1
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
2
|
Li X, He M, Yi X, Lu X, Zhu M, Xue M, Tang Y, Zhu Y. Short-chain fatty acids in nonalcoholic fatty liver disease: New prospects for short-chain fatty acids as therapeutic targets. Heliyon 2024; 10:e26991. [PMID: 38486722 PMCID: PMC10937592 DOI: 10.1016/j.heliyon.2024.e26991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a stress-induced liver injury related to heredity, environmental exposure and the gut microbiome metabolism. Short-chain fatty acids (SCFAs), the metabolites of gut microbiota (GM), participate in the regulation of hepatic steatosis and inflammation through the gut-liver axis, which play an important role in the alleviation of NAFLD. However, little progress has been made in systematically elucidating the mechanism of how SCFAs improve NAFLD, especially the epigenetic mechanisms and the potential therapeutic application as clinical treatment for NAFLD. Herein, we adopted PubMed and Medline to search relevant keywords such as 'SCFAs', 'NAFLD', 'gut microbiota', 'Epigenetic', 'diet', and 'prebiotic effect' to review the latest research on SCFAs in NAFLD up to November 2023. In this review, firstly, we specifically discussed the production and function of SCFAs, as well as their crosstalk coordination in the gut liver axis. Secondly, we provided an updated summary and intensive discussion of how SCFAs affect hepatic steatosis to alleviate NAFLD from the perspective of genetic and epigenetic. Thirdly, we paid attention to the pharmacological and physiological characteristics of SCFAs, and proposed a promising future direction to adopt SCFAs alone or in combination with prebiotics and related clinical drugs to prevent and treat NAFLD. Together, this review aimed to elucidate the function of SCFAs and provide new insights to the prospects of SCFAs as a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Maozhang He
- Department of Microbiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xinrui Yi
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Min Xue
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yunshu Tang
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Xu Q, Fan K, Wei D, Wang L, Wang J, Song Y, Wang M, Zhao M, Liu X, Huo W, Li L, Hou J, Jing T, Wang C, Mao Z. Higher HDL-C levels attenuated the association of plasma polybrominated diphenyl ethers with prediabetes and type 2 diabetes mellitus in rural Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115524. [PMID: 37776820 DOI: 10.1016/j.ecoenv.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Plasma polybrominated diphenyl ethers (PBDE) were used as flame retardants widely, however, epidemiological evidence for the association between PBDEs and type 2 diabetes mellitus (T2DM) is inconsistent. Moreover, the combined effects of PBDEs and blood lipid indicators on impaired fasting glucose (IFG) and T2DM remains largely unknown in rural areas lacking good waste recycling infrastructure. METHODS In this study, a total of 2607 subjects aged 18-79 years were included from the Henan Rural Cohort. Generalized linear and logistic regression models were applied to evaluate the associations of various PBDE pollutants on IFG and T2DM. Quantile g-computation regression and PBDE pollution score created by the adaptive elastic net were applied to evaluate the impact of PBDEs mixtures on IFG and T2DM. Interaction effects of individual PBDE pollutants and blood lipid indicators on IFG and T2DM were assessed by using Interaction plots. RESULTS The geometric mean concentrations (detection rates) were 0.09 ng/mL (100.0%), 0.12 ng/mL (97.8%), 0.22 ng/mL (94.7%), 0.16 ng/mL (99.2%) and 0.28 ng/mL (100.0%) for PBDE-28, PBDE-47, PBDE-99, and PBDE-153 respectively. However, PBDE-28, PBDE-99, PBDE-100, and ΣPBDEs were positively associated with IFG (odds ratios (ORs) (95% confidence intervals (CIs)): 1.14 (1.06, 1.23), 1.16 (1.04, 1.29), 1.25 (1.14, 1.37), and 1.27 (1.08, 1.50)). Similarly, PBDE-28, PBDE-47, PBDE-99, PBDE-100, and ΣPBDEs were positively associated with T2DM (ORs (95% CIs): 1.30 (1.10, 1.54), 1.13 (1.06, 1.22), 1.27 (1.13, 1.43), 1.27 (1.15, 1.40), and 1.30 (1.10, 1.54)). Moreover, five PBDE mixtures or jointly as PBDE pollution score, were significantly associated with an increased risk of T2DM (P < 0.05 for all). In addition, the harmful effect of PBDE exposure on T2DM was decreased with accompanying high-density lipoprotein cholesterol (HDL-C) levels increased. CONCLUSIONS Our findings highlight the importance of managing PBDEs contamination and suggest that HDL-C may be a novel way to prevent T2DM.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Teaching and Training Department, Affiliated Hospital of Jiaxing University/ The First Hospital of Jiaxing, 314000 Zhejiang, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
4
|
Abeer MI, Abdulhasan A, Haguar Z, Narayanaswami V. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: protective role of apolipoprotein E3 against oxidative species. FEBS J 2023; 290:3006-3025. [PMID: 36661393 PMCID: PMC11296219 DOI: 10.1111/febs.16729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High levels of 4-hydroxynonenal (HNE), arising from lipid peroxidation, and HNE-modified proteins have been identified in postmortem brains of ageing and Alzheimer's disease (AD) patients. The goal of this study is to understand the effect of HNE modification on the structure and function of recombinant apolipoprotein E3 (apoE3) and apolipoprotein E4 (apoE4), which play a critical role in brain cholesterol homeostasis. The two isoforms differ in a single amino acid at position 112: Cys in apoE3 and Arg in apoE4. Immunoblot with HNE-specific antibody indicates HNE modification of apoE3 and apoE4 with a major band at ~ 36 kDa, while LC-MS/MS revealed Michael addition at His140 (60-70% abundance) and His299 (3-5% abundance) in apoE3 and apoE4, and Cys112 adduct in apoE3 (75% abundance). Circular dichroism spectroscopy revealed no major differences in the overall secondary structure or helical content between unmodified and HNE-modified apoE. HNE modification did not affect their ability to promote cholesterol efflux from J774.1 macrophages. However, it led to a 3-fold decrease in their ability to bind lipids and 25-50% decrease in the ability of cerebral cortex endothelial cells to uptake lipoproteins bearing HNE-modified HNE-apoE3 or HNE-apoE4 as noted by fluorescence microscopy and flow cytometry. Taken together, the data indicate that HNE modification impairs lipid binding and cellular uptake of both isoforms, and that apoE3, bearing a Cys, offers a protective role by sequestering lipid peroxidation products that would otherwise cause indiscriminate damage to biomolecules. ApoE4, lacking Cys, is unable to protect against oxidative damage that is commensurate with ageing.
Collapse
Affiliation(s)
- Muhammad I Abeer
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Zahraa Haguar
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
5
|
Itabe H, Obama T. The Oxidized Lipoproteins In Vivo: Its Diversity and Behavior in the Human Circulation. Int J Mol Sci 2023; 24:ijms24065747. [PMID: 36982815 PMCID: PMC10053446 DOI: 10.3390/ijms24065747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
A high concentration of low-density lipoproteins (LDLs) in circulation has been well-known as a major risk factor for cardiovascular diseases. The presence of oxidized LDLs (oxLDLs) in atherosclerotic lesions and circulation was demonstrated using anti-oxLDL monoclonal antibodies. The so-called “oxLDL hypothesis”, as a mechanism for atherosclerosis development, has been attracting attention for decades. However, the oxLDL has been considered a hypothetical particle since the oxLDL present in vivo has not been fully characterized. Several chemically modified LDLs have been proposed to mimic oxLDLs. Some of the subfractions of LDL, especially Lp(a) and electronegative LDL, have been characterized as oxLDL candidates as oxidized phospholipids that stimulate vascular cells. Oxidized high-density lipoprotein (oxHDL) and oxLDL were discovered immunologically in vivo. Recently, an oxLDL-oxHDL complex was found in human plasma, suggesting the involvement of HDLs in the oxidative modification of lipoproteins in vivo. In this review, we summarize our understanding of oxidized lipoproteins and propose a novel standpoint to understand the oxidized lipoproteins present in vivo.
Collapse
|
6
|
Nessler K, Grzybczak R, Nessler M, Zalewski J, Gajos G, Windak A. Associations between myeloperoxidase and paraoxonase-1 and type 2 diabetes in patients with ischemic heart disease. BMC Cardiovasc Disord 2022; 22:521. [PMID: 36463116 PMCID: PMC9719221 DOI: 10.1186/s12872-022-02928-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The phrase "dysfunctional high-density lipoprotein" has been developed in the literature to describe the particle which loses its basic role- anti-oxidative and anti-inflammatory activity. In this porcess, the significance of enzymes- pro-oxidant myeloperoxidase (MPO) and antioxidant paraoxonase-1 (PON-1) from the perspective of HDL-C function has been noted. AIMS The objective of this study was to analyze the associations between two enzymes -MPO and PON-1 and type 2 diabetes (T2DM) in patients with ischemic heart disease (IHD). METHODS An observational cross-sectional study including 70 patients with IHD of whom 35 had also T2DM, and 35 had no T2DM. Laboratory tests (MPO, PON-1, fasting glucose, glycated hemoglobin, total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, and high-sensitivity C-reactive protein) were performed. RESULTS The study revealed a significant difference in the serum concentration of the enzymes between patients with IHD with and without T2DM. Our results showed increased MPO concentration levels in diabetic patients. The analysis also revealed that T2DM is independently associated with an increase in MPO levels. Simultaneously, a decrease in PON-1 levels was observed in patients with T2DM. The study also revealed that T2DM is independently associated with a decrease in PON-1 levels. CONCLUSIONS In patients with type 2 diabetes the profile of enzymes involved in high-density lipoprotein metabolism in patients with IHD is worse than in patients without T2DM. The increase in the levels of MPO, an enzyme with oxidative and atherogenic properties and on a decrease in PON-1 levels, an enzyme with antioxidant and atheroprotective properties is observed.
Collapse
Affiliation(s)
- Katarzyna Nessler
- grid.5522.00000 0001 2162 9631Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College in Krakow, 4 Bochenska str, 31-061 Krakow, Poland
| | - Rafal Grzybczak
- grid.5522.00000 0001 2162 9631Department of Cardiac Rehabilitation, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Michal Nessler
- Burns and Plastic Surgery Centre of Malopolska, Rydygier Memorial Hospital, Os. Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Jarosław Zalewski
- grid.5522.00000 0001 2162 9631Department of Coronary Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Grzegorz Gajos
- grid.5522.00000 0001 2162 9631Department of Coronary Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Adam Windak
- grid.5522.00000 0001 2162 9631Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College in Krakow, 4 Bochenska str, 31-061 Krakow, Poland
| |
Collapse
|
7
|
O’Hagan R, Berg AR, Hong CG, Parel PM, Mehta NN, Teague HL. Systemic consequences of abnormal cholesterol handling: Interdependent pathways of inflammation and dyslipidemia. Front Immunol 2022; 13:972140. [PMID: 36091062 PMCID: PMC9459038 DOI: 10.3389/fimmu.2022.972140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic conditions such as obesity and associated comorbidities are increasing in prevalence worldwide. In chronically inflamed pathologies, metabolic conditions are linked to early onset cardiovascular disease, which remains the leading cause of death despite decades of research. In recent years, studies focused on the interdependent pathways connecting metabolism and the immune response have highlighted that dysregulated cholesterol trafficking instigates an overactive, systemic inflammatory response, thereby perpetuating early development of cardiovascular disease. In this review, we will discuss the overlapping pathways connecting cholesterol trafficking with innate immunity and present evidence that cholesterol accumulation in the bone marrow may drive systemic inflammation in chronically inflamed pathologies. Lastly, we will review the current therapeutic strategies that target both inflammation and cholesterol transport, and how biologic therapy restores lipoprotein function and mitigates the immune response.
Collapse
|
8
|
Zhou M, Li R, Venkat P, Qian Y, Chopp M, Zacharek A, Landschoot-Ward J, Powell B, Jiang Q, Cui X. Post-Stroke Administration of L-4F Promotes Neurovascular and White Matter Remodeling in Type-2 Diabetic Stroke Mice. Front Neurol 2022; 13:863934. [PMID: 35572941 PMCID: PMC9100936 DOI: 10.3389/fneur.2022.863934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) exhibit a distinct and high risk of ischemic stroke with worse post-stroke neurovascular and white matter (WM) prognosis than the non-diabetic population. In the central nervous system, the ATP-binding cassette transporter member A 1 (ABCA1), a reverse cholesterol transporter that efflux cellular cholesterol, plays an important role in high-density lipoprotein (HDL) biogenesis and in maintaining neurovascular stability and WM integrity. Our previous study shows that L-4F, an economical apolipoprotein A member I (ApoA-I) mimetic peptide, has neuroprotective effects via alleviating neurovascular and WM impairments in the brain of db/db-T2DM stroke mice. To further investigate whether L-4F has neurorestorative benefits in the ischemic brain after stroke in T2DM and elucidate the underlying molecular mechanisms, we subjected middle-aged, brain-ABCA1 deficient (ABCA1-B/-B), and ABCA1-floxed (ABCA1fl/fl) T2DM control mice to distal middle cerebral artery occlusion. L-4F (16 mg/kg, subcutaneous) treatment was initiated 24 h after stroke and administered once daily for 21 days. Treatment of T2DM-stroke with L-4F improved neurological functional outcome, and decreased hemorrhage, mortality, and BBB leakage identified by decreased albumin infiltration and increased tight-junction and astrocyte end-feet densities, increased cerebral arteriole diameter and smooth muscle cell number, and increased WM density and oligodendrogenesis in the ischemic brain in both ABCA1-B/-B and ABCA1fl/fl T2DM-stroke mice compared with vehicle-control mice, respectively (p < 0.05, n = 9 or 21/group). The L-4F treatment reduced macrophage infiltration and neuroinflammation identified by decreases in ED-1, monocyte chemoattractant protein-1 (MCP-1), and toll-like receptor 4 (TLR4) expression, and increases in anti-inflammatory factor Insulin-like growth factor 1 (IGF-1) and its receptor IGF-1 receptor β (IGF-1Rβ) in the ischemic brain (p < 0.05, n = 6/group). These results suggest that post-stroke administration of L-4F may provide a restorative strategy for T2DM-stroke by promoting neurovascular and WM remodeling. Reducing neuroinflammation in the injured brain may contribute at least partially to the restorative effects of L-4F independent of the ABCA1 signaling pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
9
|
High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future II. Biomedicines 2022; 10:biomedicines10030620. [PMID: 35327422 PMCID: PMC8945336 DOI: 10.3390/biomedicines10030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
|
10
|
HDL Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:1-11. [DOI: 10.1007/978-981-19-1592-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|
12
|
Bein K, Birru RL, Wells H, Larkin TP, Ge T, Leikauf GD. Sex-dependent acrolein sensitivity in mice is associated with differential lung cell, protein, and transcript changes. Physiol Rep 2021; 9:e14997. [PMID: 34605213 PMCID: PMC8488558 DOI: 10.14814/phy2.14997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Acrolein is a reactive inhalation hazard. Acrolein's initial interaction, which in itself can be function-altering, is followed by time-dependent cascade of complex cellular and pulmonary responses that dictate the severity of the injury. To investigate the pathophysiological progression of sex-dependent acrolein-induced acute lung injury, C57BL/6J mice were exposed for 30 min to sublethal, but toxic, and lethal acrolein. Male mice were more sensitive than female mice. Acrolein of 50 ppm was sublethal to female but lethal to male mice, and 75 ppm was lethal to female mice. Lethal and sublethal acrolein exposure decreased bronchoalveolar lavage (BAL) total cell number at 3 h after exposure. The cell number decrease was followed by progressive total cell and neutrophil number and protein increases. The BAL total cell number in female mice exposed to a sublethal, but not lethal dose, returned to control levels at 16 h. In contrast, BAL protein content and neutrophil number were higher in mice exposed to lethal compared to sublethal acrolein. RNASeq pathway analysis identified greater increased lung neutrophil, glutathione metabolism, oxidative stress responses, and CCL7 (aka MCP-3), CXCL10 (aka IP-10), and IL6 transcripts in males than females, whereas IL10 increased more in female than male mice. Thus, the IL6:IL10 ratio, an indicator of disease severity, was greater in males than females. Further, H3.3 histone B (H3F3B) and pro-platelet basic protein (PPBP aka CXCL7), transcripts increased in acrolein exposed mouse BAL and plasma at 3 h, while H3F3B protein that is associated with neutrophil extracellular traps formation increased at 12 h. These results suggest that H3F3B and PPBP transcripts increase may contribute to extracellular H3F3B and PPBP proteins increase.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rahel L. Birru
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Heather Wells
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Theodore P. Larkin
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tengziyi Ge
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - George D. Leikauf
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
14
|
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021; 9:biomedicines9060655. [PMID: 34201176 PMCID: PMC8229488 DOI: 10.3390/biomedicines9060655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Abstract
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Collapse
|
15
|
Umezawa A, Maruyama C, Endo Y, Suenaga Y, Shijo Y, Kameyama N, Sato A, Nishitani A, Ayaori M, Waki M, Teramoto T, Ikewaki K. Effects of Dietary Education Program for the Japan Diet on Cholesterol Efflux Capacity: A Randomized Controlled Trial. J Atheroscler Thromb 2021; 29:881-893. [PMID: 34024872 PMCID: PMC9174087 DOI: 10.5551/jat.62832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: Improving cholesterol efflux capacity (CEC) of high-density lipoprotein (HDL) has been regarded as a novel target for preventing cardiovascular disease. HDL reportedly has antioxidant properties which may contribute to its functions. We investigated changes in CEC with intake of the Japan Diet (JD) recommended by the Japan Atherosclerosis Society and the relationship of these changes to serum antioxidant concentrations.
Methods: A randomized parallel controlled clinical trial on JD intake was performed in Japanese patients with dyslipidemia. Ninety-eight participants were randomly divided into the JD (n=49) or the partial JD (PJD) (n=49) group. Nutrition education, based on each diet at baseline and at 3 months, was provided and the participants were followed up for 6 months.
Results: Mean CEC was 1.05 in total and correlated positively with HDL-cholesterol (p<0.001) at baseline. CEC did not change while oxygen radical absorbance capacity (ORAC) was decreased in both groups (p<0.001). Although serum total carotenoid increased in both groups, serum α-tocopherol decreased in the JD group as compared to the PJD group (p<0.05). CEC correlated positively with HDL ORAC at baseline (p=0.021) and with serum total carotenoid at 3 and 6 months (p=0.005, 0.035). Changes in CEC correlated positively with changes in HDL ORAC at 3 months and serum total tocopherol at 3 and 6 months (p<0.001).
Conclusion: CEC was not changed by JD education in Japanese patients with dyslipidemia who already had normal CEC at baseline. CEC was suggested to be positively associated with serum α- and γ-tocopherol and HDL ORAC.
Collapse
Affiliation(s)
- Ariko Umezawa
- Division of Food and Nutrition, Graduate School of Human Sciences and Design, Japan Women's University
| | - Chizuko Maruyama
- Division of Food and Nutrition, Graduate School of Human Sciences and Design, Japan Women's University.,Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University
| | - Yasuhiro Endo
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College
| | - Yumiko Suenaga
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College
| | - Yuri Shijo
- Division of Food and Nutrition, Graduate School of Human Sciences and Design, Japan Women's University
| | - Noriko Kameyama
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University
| | - Aisa Sato
- Division of Food and Nutrition, Graduate School of Human Sciences and Design, Japan Women's University
| | - Ai Nishitani
- Teikyo Academic Research Center, Teikyo University
| | | | | | - Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University.,Teramoto Medical and Dental Clinic
| | - Katsunori Ikewaki
- Division of Anti-aging, Department of Internal Medicine, National Defense Medical College.,Tokorozawa Heart Center
| |
Collapse
|
16
|
Jin Z, Zhou L, Tian R, Lu N. Myeloperoxidase Targets Apolipoprotein A-I for Site-Specific Tyrosine Chlorination in Atherosclerotic Lesions and Generates Dysfunctional High-Density Lipoprotein. Chem Res Toxicol 2021; 34:1672-1680. [PMID: 33861588 DOI: 10.1021/acs.chemrestox.1c00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously demonstrated that apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), is an important target for myeloperoxidase (MPO)-catalyzed tyrosine chlorination in the circulation of subjects with cardiovascular diseases. Oxidation of apoA-I by MPO has been reported to deprive HDL of its protective properties. However, the potential effects of MPO-mediated site-specific tyrosine chlorination of apoA-I on dysfunctional HDL formation and atherosclerosis was unclear. Herein, Tyr192 in apoA-I was found to be the major chlorination site in both lesion and plasma HDL from humans with atherosclerosis, while MPO binding to apoA-I was demonstrated by immunoprecipitation studies in vivo. In vitro, MPO-mediated damage of lipid-free apoA-I impaired its ability to promote cellular cholesterol efflux by the ABCA1 pathway, whereas oxidation to lipid-associated apoA-I inhibited lecithin:cholesterol acyltransferase activation, two key steps in reverse cholesterol transport. Compared with native apoA-I, apoA-I containing a Tyr192 → Phe mutation was moderately resistant to oxidative inactivation by MPO. In high-fat-diet-fed apolipoprotein E-deficient mice, compared with native apoA-I, subcutaneous injection with oxidized apoA-I (MPO treated) failed to mediate the lipid content in aortic plaques while mutant apoA-I (Tyr192 → Phe) showed a slightly stronger ability to reduce the lipid content in vivo. Our observations suggest that oxidative damage of apoA-I and HDL involves MPO-dependent site-specific tyrosine chlorination, raising the feasibility of producing MPO-resistant forms of apoA-I that have stronger antiatherosclerotic activity in vivo.
Collapse
Affiliation(s)
- Zelong Jin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Lan Zhou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
17
|
Ayuso P, García-Martín E, Agúndez JAG. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Antioxidants (Basel) 2021; 10:antiox10020294. [PMID: 33672092 PMCID: PMC7919686 DOI: 10.3390/antiox10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by β-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.
Collapse
Affiliation(s)
- Pedro Ayuso
- Correspondence: ; Tel.: +34-927257000 (ext. 51038)
| | | | | |
Collapse
|
18
|
Bacchetti T, Ferretti G, Carbone F, Ministrini S, Montecucco F, Jamialahmadi T, Sahebkar A. Dysfunctional High-density Lipoprotein: The Role of Myeloperoxidase and Paraoxonase-1. Curr Med Chem 2021; 28:2842-2850. [PMID: 32674726 DOI: 10.2174/0929867327999200716112353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
Low circulating high-density lipoproteins (HDL) are not only defining criteria for metabolic syndrome, but are more generally associated with atherosclerotic cardiovascular disease (ASCVD) and other chronic diseases. Oxidative stress, a hallmark of cardio-metabolic disease, further influences HDL activity by suppressing their function. Especially the leukocyte- derived enzyme myeloperoxidase (MPO) has recently attracted great interest as it catalyzes the formation of oxidizing reactive species that modify the structure and function of HDL, ultimately increasing cardiovascular risk. Contrariwise, paraoxonase-1 (PON1) is an HDL-associated enzyme that protects HDL from lipid oxidation and then acts as a protective factor against ASCVD. It is noteworthy that recent studies have demonstrated how MPO, PON1 and HDL form a functional complex in which PON1 partially inhibits the MPO activity, while MPO in turn partially inactivates PON1.In line with that, a high MPO/PON1 ratio characterizes patients with ASCVD and metabolic syndrome and has been suggested as a potential marker of dysfunctional HDL as well as a predictor of ASCVD. In this review, we summarize the evidence on the interactions between MPO and PON1 with regard to their structure, function and interaction with HDL activity. We also provide an overview of in vitro and experimental animal models, finally focusing on clinical evidence from a cohort of patients with ASCVD and metabolic syndrome.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Polytechnic University of Marche, Ancona, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Stefano Ministrini
- Internal Medicine Department, "Santa Maria della Misericordia" Hospital, University of Perugia, Piazzale Menghini, Sant'Andrea delle Fratte 06132 Perugia, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | | |
Collapse
|
19
|
Oehler B, Kloka J, Mohammadi M, Ben-Kraiem A, Rittner HL. D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Mol Pain 2020; 16:1744806920903848. [PMID: 31996074 PMCID: PMC6993174 DOI: 10.1177/1744806920903848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Cologne, Cologne, Germany
| | - Adel Ben-Kraiem
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Transfer and Enzyme-Mediated Metabolism of Oxidized Phosphatidylcholine and Lysophosphatidylcholine between Low- and High-Density Lipoproteins. Antioxidants (Basel) 2020; 9:antiox9111045. [PMID: 33114515 PMCID: PMC7712993 DOI: 10.3390/antiox9111045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.
Collapse
|
21
|
Sawada N, Obama T, Koba S, Takaki T, Iwamoto S, Aiuchi T, Kato R, Kikuchi M, Hamazaki Y, Itabe H. Circulating oxidized LDL, increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res 2020; 61:816-829. [PMID: 32291330 PMCID: PMC7269762 DOI: 10.1194/jlr.ra119000312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidized LDL (oxLDL) is a known risk factor for atherogenesis. This study aimed to reveal structural features of oxLDL present in human circulation related to atherosclerosis. When LDL was fractionated on an anion-exchange column, in vivo-oxLDL, detected by the anti-oxidized PC (oxPC) mAb, was recovered in flow-through and electronegative LDL [LDL(-)] fractions. The amount of the electronegative in vivo-oxLDL, namely oxLDL in the LDL(-) fraction, present in patients with acute MI was 3-fold higher than that observed in healthy subjects. Surprisingly, the LDL(-) fraction contained apoA1 in addition to apoB, and HDL-sized particles were observed with transmission electron microscopy. In LDL(-) fractions, acrolein adducts were identified at all lysine residues in apoA1, with only a small number of acrolein-modified residues identified in apoB. The amount of oxPC adducts of apoB was higher in the LDL(-) than in the L1 fraction, as determined using Western blotting. The electronegative in vivo-oxLDL was immunologically purified from the LDL(-) fraction with an anti-oxPC mAb. The majority of PC species were not oxidized, whereas oxPC and lysoPC did not accumulate. Here, we propose that there are two types of in vivo-oxLDL in human circulating plasma and the electronegative in vivo-oxLDL accompanies oxidized HDL.
Collapse
Affiliation(s)
- Naoko Sawada
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shinji Koba
- Division of Cardiology, Department of Medicine Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Takaki
- Division of Electron Microscopy Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masaki Kikuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuji Hamazaki
- Division of Cardiology, Department of Medicine Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan. mailto:
| |
Collapse
|
22
|
Yalcinkaya A, Unal S, Oztas Y. Altered HDL particle in sickle cell disease: decreased cholesterol content is associated with hemolysis, whereas decreased Apolipoprotein A1 is linked to inflammation. Lipids Health Dis 2019; 18:225. [PMID: 31861992 PMCID: PMC6924024 DOI: 10.1186/s12944-019-1174-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hypocholesterolemia is the most frequently encountered lipid abnormality in sickle cell disease (SCD). We enrolled pediatric patients to determine the relationships between lipid profile and parameters of hemolysis, oxidative stress and chronic inflammation in SCD. Methods The study involved 35 pediatric SCD patients and 19 healthy controls. Patients were crisis-free and had not received transfusions for the last 3 months. Total cholesterol, triglyceride, HDL-C, LDL-C, VLDL-C, apolipoprotein A1, apolipoprotein B, LCAT, LDH, bilirubin, haptoglobin, iron, ferritin, hemin, serum amyloid A (SAA), myeloperoxidase (MPO), uric acid, ALT and GGT levels were evaluated in patients’ blood. Results Patients had hypocholesterolemia depicted by lower levels of total cholesterol, HDL-C, LDL-C, as well as Apolipoprotein A1 and Apolipoprotein B compared to controls. The chronic hemolysis of SCD was evident in patients by higher LDH and bilirubin and almost undetectable haptoglobin levels. Hemin levels (as a measure of oxidized heme) were significantly increased in patients with SCD. Inflammation markers, SAA and MPO, were significantly increased in the patients as well. There were negative correlations between HDL-C and LDH, and Apo A1 and SAA. Hemin was positively correlated to MPO. Conclusion Hemolysis was associated with decreased HDL –C, and Inflammation was linked to decreased apolipoprotein A1 levels in our SCD patients. Therefore, we suggest that the HDL particle is altered during the course of the disease. The altered HDL in SCD may become dysfunctional and result with a slowing down of the reverse cholesterol transport.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Selma Unal
- Department of Pediatric Hematology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
23
|
May-Zhang LS, Yermalitsky V, Melchior JT, Morris J, Tallman KA, Borja MS, Pleasent T, Amarnath V, Song W, Yancey PG, Davidson WS, Linton MF, Davies SS. Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia. J Biol Chem 2019; 294:19022-19033. [PMID: 31666337 PMCID: PMC6916491 DOI: 10.1074/jbc.ra119.009424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Valery Yermalitsky
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - John T Melchior
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Jamie Morris
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Keri A Tallman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Mark S Borja
- Department of Chemistry & Biochemistry, California State University East Bay, Hayward, California 94542
| | - Tiffany Pleasent
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Wenliang Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Patricia G Yancey
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - W Sean Davidson
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - MacRae F Linton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
24
|
Kidney as modulator and target of "good/bad" HDL. Pediatr Nephrol 2019; 34:1683-1695. [PMID: 30291429 PMCID: PMC6450786 DOI: 10.1007/s00467-018-4104-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
The strong inverse relationship between low levels of high-density lipoproteins (HDLs) and atherosclerotic cardiovascular disease (CVD) led to the designation of HDL as the "good" cholesterol. The atheroprotection is thought to reflect HDL's capacity to efflux cholesterol from macrophages, followed by interaction with other lipoproteins in the plasma, processing by the liver and excretion into bile. However, pharmacologic increases in HDL-C levels have not led to expected clinical benefits, giving rise to the concept of dysfunctional HDL, in which increases in serum HDL-C are not beneficial due to lost or altered HDL functions and transition to "bad" HDL. It is now understood that the cholesterol in HDL, measured by HDL-C, is neither a marker nor the mediator of HDL function, including cholesterol efflux capacity. It is also understood that besides cholesterol efflux, HDL functionality encompasses many other potentially beneficial functions, including antioxidant, anti-inflammatory, antithrombotic, anti-apoptotic, and vascular protective effects that may be critical protective pathways for various cells, including those in the kidney parenchyma. This review highlights advances in our understanding of the role kidneys play in HDL metabolism, including the effects on levels, composition, and functionality of HDL particles, particularly the main HDL protein, apolipoprotein AI (apoAI). We suggest that normal apoAI/HDL in the glomerular filtrate provides beneficial effects, including lymphangiogenesis, that promote resorption of renal interstitial fluid and biological particles. In contrast, dysfunctional apoAI/HDL activates detrimental pathways in tubular epithelial cells and lymphatics that lead to interstitial accumulation of fluid and harmful particles that promote progressive kidney damage.
Collapse
|
25
|
Cabou C, Honorato P, Briceño L, Ghezali L, Duparc T, León M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, González M, Radojkovic C, Martinez LO. Pharmacological inhibition of the F 1 -ATPase/P2Y 1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 2019; 226:e13268. [PMID: 30821416 DOI: 10.1111/apha.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
AIM The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high-density lipoprotein (HDL), to endothelium-dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto-F1 -ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)-sensitive P2Y receptors (P2Y ADP receptors). Ecto-F1 -ATPase is involved in APOA1-mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid-free APOA1 and the involvement of ecto-F1 -ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. METHOD Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. RESULTS Physiological concentrations of lipid-free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto-F1 -ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto-F1 -ATPase and P2Y1 receptor. CONCLUSIONS Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto-F1 -ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
- Department of Human Physiology, Faculty of Pharmacy University Paul Sabatier Toulouse France
| | - Paula Honorato
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Luis Briceño
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Lamia Ghezali
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Thibaut Duparc
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Marcelo León
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Guillaume Combes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Laure Frayssinhes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Audren Fournel
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Anne Abot
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Bernard Masri
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Nicol Parada
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
| | - Claude Knauf
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, and Department of Obstetrics and Gynecology, Faculty of Medicine Universidad de Concepción Concepción Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Laurent O. Martinez
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| |
Collapse
|
26
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
27
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
28
|
Comparative Proteome Analysis Reveals Lipid Metabolism-Related Protein Networks in Response to Rump Fat Mobilization. Int J Mol Sci 2018; 19:ijms19092556. [PMID: 30154394 PMCID: PMC6164786 DOI: 10.3390/ijms19092556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Altay is a typical fat-tailed sheep breed displaying the unique ability to rapidly mobilize fat, which is vital for maintaining a normal metabolism that facilitates its survival in lengthy winter conditions. However, the physiological, biochemical, and molecular mechanisms underlying fat mobilization remain to be elucidated. In this study, the monitoring of rump fat adipocyte sizes disclosed a positive correlation between cell size and fat deposition ability. In addition, we subjected sheep to persistent starvation to imitate the conditions that trigger rump fat mobilization and screened 112 differentially expressed proteins using the isobaric peptide labeling approach. Notably, increased secretion of leptin and adiponectin activated the key fat mobilization signaling pathways under persistent starvation conditions. Furthermore, the upregulation of resistin (RETN), heat-shock protein 72 (HSP72), and complement factor D (CFD) promoted lipolysis, whereas the downregulation of cell death-inducing DFFA-like effector C (CIDEC) inhibited lipid droplet fusion, and the increase in HSP72 and apolipoprotein AI (Apo-AI) levels activated the body’s stress mechanisms. The synergistic actions of the above hormones, genes, and signaling pathways form a molecular network that functions in improving the adaptability of Altay sheep to extreme environments. Our findings provide a reference for elucidating the complex molecular mechanisms underlying rump fat mobilization.
Collapse
|
29
|
The effect of electronic-cigarettes aerosol on rat brain lipid profile. Biochimie 2018; 153:99-108. [PMID: 30077815 DOI: 10.1016/j.biochi.2018.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The electronic cigarettes (e-cigarettes, e-cigs) have become the most sought-after alternative to the traditional cigarettes, partly due to the widespread perception of safety. However, the high temperature reached by e-cig solutions can generate toxic compounds, some of which are listed as known human carcinogens. To evaluate the impact of e-cig aerosol on rat brain lipid profile, twenty male Sprague Dawley rats were exposed to 11 cycles/day (E-cig group), to consume 1 mL/day of e-liquid, for 5 days/week up to 8 weeks. Ten rats were sacrificed after 4 weeks (4w) and ten at the end of treatment (8w). The composition of total fatty acids, sterols and oxysterols of the lipid fraction of rat brains, was analyzed. The results of the E-cig group were compared with those of the control group (not exposed). After 8 weeks, the saturated fatty acids significantly raised up to 7.35 mg/g tissue, whereas polyunsaturated fatty acids decreased reaching 3.17 mg/g. The e-cig vaping increased both palmitic (3.43 mg/g) and stearic acids (3.82 mg/g), while a significant decrement of arachidonic (1.32 mg/g) and docosahexaenoic acids (1.00 mg/g) was found. Atherogenic (0.5) and thrombogenic (1.12) indices also increased in 8w treated animals. The e-cig aerosol significantly impacted the cholesterol homeostasis, since the latter at 8w (21.57 mg/g) was significantly lower than control (24.56 mg/g); moreover, a significant increase of 7-dehydrocholesterol (1.87 mg/g) was also denoted in e-cig group. The e-cig aerosol also reduced the oxysterol formation (19.55 μg/g) after 4 weeks of exposure, except for triol and 5α,6α-epoxycholesterol (α-EC). The principal component analysis (PCA) separated all E-cig from control groups, evidencing that oxysterols (except triol and 24(S)-hydroxycholesterol (24(S)-HC)) were inversely correlated to 7-DHC and TI. The present research revealed that e-cigs aerosol affected the lipid and cholesterol homeostasis in rat brain, which could contribute to the new occurrence of some neurodegenerative diseases.
Collapse
|
30
|
Collier TS, Jin Z, Topbas C, Bystrom C. Rapid Affinity Enrichment of Human Apolipoprotein A-I Associated Lipoproteins for Proteome Analysis. J Proteome Res 2018; 17:1183-1193. [PMID: 29411613 DOI: 10.1021/acs.jproteome.7b00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of high density lipoproteins (HDL) for structural and functional studies typically relies on ultracentrifugation techniques, which are time-consuming and difficult to scale. With emerging interest in the clinical relevance of HDL structure and function to cardiovascular disease, a significant gap exists between current and desirable sample preparation throughput. To enable proteomic studies of HDL with large clinical cohorts, we have developed an affinity enrichment approach that relies on the association of histidine-tagged, lipid free ApoA-I with HDL followed by standard metal chelate chromatography. Characterization of the resulting affinity-enriched ApoA-I associated lipoprotein (AALP) pool using biochemical, electrophoretic, and proteomic analysis demonstrates that the isolated material is closely related in structural features, lipid content, protein complement, and relative protein distribution to HDL isolated by ultracentrifugation using sequential density adjustment. The simplicity of the method provides avenues for high-throughput analysis of HDL associated proteins.
Collapse
Affiliation(s)
- Timothy S Collier
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Zhicheng Jin
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Celalettin Topbas
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Cory Bystrom
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| |
Collapse
|
31
|
Witkowski A, Chan GKL, Boatz JC, Li NJ, Inoue AP, Wong JC, van der Wel PCA, Cavigiolio G. Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation. FASEB J 2018; 32:3149-3165. [PMID: 29401604 DOI: 10.1096/fj.201701127r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Apolipoprotein A-I (apoA-I) shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and intermolecularly, providing structural stabilization by self-association. We have reported that lipid-free apoA-I becomes amyloidogenic upon physiologically relevant (myeloperoxidase-mediated) Met oxidation. In this study, we established that Met oxidation promotes amyloidogenesis by reducing the stability of apoA-I monomers and irreversibly disrupting self-association. The oxidized apoA-I monomers also exhibited increased cellular cholesterol release capacity and stronger association with macrophages, compared to nonoxidized apoA-I. Of physiologic relevance, preformed oxidized apoA-I amyloid fibrils induced amyloid formation in nonoxidized apoA-I. This process was enhanced when self-association of nonoxidized apoA-I was disrupted by thermal treatment. Solid state NMR analysis revealed that aggregates formed by seeded nonoxidized apoA-I were structurally similar to those formed by the oxidized protein, featuring a β-structure-rich amyloid fold alongside α-helices retained from the native state. In atherosclerotic lesions, the conditions that promote apoA-I amyloid formation are readily available: myeloperoxidase, active oxygen species, low pH, and high concentration of lipid-free apoA-I. Our results suggest that even partial Met oxidation of apoA-I can nucleate amyloidogenesis, thus sequestering and inactivating otherwise antiatherogenic and HDL-forming apoA-I.-Witkowski, A., Chan, G. K. L., Boatz, J. C., Li, N. J., Inoue, A. P., Wong, J. C., van der Wel, P. C. A., Cavigiolio, G. Methionine oxidized apolipoprotein A-I at the crossroads of HDL biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Andrzej Witkowski
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Gary K L Chan
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy J Li
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Ayuka P Inoue
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | - Jaclyn C Wong
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| | | | - Giorgio Cavigiolio
- Children's Hospital Oakland Research Institute (CHORI), Oakland, California, USA
| |
Collapse
|
32
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
33
|
Dysfunctional high-density lipoproteins have distinct composition, diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Sci Rep 2017; 7:7295. [PMID: 28779156 PMCID: PMC5544737 DOI: 10.1038/s41598-017-07821-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
There is a stringent need to find means for risk stratification of coronary artery diseases (CAD) patients. We aimed at identifying alterations of plasma high-density lipoproteins (HDL) components and their validation as dysfunctional HDL that could discriminate between acute coronary syndrome (ACS) and stable angina (SA) patients. HDL2 and HDL3 were isolated from CAD patients’ plasma and healthy subjects. ApolipoproteinAI (apoAI), apoAII, apoCIII, malondialdehyde (MDA), myeloperoxidase (MPO), ceruloplasmin and paraoxonase1 (PON1) were assessed. The anti-inflammatory potential of HDL subfractions was tested by evaluating the secreted inflammatory molecules of tumor necrosis factor α-activated endothelial cells (EC) upon co-incubation with HDL2 or HDL3. We found in ACS versus SA patients: 40% increased MPO, MDA, apoCIII in HDL2 and HDL3, 35% augmented apoAII in HDL2, and in HDL3 increased ceruloplasmin, decreased apoAII (40%) and PON1 protein and activity (15% and 25%). Co-incubation of activated EC with HDL2 or HDL3 from CAD patients induced significantly increased levels of secreted inflammatory molecules, 15–20% more for ACS versus SA. In conclusion, the assessed panel of markers correlates with the reduced anti-inflammatory potential of HDL subfractions isolated from ACS and SA patients (mostly for HDL3 from ACS) and can discriminate between these two groups of CAD patients.
Collapse
|
34
|
Borja MS, Hammerson B, Tang C, Savinova OV, Shearer GC, Oda MN. Apolipoprotein A-I exchange is impaired in metabolic syndrome patients asymptomatic for diabetes and cardiovascular disease. PLoS One 2017; 12:e0182217. [PMID: 28767713 PMCID: PMC5540550 DOI: 10.1371/journal.pone.0182217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE We tested the hypothesis that HDL-apolipoprotein A-I exchange (HAE), a measure of high-density lipoprotein (HDL) function and a key step in reverse cholesterol transport (RCT), is impaired in metabolic syndrome (MetSyn) patients who are asymptomatic for diabetes and cardiovascular disease. We also compared HAE with cell-based cholesterol efflux capacity (CEC) to address previous reports that CEC is enhanced in MetSyn populations. METHODS HAE and ABCA1-specific CEC were measured as tests of HDL function in 60 MetSyn patients and 14 normolipidemic control subjects. Predictors of HAE and CEC were evaluated with multiple linear regression modeling using clinical markers of MetSyn and CVD risk. RESULTS HAE was significantly reduced in MetSyn patients (49.0 ± 10.9% vs. 61.2 ± 6.1%, P < 0.0001), as was ABCA1-specific CEC (10.1 ± 1.6% vs. 12.3 ± 2.0%, P < 0.002). Multiple linear regression analysis identified apoA-I concentration as a significant positive predictor of HAE, and MetSyn patients had significantly lower HAE per mg/dL of apoA-I (P = 0.004). MetSyn status was a negative predictor of CEC, but triglyceride (TG) was a positive predictor of CEC, with MetSyn patients having higher CEC per mg/dL of TG, but lower overall CEC compared to controls. CONCLUSIONS MetSyn patients have impaired HAE that contributes to reduced capacity for ABCA1-mediated CEC. MetSyn status is inversely correlated with CEC but positively correlated with TG, which explains the contradictory results from earlier MetSyn studies focused on CEC. HAE and CEC are inhibited in MetSyn patients over a broad range of absolute apoA-I and HDL particle levels, supporting the observation that this patient population bears significant residual cardiovascular disease risk.
Collapse
Affiliation(s)
- Mark S. Borja
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bradley Hammerson
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Olga V. Savinova
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
| | - Gregory C. Shearer
- Cardiovascular Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, United States of America
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Michael N. Oda
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ito F, Ito T, Suzuki C, Yahata T, Ikeda K, Hamaoka K. The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein. Int J Mol Sci 2017; 18:ijms18020454. [PMID: 28230785 PMCID: PMC5343988 DOI: 10.3390/ijms18020454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/04/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Institute of Health Sciences, Sunstar Inc., Osaka 569-1195, Japan.
| | - Tomoyuki Ito
- Department of Rehabilitation Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Chinatsu Suzuki
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Tomoyo Yahata
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Kazuyuki Ikeda
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
36
|
Tian R, Ding Y, Peng YY, Lu N. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid. Biochem Biophys Res Commun 2017; 484:572-578. [PMID: 28131839 DOI: 10.1016/j.bbrc.2017.01.132] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.
Collapse
Affiliation(s)
- Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yun Ding
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
37
|
Wang Q, Li C, Zhang Q, Wang Y, Shi T, Lu L, Zhang Y, Wang Y, Wang W. The effect of Chinese herbs and its effective components on coronary heart disease through PPARs-PGC1α pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:514. [PMID: 27955667 PMCID: PMC5153825 DOI: 10.1186/s12906-016-1496-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
Abstract
Background DanQi pill (DQP) is prescribed widely in China and has definite cardioprotective effect on coronary heart disease. Our previous studies proved that DQP could effectively regulate plasma levels of high density lipoprotein (HDL) and low density lipoprotein (LDL). However, the regulatory mechanisms of DQP and its major components Salvianolic acids and Panax notoginseng saponins (DS) on lipid metabolism disorders haven’t been comprehensively studied so far. Methods Rat model of coronary heart disease was induced by left anterior descending (LAD) artery ligation operations. Rats were divided into sham, model, DQP treated, DS treated and positive drug (clofibrate) treated groups. At 28 days after surgery, cardiac functions were assessed by echocardiography. Expressions of transcription factors and key molecules in energy metabolism pathway were measured by reverse transcriptase polymerase chain reaction or western blotting. Results In ischemic heart model, cardiac functions were severely injured but improved by treatments of DQP and DS. Expression of LPL was down-regulated in model group. Both DQP and DS could up-regulate the mRNA expression of LPL. Membrane proteins involved in lipid transport and uptake, such as FABP4 and CPT-1A, were down-regulated in ischemic heart tissues. Treatment with DQP and DS regulated lipid metabolisms by up-regulating expressions of FABP4 and CPT-1A. DQP and DS also suppressed expression of cytochrome P450. Furthermore, transcriptional factors, such as PPARα, PPARγ, RXRA and PGC-1α, were down-regulated in ischemic model group. DQP and DS could up-regulate expressions of these factors. However, DS showed a better efficacy than DQP on PGC-1α, a coactivator of PPARs. Key molecules in signaling pathways such as AKT1/2, ERK and PI3K were also regulated by DQP and DS simultaneously. Conclusions Salvianolic acids and Panax notoginseng are the major effective components of DanQi pill in improving lipid metabolism in ischemic heart model. The effects may be mediated by regulating transcriptional factors such as PPARs, RXRA and PGC-1α.
Collapse
|
38
|
Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Arch Biochem Biophys 2016; 612:103-114. [PMID: 27789204 DOI: 10.1016/j.abb.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
39
|
Peterson SJ, Vanella L, Gotlinger K, Jiang H, Singh SP, Sodhi K, Maher E, O’Hanlon K, Shapiro JI, Abraham NG. Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins Other Lipid Mediat 2016; 123:68-77. [DOI: 10.1016/j.prostaglandins.2016.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
40
|
Kaya A, Lee BC, Gladyshev VN. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1. Antioxid Redox Signal 2015; 23:814-22. [PMID: 26181576 PMCID: PMC4589106 DOI: 10.1089/ars.2015.6385] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Protein structure and function can be regulated via post-translational modifications by numerous enzymatic and nonenzymatic mechanisms. Regulation involving oxidation of sulfur-containing residues emerged as a key mechanism of redox control. Unraveling the participants and principles of such regulation is necessary for understanding the biological significance of redox control of cellular processes. RECENT ADVANCES Reversible oxidation of methionine residues by monooxygenases of the Mical family and subsequent reduction of methionine sulfoxides by a selenocysteine-containing methionine sulfoxide reductase B1 (MsrB1) was found to control the assembly and disassembly of actin in mammals, and the Mical/MsrB pair similarly regulates actin in fruit flies. This finding has opened up new avenues for understanding the use of stereospecific methionine oxidation in regulating cellular processes and the roles of MsrB1 and Micals in regulation of actin dynamics. CRITICAL ISSUES So far, Micals have been the only known partners of MsrB1, and actin is the only target. It is important to identify additional substrates of Micals and characterize other Mical-like enzymes. FUTURE DIRECTIONS Oxidation of methionine, reviewed here, is an emerging but not well-established mechanism. Studies suggest that methionine oxidation is a form of oxidative damage of proteins, a modification that alters protein structure or function, a tool in redox signaling, and a mechanism that controls protein function. Understanding the functional impact of reversible oxidation of methionine will require identification of targets, substrates, and regulators of Micals and Msrs. Linking the biological processes, in which these proteins participate, might also lead to insights into disease conditions, which involve regulation of actin by Micals and Msrs.
Collapse
Affiliation(s)
- Alaattin Kaya
- 1 Division of Genetics, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | - Byung Cheon Lee
- 2 College of Life Sciences and Biotechnology, Korea University , Seoul, South Korea
| | - Vadim N Gladyshev
- 1 Division of Genetics, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015; 143:242-55. [PMID: 25628402 DOI: 10.1093/toxsci/kfu233] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Collapse
Affiliation(s)
- Akshata Moghe
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Smita Ghare
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Bryan Lamoreau
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Mohammad Mohammad
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Shirish Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Craig McClain
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Swati Joshi-Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| |
Collapse
|
42
|
Stancu CS, Carnuta MG, Sanda GM, Toma L, Deleanu M, Niculescu LS, Sasson S, Simionescu M, Sima AV. Hyperlipidemia-induced hepatic and small intestine ER stress and decreased paraoxonase 1 expression and activity is associated with HDL dysfunction in Syrian hamsters. Mol Nutr Food Res 2015; 59:2293-302. [PMID: 26304773 DOI: 10.1002/mnfr.201500422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
SCOPE We aimed at investigating the mechanisms linking hyperlipidemia (HL) with dysfunctional HDL and its main antioxidant enzyme, paraoxonase1 (PON1). PON1 expression and activity was determined in the small intestine, liver, and sera of normal and HL hamsters and associated with the ER stress (ERS) and the development of aortic valve lesions. METHODS AND RESULTS Male Golden Syrian hamsters were fed standard chow (N) or standard diet with 3% cholesterol and 15% butter for 16 weeks. All hamsters on fat diet developed HL, 50% also hyperglycemia (HLHG) and a fourfold increased homeostasis model assessment of insuline resistance. PON1 expression was reduced in the small intestine and liver (N > HL > HLHG) along with the increased extent of ERS, oxidized lipids, and decreased expression of liver X receptors beta (LXRβ) in the small intestine, peroxisome proliferator-activated receptor-γ (PPARγ) in the liver, and of the glucose transporter 4 in the myocardium. Serum PON1 levels decreased along with the increase of oxidized LDL and lesion areas of the aortic valves (N > HL > HLHG). CONCLUSION The fat diet activates the ERS and oxidative stress, decreases LXRβ, PPARγ, and PON1 in the small intestine, liver, and sera of all HL animals, in parallel with the appearance of atherosclerotic lesions in the aortic valves.
Collapse
Affiliation(s)
- Camelia S Stancu
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mihaela G Carnuta
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Gabriela M Sanda
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Laura Toma
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mariana Deleanu
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.,Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Loredan S Niculescu
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Shlomo Sasson
- Department of Pharmacology, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Maya Simionescu
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Department of Lipidomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
43
|
Carmona-Ribeiro AM, Prieto T, Nantes IL. Nanostructures for peroxidases. Front Mol Biosci 2015; 2:50. [PMID: 26389124 PMCID: PMC4558528 DOI: 10.3389/fmolb.2015.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/19/2015] [Indexed: 11/13/2022] Open
Abstract
Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese, and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design, and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting, and reusability.
Collapse
Affiliation(s)
- Ana M Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Tatiana Prieto
- NanoBioMav, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| | - Iseli L Nantes
- NanoBioMav, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André, Brazil
| |
Collapse
|
44
|
Ru D, Zhiqing H, Lin Z, Feng W, Feng Z, Jiayou Z, Yusheng R, Min F, Chun L, Zonggui W. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice. APMIS 2015; 123:410-21. [PMID: 25912129 DOI: 10.1111/apm.12362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/01/2014] [Indexed: 01/21/2023]
Abstract
High density lipoprotein (HDL) dysfunction has been widely reported in clinic, and oxidation of HDL (ox-HDL) was shown to be one of the most common modifications in vivo and participate in the progression of atherosclerosis. But the behind mechanisms are still elusive. In this study, we firstly analyzed and found strong relationship between serum ox-HDL levels and risk factors of coronary artery diseases in clinic, then the effects of ox-HDL in initiation and progression of atherosclerosis in LDLR knockout mice were investigated by infusion of ox-HDL dissolved in chitosan hydrogel before the formation of lesions in vivo. Several new evidence were shown: (i) the serum levels of ox-HDL peaked early before the formation of lesions in LDLR mice fed with high fat diet similar to oxidative low density lipoprotein, (ii) the formation of atherosclerotic lesions could be accelerated by infusion of ox-HDL, (iii) the pro-atherosclerotic effects of ox-HDL were accompanied by imbalanced levels of effector and regulatory T cells and relative gene expressions, which implied that imbalance of teff and treg might contribute to the pro-atherosclerosis effects of ox-HDL.
Collapse
Affiliation(s)
- Ding Ru
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rosenblat M, Volkova N, Aviram M. Selective oxidative stress and cholesterol metabolism in lipid-metabolizing cell classes: Distinct regulatory roles for pro-oxidants and antioxidants. Biofactors 2015; 41:273-88. [PMID: 26228307 DOI: 10.1002/biof.1223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/21/2015] [Indexed: 12/13/2022]
Abstract
Atherogenesis is associated with macrophage cholesterol and oxidized lipids accumulation and foam cell formation. However, two other major lipid-metabolizing cell classes, namely intestinal and liver cells, are also associated with atherogenesis. This study demonstrates that manipulations of cellular oxidative stress (by fatty acids, glucose, low-density lipoprotein, angiotensin II, polyphenolic antioxidants, or the glutathione/paraoxonase 1 systems) have some similar, but also some different effects on cholesterol metabolism in macrophages (J774A.1) versus intestinal cells (HT-29) versus liver cells (HuH7). Cellular oxidative stress was ≈3.5-folds higher in both intestinal and liver cells versus macrophages. In intestinal cells or liver cells versus macrophages, the cholesterol biosynthesis rate was increased by 9- or 15-fold, respectively. In both macrophages and intestinal cells C-18:1 and C-18:2 but not C-18:0, fatty acids significantly increased oxidative stress, whereas in liver cells oxidative stress was significantly decreased by all three fatty acids. In liver cells, trans C-18:1 versus cis C-18:1, unlike intestinal cells or macrophages, significantly increased cellular oxidative stress and cellular cholesterol biosynthesis rate. Pomegranate juice (PJ), red wine, or their phenolics gallic acids or quercetin significantly reduced cellular oxidation mostly in macrophages. Recombinant PON1 significantly decreased macrophage (but not the other cells) oxidative stress by ≈30%. We conclude that cellular atherogenesis research should look at atherogenicity, not only in macrophages but also in intestinal and liver cells, to advance our understanding of the complicated mechanisms behind atherogenesis. © 2015 BioFactors, 41(4):273-288, 2015.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Rappaport Faculty of Medicine, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Technion Rappaport Faculty of Medicine, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Technion Rappaport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
46
|
Kim K, Compton PD, Toby TK, Thomas PM, Wilkins JT, Mutharasan RK, Kelleher NL. Reducing protein oxidation in low-flow electrospray enables deeper investigation of proteoforms by top down proteomics. EUPA OPEN PROTEOMICS 2015; 8:40-47. [PMID: 26753126 PMCID: PMC4704458 DOI: 10.1016/j.euprot.2015.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enabling the implementation of top down proteomic techniques within clinical workflows requires a dramatic increase in sensitivity. It has been previously demonstrated that electrospray ionization (ESI) becomes more efficient with decreasing volumetric flow rates at the emitter. Therefore, narrow inner diameter (I.D.) columns used in front-end chromatographic separations yield increased sensitivity. However, the smaller cross-sectional area of a narrow I.D. column places a larger fraction of the eluent in fluid communication with the electrode within the high voltage union that facilitates electrospray ionization (ESI), leading to increased oxidation of solution-phase proteins. Oxidation of proteins alters their chemical state of the protein, complicates data analysis, and reduces the depth of proteome coverage attained in a typical top-down proteomics experiment. Excessive protein oxidation results in poor deconvolution and exact mass calculations from MS1 spectra, interferes with peak isolation for MS/MS fragmentation, and effectively reduces sensitivity by splitting ion current. All of these factors deteriorate top down mass spectral data quality, an effect that becomes more pronounced as column diameter decreases. Artificial protein oxidation can also mislead investigations of in vivo protein oxidation. All of these effects are accentuated in comparison to bottom up proteomics due to the increased probability of having oxidizable residues within a particular species with increasing mass. Herein, we describe a configuration (which we term "Low Protein Oxidation (LPOx)") for proteomics experiments created by re-arranging liquid chromatography (LC) plumbing and present its application to artificial protein oxidation and show a marked improvement in detection sensitivity. Using a standard mixture of five intact proteins, we demonstrate that the LPOx configuration reduces protein oxidation up to 90% using 50 μm I.D. columns when compared to a conventional LC plumbing configuration with 50 μm I.D. column. As a proof-of-concept study, at least 11 distinct proteoforms of serum Apolipoprotein A1 were detected with the LPOx configuration. This innovative LC configuration can be applied to the top down identification and characterization of proteoforms obscured by abundant artificial protein oxidation at low flowrates, all while using reduced amounts of valuable protein samples.
Collapse
Affiliation(s)
- Kyunggon Kim
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208, United States
| | - Philip D. Compton
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208, United States
| | - Timothy K. Toby
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208, United States
| | - Paul M. Thomas
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208, United States
| | - John T. Wilkins
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive., Chicago, IL 60611, United States
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Chicago, IL 60611, United States
| | - R. Kannan Mutharasan
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Chicago, IL 60611, United States
| | - Neil L. Kelleher
- Departments of Chemistry, Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, IL 60208, United States
- Corresponding author. Tel.: +1 847 467 4362; fax: +1 847 467 3276. (N.L. Kelleher)
| |
Collapse
|
47
|
Kon V, Yang H, Fazio S. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein. Arch Med Res 2015; 46:379-91. [PMID: 26009251 DOI: 10.1016/j.arcmed.2015.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Haichun Yang
- Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
48
|
Chadwick AC, Holme RL, Chen Y, Thomas MJ, Sorci-Thomas MG, Silverstein RL, Pritchard KA, Sahoo D. Acrolein impairs the cholesterol transport functions of high density lipoproteins. PLoS One 2015; 10:e0123138. [PMID: 25849485 PMCID: PMC4388475 DOI: 10.1371/journal.pone.0123138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.
Collapse
Affiliation(s)
- Alexandra C. Chadwick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rebecca L. Holme
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yiliang Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mary G. Sorci-Thomas
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kirkwood A. Pritchard
- Department of Surgery, Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
49
|
Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol 2015; 224:3-51. [PMID: 25522985 DOI: 10.1007/978-3-319-09665-0_1] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A molecular understanding of high-density lipoprotein (HDL) will allow a more complete grasp of its interactions with key plasma remodelling factors and with cell-surface proteins that mediate HDL assembly and clearance. However, these particles are notoriously heterogeneous in terms of almost every physical, chemical and biological property. Furthermore, HDL particles have not lent themselves to high-resolution structural study through mainstream techniques like nuclear magnetic resonance and X-ray crystallography; investigators have therefore had to use a series of lower resolution methods to derive a general structural understanding of these enigmatic particles. This chapter reviews current knowledge of the composition, structure and heterogeneity of human plasma HDL. The multifaceted composition of the HDL proteome, the multiple major protein isoforms involving translational and posttranslational modifications, the rapidly expanding knowledge of the HDL lipidome, the highly complex world of HDL subclasses and putative models of HDL particle structure are extensively discussed. A brief history of structural studies of both plasma-derived and recombinant forms of HDL is presented with a focus on detailed structural models that have been derived from a range of techniques spanning mass spectrometry to molecular dynamics.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France,
| | | | | | | | | | | |
Collapse
|
50
|
Liu L, Zhang M, Min X, Cai L. Low Serum Levels of ABCA1, an ATP-Binding Cassette Transporter, Are Predictive of Preeclampsia. TOHOKU J EXP MED 2015; 236:89-95. [DOI: 10.1620/tjem.236.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lixing Liu
- Department of Anatomy, Basic medical department of Putian College
| | - Min Zhang
- Department of Physiological, Basic medical department of Putian College
| | - Xianhui Min
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Fuzhou General Hospital
| | - Lixi Cai
- Department of Biochemical, Basic medical department of Putian College
| |
Collapse
|