lipids. Anal Chem 2024; 96:2008-2021. [PMID: 38276876 DOI: 10.1021/acs.analchem.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Nontargeted lipidomics using liquid chromatography-tandem mass spectrometry can detect thousands of molecules in biological samples. However, the annotation of unknown oxidized lipids is limited to the structures present in libraries, restricting the analysis and interpretation of experimental data. Here, we describe Doxlipid, a computational tool for oxidized lipid annotation that predicts a dynamic MS/MS library for every experiment. Doxlipid integrates three key simulation algorithms to predict libraries and covers 32 subclasses of oxidized lipids from the three main classes. In the evaluation, Doxlipid achieves very high prediction and characterization performance and outperforms the current oxidized lipid annotation methods. Doxlipid, combined with a molecular network, further annotates unknown chemical analogs in the same reaction or pathway. We demonstrate the broad utility of Doxlipid by analyzing oxidized lipids in ferroptosis hepatocellular carcinoma, tissue samples, and other biological samples, substantially advancing the discovery of biological pathways at the trace oxidized lipid level.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xuhui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Ying Zhang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Cui
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Dong
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Zhou Z, Li YL, Zhao F, Xin R, Huang XH, Zhang YY, Zhou D, Qin L. Unraveling the Thermal Oxidation Products and Peroxidation Mechanisms of Different Chemical Structures of Lipids: An Example of Molecules Containing Oleic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16410-16423. [PMID: 36520059 DOI: 10.1021/acs.jafc.2c06221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lipid structures affect lipid oxidation, causing differences in types and contents of volatiles and nonvolatiles in various foods. In this study, the oxidation differences of monoacylglycerol (MAG), triacylglycerol (TAG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) with oleoyl residues and oleic acid (FA) during thermal treatment were investigated. Volatiles and nonvolatiles were monitored by gas chromatography-mass spectrometry and ultrahigh-performance liquid chromatography-Q-Exactive HF-X Orbitrap Mass Spectrometer, respectively. The results showed that the structures of MAG and TAG could delay the chain initiation reaction. The polar heads of PC and PE remarkably influenced the oxidation rate and the formation of the oxidation products probably due to the hydrogen bonds formed with free radicals. Among the volatile oxidation products, aldehydes, acids, and furans with eight or nine carbon atoms accounted for the majority in FA, MAG, TAG, and PC samples, but PE samples mainly generated ketones with nine or 10 carbon atoms. The formation of nonvolatile products in TAG samples possessed significant stage-specific changes. Fatty acid esters of hydroxy fatty acids were only produced in the free fatty acid oxidation model. The activity of chemical bonds participating in the truncation reaction decreased to both sides from the double bond position.
Collapse
Affiliation(s)
- Zheng Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Yu-Lian Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Feng Zhao
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Ran Xin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Yu-Ying Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Dayong Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| | - Lei Qin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, China
| |
Collapse
|
5
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
6
|
Feng X, Hua Y, Li X, Zhang C, Kong X, Chen Y. ( E)-2-Heptenal in Soymilk: A Nonenzymatic Formation Route and the Impact on the Flavor Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14961-14969. [PMID: 33249836 DOI: 10.1021/acs.jafc.0c06192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flavor is an essential quality characteristic of soymilk. (E)-2-Heptenal has a fatty and fruity flavor with the sensory threshold value of 13 μg/L in water. This study demonstrated that the formation of (E)-2-heptenal was independent of the lipoxygenase (LOX) and hydroperoxide lyase (HPL) activity as well as oxygen concentration but was related to the presence/absence of Fe2+ and chelators. In a dry matter base, soybean hypocotyls generated a much higher amount of (E)-2-heptenal than cotyledons. A phospholipid hydroperoxide was purified from the chloroform/methanol extract of soybean hypocotyls and was identified as 1-palmitoyl-2-(12-hydroperoxyoctadecadienoyl)-sn-glycerol-3-phosphatidylethanol-amine (12-PEOOH). The decomposition of 12-PEOOH in the presence of ferrous ions to form (E)-2-heptenal was studied in a model system. The rate of decomposition decreased sharply at pH values higher than 6, but the molar conversion of 12-PEOOH to (E)-2-heptenal increased with an increase of pH. At a constant pH of 5.8, the decomposition rate of 12-PEOOH was positively linearly related to the Fe2+ concentration, while the molar conversion to (E)-2-heptenal was 74% and independent of the Fe2+ concentration. The formation of radicals LOO• and R• showed similar pH and Fe2+ concentration dependence with those of (E)-2-heptenal. (E)-2-Heptenal displayed an enhancement of bean aroma and fruity flavor of soymilk at low concentrations, but a fatty flavor was noticed at high concentrations.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, 1800 Wuxi, P. R. China
| |
Collapse
|
7
|
Dybos SA, Brustad ÅW, Rolfseng T, Kvam S, Olsen OE, Halgunset J, Skogseth H. RNA-Integrity and 8-Isoprostane Levels Are Stable in Prostate Tissue Samples Upon Long-Term Storage at -80°C. Biopreserv Biobank 2020; 19:2-10. [PMID: 32865438 PMCID: PMC7892308 DOI: 10.1089/bio.2019.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sampling of prostate tissue (n = 97) was performed in conjunction with planned radical prostatectomies, in collaboration with Biobank1®. The tissue used in this study was collected during the period 2003-2016, quickly frozen, and kept at -80°C until assayed in 2018. RNA extraction was performed with two different protocols (miRNeasy and mirVana™), and RNA quality was determined by measuring the RNA Integrity Number (RIN). The level of isoprostanes is widely recognized as a specific indicator of lipid peroxidation both in vitro and in vivo. The level of 8-isoprostane was measured because it is the main oxidation product of arachidonic acid, the most abundant phospholipid fatty acid. The level of 8-isoprostane was measured using enzyme immunoassay. There was no statistically significant difference in yield between the samples isolated with the mirVana protocol compared to the miRNeasy protocol. Average RIN was 2.8 units higher with the mirVana extraction protocol compared to the miRNeasy protocol (p < 0.001). For miRNeasy extractions, RINs were 7.1 for prostatectomies in 2005-2007 and 6.2 for those in 2018 (p < 0.001). For mirVana extractions, the difference in RIN score between the two groups regarding years of collection was not statistically significant. There was no significant increase in the levels of 8-isoprostane between the 2005-2007 samples and the 2018. The conclusion is that there is no oxidation of phospholipids with increasing storage time up to 15 years.
Collapse
Affiliation(s)
- Sandra Amalie Dybos
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åge Winje Brustad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Toril Rolfseng
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Solveig Kvam
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jostein Halgunset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Haakon Skogseth
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Goritschnig J, Tadus K, König J, Pignitter M. Free Radical Scavenging Activity of Carbonyl-Amine Adducts Formed in Soybean Oil Fortified with Phosphatidylethanolamine. Molecules 2020; 25:molecules25020373. [PMID: 31963288 PMCID: PMC7024298 DOI: 10.3390/molecules25020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/01/2022] Open
Abstract
Non-enzymatic browning reactions between lipid aldehydes and aminophospholipids might play an important role in the oxidative stability of cold-pressed vegetable oils. We, therefore, aimed to study the Maillard-type reaction between hexanal, a lipid oxidation product of linoleic acid, and phosphatidylethanolamine (PE (16:0/18:1)) at a ratio of 2:1 at conditions representative of the extraction of cold-pressed soybean oils (CPSBO) and determine the radical scavenging activity of the carbonyl-amine adducts with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The reaction product, 2-pentyl-3,5-dibutyl-dihydropyridine, could be identified by means of LC-ESI-QTOF-MS/MS. The formation of this nitrogen-containing heterocycle significantly increased with time and temperature (p < 0.05). The products formed during the carbonyl-amine reaction between PE (16:0/18:1) and hexanal at 60 °C showed a radical scavenging activity of approximately 20% (p < 0.05). The fraction, containing 2-pentyl-3,5-dibutyl-dihydropyridine, contributed to, but was not solely responsible for, the radical scavenging activity (p < 0.05). Incubation of CPSBO fortified with PE (16:0/18:1) at 60 °C for 60 min had the strongest radical scavenging activity of 85.1 ± 0.62%. Besides 2-pentyl-3,5-dibutyl-dihydropyridine, other carbonyl-amine adducts might impact the radical scavenging activity of CPSBO as well. The oxidative stability of CPSBO might be increased by promoting the formation of carbonyl-amine reaction products, such as 2-pentyl-3,5-dibutyl-dihydropyridine.
Collapse
Affiliation(s)
- Jana Goritschnig
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria; (J.G.); (K.T.)
| | - Klaudia Tadus
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria; (J.G.); (K.T.)
| | - Jürgen König
- Department of Nutritional Science, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria;
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria; (J.G.); (K.T.)
- Correspondence: ; Tel.: +43-1-4277-70621
| |
Collapse
|
9
|
Li L, Zhong S, Shen X, Li Q, Xu W, Tao Y, Yin H. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic Biol Med 2019; 144:16-34. [PMID: 31202785 DOI: 10.1016/j.freeradbiomed.2019.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
10
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
11
|
Godzien J, Kalaska B, Adamska-Patruno E, Siroka J, Ciborowski M, Kretowski A, Barbas C. Oxidized glycerophosphatidylcholines in diabetes through non-targeted metabolomics: Their annotation and biological meaning. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:62-70. [DOI: 10.1016/j.jchromb.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
12
|
Parchem K, Kusznierewicz B, Chmiel T, Maciołek P, Bartoszek A. Profiling and Qualitative Assessment of Enzymatically and Thermally Oxidized Egg Yolk Phospholipids using a Two‐Step High‐Performance Liquid Chromatography Protocol. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Tomasz Chmiel
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Paulina Maciołek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of ChemistryGdansk University of Technology 11/12 Narutowicza St., 80‐233 Gdansk Poland
| |
Collapse
|
13
|
Pleik S, Spengler B, Ram Bhandari D, Luhn S, Schäfer T, Urbach D, Kirsch D. Ambient-air ozonolysis of triglycerides in aged fingerprint residues. Analyst 2018; 143:1197-1209. [PMID: 29431747 DOI: 10.1039/c7an01506b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In forensic science, reconstructing the timing of events occurring during a criminal offense is of great importance. In some cases, the time when particular evidence was left on a crime scene is a critical matter. The ability to estimate the fingerprint age would raise the evidentiary value of fingerprints tremendously. For this purpose the most promising approach is the analysis of changes in the chemical compositions of fingerprint residues in the course of aging. The focus of our study is the identification of human specific compounds in fingerprint residues, characterized by a significant aging behavior that could analytically be used for the age determination of fingerprints in future. The first challenge is the sensitive detection of trace amounts of relevant human specific fingerprint compounds. Highly sensitive LC-MS methods were developed for the reliable structure identification of unsaturated triglycerides and their natural degradation products in order to proof the aging mechanism that takes place in fingerprint residues. Thus our results build the fundamental basis for further forensic method development and potential application in forensic investigation. Ozonolysis was found to be one of the major lipid degradation pathways in fingerprint residues in ambient air. High-resolution tandem mass spectrometry (HRMS2) was carried out to identify the ozonolysis products (TG48:0-monoozonide) formed under exposure to the highly reactive ozone in atmospheric air. The obtained products were confirmed by matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Despite several challenges and limitations in the age estimation of fingerprints, the identification of individual degradation products of specific unsaturated lipids in aged fingerprint samples represents a significant analytical progress, resulting in a strong increase in the validity of chemical analysis of fingerprints.
Collapse
Affiliation(s)
- Stefanie Pleik
- Forensic Science Institute, Federal Criminal Police Office, 65173 Wiesbaden, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E6254-E6263. [PMID: 29891687 PMCID: PMC6142199 DOI: 10.1073/pnas.1800544115] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue macrophages (ATMs) maintain adipose tissue homeostasis. However, during obesity ATMs become inflammatory, resulting in impaired adipose tissue function. Oxidative stress increases during obesity, which is thought to contribute to adipose tissue inflammation. To date, the connection between oxidative stress and adipose tissue inflammation remain unclear. In this study, we identify two classes of phospholipid oxidation products in lean and obese adipose tissue, which polarize macrophages to an antioxidant or proinflammatory state, respectively. Furthermore, we show that these phospholipids differently affect macrophage cellular metabolism, reflecting the metabolisms of ATMs found in lean and obese adipose tissue. Identification of pathways controlling ATM metabolism will lead to novel therapies for insulin resistance. Adipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in Mox macrophages, but the presence of the Mox phenotype in adipose tissue has not been reported. Here we show, using extracellular flux analysis, that ATMs isolated from lean mice are metabolically inhibited. We identify a unique population of CX3CR1neg/F4/80low ATMs that resemble the Mox (Txnrd1+HO1+) phenotype to be the predominant ATM phenotype in lean adipose tissue. In contrast, ATMs isolated from obese mice had characteristics typical of the M1/M2 (CD11c+CD206+) phenotype with highly activated bioenergetics. Quantifying individual OxPL species in the stromal vascular fraction of murine adipose tissue, using targeted liquid chromatography-mass spectrometry, revealed that high fat diet-induced adipose tissue expansion led to a disproportional increase in full-length over truncated OxPL species. In vitro studies showed that macrophages respond to truncated OxPL species by suppressing bioenergetics and up-regulating antioxidant programs, mimicking the Mox phenotype of ATMs isolated from lean mice. Conversely, full-length OxPL species induce proinflammatory gene expression and an activated bioenergetic profile that mimics ATMs isolated from obese mice. Together, these data identify a redox-regulatory Mox macrophage phenotype to be predominant in lean adipose tissue and demonstrate that individual OxPL species that accumulate in adipose tissue instruct ATMs to adapt their phenotype and bioenergetic profile to either maintain redox homeostasis or to promote inflammation.
Collapse
|
15
|
Colombo S, Coliva G, Kraj A, Chervet JP, Fedorova M, Domingues P, Domingues MR. Electrochemical oxidation of phosphatidylethanolamines studied by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:223-233. [PMID: 29282829 DOI: 10.1002/jms.4056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Furukawa T, Hinou H, Takeda S, Chiba H, Nishimura SI, Hui SP. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein. Chembiochem 2017; 18:1903-1909. [PMID: 28779513 DOI: 10.1002/cbic.201700384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/07/2022]
Abstract
Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules.
Collapse
Affiliation(s)
- Takayuki Furukawa
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Hiroshi Hinou
- Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 0010021, Japan
| | - Seiji Takeda
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Hitoshi Chiba
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 0010021, Japan
| | - Shu-Ping Hui
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| |
Collapse
|
17
|
Contursi A, Sacco A, Grande R, Dovizio M, Patrignani P. Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci 2017; 74:3491-3507. [PMID: 28488110 PMCID: PMC11107532 DOI: 10.1007/s00018-017-2536-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
Platelets are anucleated cells that circulate in the blood as sentinels of tissue integrity. In fact, they are rich in a plethora of proteins and other factors stored in different granules which they selectively release upon stimulation. Moreover, platelets synthesize a vast number of lipids and release various types of vesicles, including exosomes which are rich in genetic material. Platelets possess a central function to interact with other cell types, including inflammatory cells and cancer cells. Recent findings have enlightened the capacity of platelets to induce changes in the phenotype of cancer cells which acquire invasiveness thus enhancing their metastatic potential. Thus, it has been hypothesized that targeting the platelet may represent a novel strategy to prevent the development and progression of cancer. This is supported by the efficacy of the antiplatelet agent low-dose aspirin. Studies are ongoing to verify whether other antiplatelet agents share the anticancer effectiveness of aspirin.
Collapse
Affiliation(s)
- Annalisa Contursi
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Angela Sacco
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosalia Grande
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Melania Dovizio
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paola Patrignani
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
18
|
Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R, Mulcahy R, Howard AN, Nolan JM, Griffiths HR. Phospholipid oxidation and carotenoid supplementation in Alzheimer's disease patients. Free Radic Biol Med 2017; 108:77-85. [PMID: 28315450 PMCID: PMC5488966 DOI: 10.1016/j.freeradbiomed.2017.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease, characterised by decline of memory, cognitive function and changes in behaviour. Generic markers of lipid peroxidation are increased in AD and reactive oxygen species have been suggested to be involved in the aetiology of cognitive decline. Carotenoids are depleted in AD serum, therefore we have compared serum lipid oxidation between AD and age-matched control subjects before and after carotenoid supplementation. The novel oxidised phospholipid biomarker 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) was analysed using electrospray ionisation tandem mass spectrometry (MS) with multiple reaction monitoring (MRM), 8-isoprostane (IsoP) was measured by ELISA and ferric reducing antioxidant potential (FRAP) was measured by a colorimetric assay. AD patients (n=21) and healthy age-matched control subjects (n=16) were supplemented with either Macushield™ (10mg meso-zeaxanthin, 10mg lutein, 2mg zeaxanthin) or placebo (sunflower oil) for six months. The MRM-MS method determined serum POVPC sensitively (from 10µl serum) and reproducibly (CV=7.9%). At baseline, AD subjects had higher serum POVPC compared to age-matched controls, (p=0.017) and cognitive function was correlated inversely with POVPC (r=-0.37; p=0.04). After six months of carotenoid intervention, serum POVPC was not different in AD patients compared to healthy controls. However, POVPC was significantly higher in control subjects after six months of carotenoid intervention compared to their baseline (p=0.03). Serum IsoP concentration was unrelated to disease or supplementation. Serum FRAP was significantly lower in AD than healthy controls but was unchanged by carotenoid intervention (p=0.003). In conclusion, serum POVPC is higher in AD patients compared to control subjects, is not reduced by carotenoid supplementation and correlates with cognitive function.
Collapse
Affiliation(s)
- O S Ademowo
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H K I Dias
- Life & Health Sciences, Aston University, Birmingham, UK
| | - I Milic
- Life & Health Sciences, Aston University, Birmingham, UK
| | - A Devitt
- Life & Health Sciences, Aston University, Birmingham, UK
| | - R Moran
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - R Mulcahy
- Waterford University Hospital, Age-related Care Unit, Waterford, Ireland
| | - A N Howard
- Howard Foundation, Cambridge, UK; Downing College, University of Cambridge, Cambridge, UK
| | - J M Nolan
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - H R Griffiths
- Life & Health Sciences, Aston University, Birmingham, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
19
|
Grauby-Heywang C, Moroté F, Mathelié-Guinlet M, Gammoudi I, Faye NR, Cohen-Bouhacina T. Influence of oxidized lipids on palmitoyl-oleoyl-phosphatidylcholine organization, contribution of Langmuir monolayers and Langmuir-Blodgett films. Chem Phys Lipids 2016; 200:74-82. [PMID: 27421664 DOI: 10.1016/j.chemphyslip.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
In this work, we studied the interaction of two oxidized lipids, PoxnoPC and PazePC, with POPC phospholipid. Mean molecular areas obtained from (π-A) isotherms of mixed PoxnoPC-POPC and PazePC-POPC monolayers revealed different behaviors of these two oxidized lipids: the presence of PoxnoPC in the monolayers induces their expansion, mean molecular areas being higher than those expected in the case of ideal mixtures. PazePC-POPC behave on the whole ideally. This difference can be explained by a different conformation of oxidized lipids. Moreover the carboxylic function of PazePC is protonated under our experimental conditions, as shown by (π-A) isotherms of PazePC at different pH values. Both oxidized lipids induce also an increase of the monolayer elasticity, PoxnoPC being slightly more efficient than PazePC. These monolayers were transferred from the air-water interface onto mica supports for a study by AFM. AFM images are on the whole homogenous, suggesting the presence of only one lipid phase in both cases. However, in the case of PazePC-POPC monolayers, AFM images show also the presence of areas thicker of 7nm to 10nm than the surrounding lipid phase, probably due to the local formation of multilayer systems induced by compression.
Collapse
Affiliation(s)
- Christine Grauby-Heywang
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Fabien Moroté
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Marion Mathelié-Guinlet
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Ibtissem Gammoudi
- Cellule de transfert NanoPhyNov, Université de Bordeaux, 351 cours de la libération, Talence Cedex 33405, France.
| | - Ndeye Rokhaya Faye
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| | - Touria Cohen-Bouhacina
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR CNRS 5798, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France.
| |
Collapse
|
20
|
Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 2016; 6:18971. [PMID: 26739257 PMCID: PMC4704061 DOI: 10.1038/srep18971] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
We previously showed that H2 acts as a novel antioxidant to protect cells against oxidative stress. Subsequently, numerous studies have indicated the potential applications of H2 in therapeutic and preventive medicine. Moreover, H2 regulates various signal transduction pathways and the expression of many genes. However, the primary targets of H2 in the signal transduction pathways are unknown. Here, we attempted to determine how H2 regulates gene expression. In a pure chemical system, H2 gas (approximately 1%, v/v) suppressed the autoxidation of linoleic acid that proceeds by a free radical chain reaction, and pure 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC), one of the major phospholipids, was autoxidized in the presence or absence of H2. H2 modified the chemical production of the autoxidized phospholipid species in the cell-free system. Exposure of cultured cells to the H2-dependently autoxidized phospholipid species reduced Ca2+ signal transduction and mediated the expression of various genes as revealed by comprehensive microarray analysis. In the cultured cells, H2 suppressed free radical chain reaction-dependent peroxidation and recovered the increased cellular Ca2+, resulting in the regulation of Ca2+-dependent gene expression. Thus, H2 might regulate gene expression via the Ca2+ signal transduction pathway by modifying the free radical-dependent generation of oxidized phospholipid mediators.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Akemi Imoto
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Kiyomi Nishimaki
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Harumi Ichimiya
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan.,Department of Neuroregenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Zehethofer N, Bermbach S, Hagner S, Garn H, Müller J, Goldmann T, Lindner B, Schwudke D, König P. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases. Chromatographia 2014; 78:403-413. [PMID: 25750457 PMCID: PMC4346681 DOI: 10.1007/s10337-014-2787-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022]
Abstract
Airway epithelial cells play an important role in the pathogenesis of inflammatory lung diseases such as asthma, cystic fibrosis and COPD. Studies concerning the function of the lipid metabolism of the airway epithelium are so far based only on the detection of lipids by immunohistochemistry but quantitative analyses have not been performed. Although recent advances in mass spectrometry have allowed to identify a variety of lipid classes simultaneously in isolated tissue samples, up until now, these methods were not suitable to analyze lipids in the airway epithelium. To determine all major lipid classes in airway epithelial cells, we used an LC-MS-based approach that can easily be combined with the specific isolation procedure to obtain epithelial cells. We tested the suitability of this method with a mouse model of experimental asthma. In response to allergen challenge, perturbations in the sphingolipids were detected, which led to increased levels of ceramides. We expanded the scope of this approach analysing human bronchus samples without pathological findings of adenocarcinoma patients. For the human lung epithelium an unusual lipid class distribution was found in which ceramide was the predominant sphingolipid. In summary, we show that disease progression and lipid metabolism perturbation can be monitored in animal models and that the method can be used for the analysis of clinical samples.
Collapse
Affiliation(s)
- Nicole Zehethofer
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Division of Cellular Microbiology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; German Center for Infection Research, TTU-Tb, Location Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Saskia Bermbach
- Institute for Anatomy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Stefanie Hagner
- Institute of Laboratory Medicine and Pathochemistry, Molecular Diagnostics, Philipps University of Marburg, ZTI, Hans-Meerwein-Str. 3, 35043 Marburg, Germany ; Universities of Gießen and Marburg Lung School (UGMLC), German Center for Lung Research (DZL), Gießen, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathochemistry, Molecular Diagnostics, Philipps University of Marburg, ZTI, Hans-Meerwein-Str. 3, 35043 Marburg, Germany ; Universities of Gießen and Marburg Lung School (UGMLC), German Center for Lung Research (DZL), Gießen, Germany
| | - Julia Müller
- Division of Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany ; German Center for Infection Research, TTU-Tb, Location Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Peter König
- Institute for Anatomy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany
| |
Collapse
|
22
|
Krawczyk T, Baj S. Review: Advances in the Determination of Peroxides by Optical and Spectroscopic Methods. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.900781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Tyurina YY, Domingues RM, Tyurin VA, Maciel E, Domingues P, Amoscato AA, Bayir H, Kagan VE. Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 2014; 179:3-10. [PMID: 24333544 PMCID: PMC4025908 DOI: 10.1016/j.chemphyslip.2013.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Cardiolipins, a class of mitochondria-specific lipid molecules, is one of the most unusual and ancient phospholipids found in essentially all living species. Typical of mammalian cells is the presence of vulnerable to oxidation polyunsaturated fatty acid resides in CL molecules. The overall role and involvement of cardiolipin oxidation (CLox) products in major intracellular signaling as well as extracellular inflammatory and immune responses have been established. However, identification of individual peroxidized molecular species in the context of their ability to induce specific biological responses has not been yet achieved. This is due, at least in part, to technological difficulties in detection, identification, structural characterization and quantitation of CLox associated with their very low abundance and exquisite diversification. This dictates the need for the development of new methodologies for reliable, sensitive and selective analysis of both CLox. LC-MS-based oxidative lipidomics with high mass accuracy instrumentation as well as new software packages are promising in achieving the goals of expedited and reliable analysis of cardiolipin oxygenated species in biosamples.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Rosario M Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisabete Maciel
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
24
|
Song H, Wohltmann M, Tan M, Ladenson JH, Turk J. Group VIA phospholipase A2 mitigates palmitate-induced β-cell mitochondrial injury and apoptosis. J Biol Chem 2014; 289:14194-210. [PMID: 24648512 DOI: 10.1074/jbc.m114.561910] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Palmitate (C16:0) induces apoptosis of insulin-secreting β-cells by processes that involve generation of reactive oxygen species, and chronically elevated blood long chain free fatty acid levels are thought to contribute to β-cell lipotoxicity and the development of diabetes mellitus. Group VIA phospholipase A2 (iPLA2β) affects β-cell sensitivity to apoptosis, and here we examined iPLA2β effects on events that occur in β-cells incubated with C16:0. Such events in INS-1 insulinoma cells were found to include activation of caspase-3, expression of stress response genes (C/EBP homologous protein and activating transcription factor 4), accumulation of ceramide, loss of mitochondrial membrane potential, and apoptosis. All of these responses were blunted in INS-1 cells that overexpress iPLA2β, which has been proposed to facilitate repair of oxidized mitochondrial phospholipids, e.g. cardiolipin (CL), by excising oxidized polyunsaturated fatty acid residues, e.g. linoleate (C18:2), to yield lysophospholipids, e.g. monolysocardiolipin (MLCL), that can be reacylated to regenerate the native phospholipid structures. Here the MLCL content of mouse pancreatic islets was found to rise with increasing iPLA2β expression, and recombinant iPLA2β hydrolyzed CL to MLCL and released oxygenated C18:2 residues from oxidized CL in preference to native C18:2. C16:0 induced accumulation of oxidized CL species and of the oxidized phospholipid (C18:0/hydroxyeicosatetraenoic acid)-glycerophosphoethanolamine, and these effects were blunted in INS-1 cells that overexpress iPLA2β, consistent with iPLA2β-mediated removal of oxidized phospholipids. C16:0 also induced iPLA2β association with INS-1 cell mitochondria, consistent with a role in mitochondrial repair. These findings indicate that iPLA2β confers significant protection of β-cells against C16:0-induced injury.
Collapse
Affiliation(s)
- Haowei Song
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Mary Wohltmann
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Min Tan
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Jack H Ladenson
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| |
Collapse
|
25
|
Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MAF, Tomé JPC, Neves MGPMS, Almeida A, Domingues P, Segundo MA, Domingues MRM. Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1357-1365. [PMID: 24338891 DOI: 10.1002/jms.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+)-Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, UI QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stutts WL, Menger RF, Kiss A, Heeren RMA, Yost RA. Characterization of phosphatidylcholine oxidation products by MALDI MS(n). Anal Chem 2013; 85:11410-9. [PMID: 24180376 DOI: 10.1021/ac402400f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phospholipid oxidation has been implicated in the pathogenesis and progression of numerous age-related and neurodegenerative diseases. Despite these implications, this broad class of biomolecules remains poorly characterized. In this work, the fragmentation patterns of [M + H](+) and [M + Na](+) ions of intact phosphatidylcholine oxidation products (OxPCs) were characterized by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI MS(n), n = 2, 3, and 4). MS(2) of both the [M + H](+) and [M + Na](+) ions of short-chain OxPCs yielded product ions related to the PC headgroup and the fatty acid substituents. MS(3) of the [M + Na - N(CH3)3](+) ions yielded fragmentation indicative of the OxPC modification; specifically, a product ion corresponding to the neutral loss of CO2 (NL of 44) was observed for OxPCs containing a terminal carboxylic acid rather than an aldehyde. Furthermore, MS(4) of the [M + Na - HPO4(CH2)2N(CH3)3](+) ions resulted in fragmentation pathways dependent on the sn-2 fatty acid chain length and type of functional group(s). Specifically, CHO-containing OxPCs with palmitic acid esterified to the sn-1 position of the glycerol backbone yielded a NL of 254, 2 u less than the nominal mass of palmitic acid, whereas the analogous terminal COOH-containing OxPCs demonstrated a NL of 256. Finally, the presence of a γ-ketone relative to the terminal carboxyl group resulted in C-C bond cleavages along the sn-2 substituent, providing diagnostic product ions for keto-containing OxPCs. This work illustrates the enhanced selectivity afforded by MS(n) on the linear ion trap and develops a method for the identification of individual products of PC oxidation.
Collapse
Affiliation(s)
- Whitney L Stutts
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | | | | | | | | |
Collapse
|
27
|
Hinterwirth H, Stübiger G, Lindner W, Lämmerhofer M. Gold Nanoparticle-Conjugated Anti-Oxidized Low-Density Lipoprotein Antibodies for Targeted Lipidomics of Oxidative Stress Biomarkers. Anal Chem 2013; 85:8376-84. [DOI: 10.1021/ac401778f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Helmut Hinterwirth
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090
Vienna, Austria
| | - Gerald Stübiger
- Center
of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße
17, 1090 Vienna, Austria
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090
Vienna, Austria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle
8, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Simões C, Silva AC, Domingues P, Laranjeira P, Paiva A, Domingues MRM. Modified phosphatidylethanolamines induce different levels of cytokine expression in monocytes and dendritic cells. Chem Phys Lipids 2013; 175-176:57-64. [PMID: 23942208 DOI: 10.1016/j.chemphyslip.2013.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
Abstract
Glycation of phosphatidylethanolamine (PE) is a reaction that is known to occur under the chronic hyperglycemic conditions found in diabetes. Glycated phosphatidylethanolamines were found in plasma and atherosclerotic plaques of diabetic patients, and its presence was correlated with increased oxidative stress. Moreover, upregulation of cytokines and other inflammatory mediators can be observed not only in diabetes, but also under oxidized phosphatidylcholine stimulation. In this study, we evaluate the effect of dipalmitoyl-phosphatidylethanolamine (DPPE) and linoleoyl-palmitoyl-phosphatidylethanolamine (PLPE) structural oxidation, glycation and glycoxidation, on monocyte and myeloid dendritic cell stimulation. Expression of cytokines, IL-1β, IL-6, IL-8, MIP-1β and TNF-α, were determined using flow cytometry after cell stimulations with native PEs, oxidized, glycated and glycoxidized PEs. Native PE, PLPE and DPPE, and all modified PEs were able to increase the stimulation levels of monocytes and mDCs. Generally, in monocytes and mDCs stimulation, GluOxPLPE and GluDPPE were the PLPE/DPPE modifications that induced the most pronounced rise in cytokine production. However, GluOxDPPE was the DPPE modification that produced the lowest stimulation levels of mDCs and monocytes. Our results indicate that glycated PE and glycoxidized PE may have an important contribution to the low-grade systemic inflammation associated with diabetes and to the development of diabetic complications.
Collapse
Affiliation(s)
- Cláudia Simões
- Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Maciel E, Faria R, Santinha D, Domingues MRM, Domingues P. Evaluation of oxidation and glyco-oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylserine by LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 929:76-83. [DOI: 10.1016/j.jchromb.2013.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|
30
|
Lee JY, Lim S, Park S, Moon MH. Characterization of oxidized phospholipids in oxidatively modified low density lipoproteins by nanoflow liquid chromatography–tandem mass spectrometry. J Chromatogr A 2013; 1288:54-62. [DOI: 10.1016/j.chroma.2013.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2013] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
|
31
|
Melo T, Silva EMP, Simões C, Domingues P, Domingues MRM. Photooxidation of glycated and non-glycated phosphatidylethanolamines monitored by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:68-78. [PMID: 23303749 DOI: 10.1002/jms.3129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
Phosphatidylethanolamines (PE) are one of the major components of cells membranes, namely in skin and in retina, that are continuously exposed to solar UV radiation being major targets of photooxidation damage. In addition, due to the presence of the free amine group, PE can also undergo glycation, in hyperglycemic conditions which may increase the susceptibility to oxidation. The aim of this study is to develop a model, based on mass spectrometry (MS) analysis, to identify photooxidative degradation of selected PE (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4) and glycated PEs due to UV irradiation. Photooxidation products were analysed by electrospray ionization MS (ESI-MS) and tandem MS (ESI-MS/MS) in positive and negative mode. Emphasis is placed in the influence of glycation in the generation of distinct photooxidation products. ESI-MS spectra of PE after UV photo-irradiation showed mainly hydroperoxy derivatives, due to oxidation of unsaturated fatty acyl chains. Glycated PE gave rise to several new photooxidation products formed due to oxidative cleavages of the glucose moiety, namely between C1 and C2, C2 and C3, and C5 and C6 of this sugar unit. These new products were identified by ESI-MS/MS in positive mode showing distinct neutral loss depending on the different structure of the polar head group. These new identified advanced glycated photooxidation products may have a deleterious role in the etiology of diabetic retinopathy and in diabetic retinal microvascular complications.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
32
|
Group VIB Phospholipase A(2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:989372. [PMID: 23213352 PMCID: PMC3503447 DOI: 10.1155/2012/989372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Group VIB Phospholipase A(2) (iPLA(2)γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA(2)γ mRNA and protein. We prepared INS-1 knockdown (KD) cell lines with reduced iPLA(2)γ expression, and they proliferate more slowly than control INS-1 cells and undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecular species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA(2)γ-KD cells exceeded those in control cells. iPLA(2)γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or with IL-1β and IFN-γ. These findings suggest that iPLA(2)γ promotes β-cell proliferation and that its expression is increased during inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival.
Collapse
|
33
|
Cho K, Kim Y, Wi SJ, Seo JB, Kwon J, Chung JH, Park KY, Nam MH. Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11015-28. [PMID: 23072474 DOI: 10.1021/jf303702j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A biphasic reactive oxygen species (ROS) production has previously been observed in tobacco at 1 and 48 h after inoculation with the hemibiotrophic compatible pathogen, Phytophthora parasitica var. nicotianae (Ppn). To characterize the response of tobacco to biphasically produced ROS concerning the propagation of Ppn, ultraperformance liquid chromatography-quadrupole-time of flight/ mass spectrometry (UPLC-Q-TOF/MS) based metabolic profiling combined with multivariate statistical analysis was performed. Among the nonredundant 355 mass ions in ESI+ mode and 345 mass ions in ESI- mode that were selected as significantly changed by Ppn inoculation (|p(corr)| > 0.6 on S-plot of orthogonal partial least-squares discriminant analysis (OPLS-DA), fold-change > 2, and p < 0.05 in the independent two-sample t test), 76 mass ions were identified on the basis of their accurate mass ions and MS/MS spectra. Phenolic amino acids, phenylpropanoids, hydroxycinnamic acid amides, linoleic acid, linolenic acid, lysophospholipids, glycoglycerolipids, and trioxidized phospholipids were identified as having changed after Ppn inoculation. On the basis of their quantitative changes, the metabolic responses occurring at each phase of ROS production after Ppn inoculation were investigated in this study.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Uchikata T, Matsubara A, Nishiumi S, Yoshida M, Fukusaki E, Bamba T. Development of oxidized phosphatidylcholine isomer profiling method using supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr A 2012; 1250:205-11. [DOI: 10.1016/j.chroma.2012.05.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
35
|
Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN. A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 2012; 53:1232-42. [PMID: 22414483 DOI: 10.1194/jlr.d025270] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as signaling mediators that are not only markers of oxidative stress but are also "makers" of pathology relevant to disease pathogenesis. Understanding the biological role of individual molecular species of OxPLs requires the knowledge of their concentration kinetics in cells and tissues. In this work, we describe a straightforward "fingerprinting" procedure for analysis of a broad spectrum of molecular species generated by oxidation of the four most abundant species of polyunsaturated phosphatidylcholines (OxPCs). The approach is based on liquid-liquid extraction followed by reversed-phase HPLC coupled to electrospray ionization MS/MS. More than 500 peaks corresponding in retention properties to polar and oxidized PCs were detected within 8 min at 99 m/z precursor values using a single diagnostic product ion in extracts from human dermal fibroblasts. Two hundred seventeen of these peaks were fluence-dependently and statistically significantly increased upon exposure of cells to UVA irradiation, suggesting that these are genuine oxidized or oxidatively fragmented species. This method of semitargeted lipidomic analysis may serve as a simple first step for characterization of specific "signatures" of OxPCs produced by different types of oxidative stress in order to select the most informative peaks for identification of their molecular structure and biological role.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
36
|
Hammond VJ, O'Donnell VB. Esterified eicosanoids: generation, characterization and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2403-12. [PMID: 22200400 DOI: 10.1016/j.bbamem.2011.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/28/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022]
Abstract
Eicosanoids are oxidation products of C20 polyunsaturated fatty acids (e.g. arachidonic acid) that include prostaglandins, thromboxanes, leukotrienes and hydroperoxy fatty acids. They have important biological roles in vivo, including regulation of renal, cardiovascular and gastrointestinal function. Historically, eicosanoids were thought to mediate their signaling actions exclusively as free acids, however evidence is now emerging that they may also be generated attached to other functional groups including phospholipids and glycerol, and that these more complex forms are pathophysiological signaling mediators in their own right. Early studies showed that exogenously added eicosanoids could become esterified into membrane phospholipids of cells, while more recently, it was uncovered that esterified eicosanoids are formed endogenously. This review summarizes our current knowledge of this area, starting with the early discoveries documenting what is known about eicosanoid generation and their esterification, and moving on to discuss the discovery that esterified eicosanoids are generated endogenously by a number of different cell types. Recent research that is highlighting new structures and functions of these important lipid mediators will be presented. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
|