1
|
Yoshida T, Kawano H, Omi J, Hori T, Kobayashi Y, Saitoh N, Aoki J, Takamori S. Synaptic vesicle fusion promotes phosphatidylinositol 4-phosphate synthesis for efficient synaptic transmission. Cell Rep 2025; 44:115634. [PMID: 40299749 DOI: 10.1016/j.celrep.2025.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Efficient synaptic vesicle (SV) recycling is essential for sustaining synaptic transmission. While the multiple roles of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in SV recycling are well documented, presynaptic regulation of phosphatidylinositol 4-phosphate (PI(4)P) synthesis and its potential role in SV recycling remain poorly understood. Here, we identify phosphatidylinositol 4-kinase IIIα (PI4KIIIα) as the key enzyme responsible for both the maintenance and activity-dependent production of presynaptic PI(4)P. Notably, we find that SVs are nearly devoid of PI(4)P and PI(4,5)P2 but are rich in phosphatidylinositol (PI) and that PI(4)P synthesis is triggered upon SV fusion as vesicular PI is delivered to the plasma membrane. Furthermore, when PI(4)P levels are selectively reduced without affecting basal PI(4,5)P2 levels, SV exo-endocytosis is significantly impaired, primarily due to reduced conductivity of voltage-gated Ca2+ channels. This reveals a PI(4,5)P2-independent homeostatic mechanism in which continuous PI(4)P production, driven by SV fusion, sustains efficient synaptic transmission.
Collapse
Affiliation(s)
- Tomofumi Yoshida
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Hiroyuki Kawano
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Hori
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Yutaka Kobayashi
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan.
| |
Collapse
|
2
|
Yang Z, Zheng Y, Ma D, Wang L, Zhang J, Song T, Wang Y, Zhang Y, Nan F, Su N, Gao Z, Guo J. Phosphatidylinositol 4,5-bisphosphate activation mechanism of human KCNQ5. Proc Natl Acad Sci U S A 2025; 122:e2416738122. [PMID: 40172963 PMCID: PMC12002238 DOI: 10.1073/pnas.2416738122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
The human voltage-gated potassium channels KCNQ2, KCNQ3, and KCNQ5 can form homo- and heterotetrameric channels that are responsible for generating the neuronal M current and maintaining the membrane potential stable. Activation of KCNQ channels requires both the depolarization of membrane potential and phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we report cryoelectron microscopy structures of the human KCNQ5-calmodulin (CaM) complex in the apo, PIP2-bound, and both PIP2- and the activator HN37-bound states in either a closed or an open conformation. In the closed conformation, a PIP2 molecule binds in the middle of the groove between two adjacent voltage-sensing domains (VSDs), whereas in the open conformation, one additional PIP2 binds to the interface of VSD and the pore domain, accompanying structural rearrangement of the cytosolic domain of KCNQ and CaM. The structures, along with electrophysiology analyses, reveal the two different binding modes of PIP2 and elucidate the PIP2 activation mechanism of KCNQ5.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Long Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jiatong Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yan Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Nannan Su
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang322000, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong528437, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang311121, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang310058, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
3
|
Javanshad R, Nguyen TTA, Azaria RD, Li W, Edmison D, Gong LW, Gowrishankar S, Lieberman AP, Schultz ML, Cologna SM. Endogenous Protein-Protein Interaction Network of the NPC Cholesterol Transporter 1 in the Cerebral Cortex. J Proteome Res 2024; 23:3174-3187. [PMID: 38686625 DOI: 10.1021/acs.jproteome.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Mark L Schultz
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Calabrese B, Halpain S. MARCKS and PI(4,5)P 2 reciprocally regulate actin-based dendritic spine morphology. Mol Biol Cell 2024; 35:ar23. [PMID: 38088877 PMCID: PMC10881156 DOI: 10.1091/mbc.e23-09-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Myristoylated, alanine-rich C-kinase substrate (MARCKS) is an F-actin and phospholipid binding protein implicated in numerous cellular activities, including the regulation of morphology in neuronal dendrites and dendritic spines. MARCKS contains a lysine-rich effector domain that mediates its binding to plasma membrane phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) in a manner controlled by PKC and calcium/calmodulin. In neurons, manipulations of MARCKS concentration and membrane targeting strongly affect the numbers, shapes, and F-actin properties of dendritic spines, but the mechanisms remain unclear. Here, we tested the hypothesis that the effects of MARCKS on dendritic spine morphology are due to its capacity to regulate the availability of plasma membrane PI(4,5)P2. We observed that the concentration of free PI(4,5)P2 on the dendritic plasma membrane was inversely proportional to the concentration of MARCKS. Endogenous PI(4,5)P2 levels were increased or decreased, respectively, by acutely overexpressing either phosphatidylinositol-4-phosphate 5-kinase (PIP5K) or inositol polyphosphate 5-phosphatase (5ptase). PIP5K, like MARCKS depletion, induced severe spine shrinkage; 5ptase, like constitutively membrane-bound MARCKS, induced aberrant spine elongation. These phenotypes involved changes in actin properties driven by the F-actin severing protein cofilin. Collectively, these findings support a model in which neuronal activity regulates actin-dependent spine morphology through antagonistic interactions of MARCKS and PI(4,5)P2.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
5
|
Bolz S, Kaempf N, Puchkov D, Krauss M, Russo G, Soykan T, Schmied C, Lehmann M, Müller R, Schultz C, Perrais D, Maritzen T, Haucke V. Synaptotagmin 1-triggered lipid signaling facilitates coupling of exo- and endocytosis. Neuron 2023; 111:3765-3774.e7. [PMID: 37738980 DOI: 10.1016/j.neuron.2023.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023]
Abstract
Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.
Collapse
Affiliation(s)
- Svenja Bolz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Kaempf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Rainer Müller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany; Department of Chemical Physiology & Biochemistry, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Department of Nanophysiology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
6
|
Arkhipov AY, Fedorov NS, Nurullin LF, Khabibrakhmanov AN, Mukhamedyarov MA, Samigullin DV, Malomouzh AI. Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice. Cell Mol Neurobiol 2023; 43:4157-4172. [PMID: 37689594 PMCID: PMC11407716 DOI: 10.1007/s10571-023-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.
Collapse
Affiliation(s)
- Arsenii Y Arkhipov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan State Medical University, 49 Butlerova Street, Kazan, Russia, 420012
| | | | | | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111.
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111.
| |
Collapse
|
7
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
8
|
Hofbrucker-MacKenzie SA, Seemann E, Westermann M, Qualmann B, Kessels MM. Long-term depression in neurons involves temporal and ultra-structural dynamics of phosphatidylinositol-4,5-bisphosphate relying on PIP5K, PTEN and PLC. Commun Biol 2023; 6:366. [PMID: 37012315 PMCID: PMC10070498 DOI: 10.1038/s42003-023-04726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.
Collapse
Affiliation(s)
- Sarah A Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
9
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
de la Cruz L, Kushmerick C, Sullivan JM, Kruse M, Vivas O. Hippocampal neurons maintain a large PtdIns(4)P pool that results in faster PtdIns(4,5)P2 synthesis. J Gen Physiol 2022; 154:e202113001. [PMID: 35179558 PMCID: PMC8906353 DOI: 10.1085/jgp.202113001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/01/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
PtdIns(4,5)P2 is a signaling lipid central to the regulation of multiple cellular functions. It remains unknown how PtdIns(4,5)P2 fulfills various functions in different cell types, such as regulating neuronal excitability, synaptic release, and astrocytic function. Here, we compared the dynamics of PtdIns(4,5)P2 synthesis in hippocampal neurons and astrocytes with the kidney-derived tsA201 cell line. The experimental approach was to (1) measure the abundance and rate of PtdIns(4,5)P2 synthesis and precursors using specific biosensors, (2) measure the levels of PtdIns(4,5)P2 and its precursors using mass spectrometry, and (3) use a mathematical model to compare the metabolism of PtdIns(4,5)P2 in cell types with different proportions of phosphoinositides. The rate of PtdIns(4,5)P2 resynthesis in hippocampal neurons after depletion by cholinergic or glutamatergic stimulation was three times faster than for tsA201 cells. In tsA201 cells, resynthesis of PtdIns(4,5)P2 was dependent on the enzyme PI4K. In contrast, in hippocampal neurons, the resynthesis rate of PtdIns(4,5)P2 was insensitive to the inhibition of PI4K, indicating that it does not require de novo synthesis of the precursor PtdIns(4)P. Measurement of phosphoinositide abundance indicated a larger pool of PtdIns(4)P, suggesting that hippocampal neurons maintain sufficient precursor to restore PtdIns(4,5)P2 levels. Quantitative modeling indicates that the measured differences in PtdIns(4)P pool size and higher activity of PI4K can account for the experimental findings and indicates that high PI4K activity prevents depletion of PtdIns(4)P. We further show that the resynthesis of PtdIns(4,5)P2 is faster in neurons than astrocytes, providing context to the relevance of cell type-specific mechanisms to sustain PtdIns(4,5)P2 levels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Christopher Kushmerick
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jane M. Sullivan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Wu H, Sun Q, Yuan S, Wang J, Li F, Gao H, Chen X, Yang R, Xu J. AT1 Receptors: Their Actions from Hypertension to Cognitive Impairment. Cardiovasc Toxicol 2022; 22:311-325. [PMID: 35211833 PMCID: PMC8868040 DOI: 10.1007/s12012-022-09730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Hypertension is one of the most prevalent cardiovascular disorders worldwide, affecting 1.13 billion people, or 14% of the global population. Hypertension is the single biggest risk factor for cerebrovascular dysfunction. According to the American Heart Association, high blood pressure (BP), especially in middle-aged individuals (~ 40 to 60 years old), is associated with an increased risk of dementia, later in life. Alzheimer’s disease and cerebrovascular disease are the two leading causes of dementia, accounting for around 80% of the total cases and usually combining mixed pathologies from both. Little is known regarding how hypertension affects cognitive function, so the impact of its treatment on cognitive impairment has been difficult to assess. The brain renin-angiotensin system (RAS) is essential for BP regulation and overactivity of this system has been established to precede the development and maintenance of hypertension. Angiotensin II (Ang-II), the main peptide within this system, induces vasoconstriction and impairs neuro-vascular coupling by acting on brain Ang-II type 1 receptors (AT1R). In this review, we systemically analyzed the association between RAS and biological mechanisms of cognitive impairment, from the perspective of AT1R located in the central nervous system. Additionally, the possible contribution of brain AT1R to global cognition decline in COVID-19 cases will be discussed as well.
Collapse
Affiliation(s)
- Hanxue Wu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Qi Sun
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shenglan Yuan
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Jiawei Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Fanni Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongli Gao
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rui Yang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
12
|
Sasaki-Hamada S, Sanai E, Kanemaru M, Kamanaka G, Oka JI. Long-term exposure to high glucose induces changes in the expression of AMPA receptor subunits and glutamate transmission in primary cultured cortical neurons. Biochem Biophys Res Commun 2022; 589:48-54. [PMID: 34891041 DOI: 10.1016/j.bbrc.2021.11.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Hyperglycemia, which occurs under the diabetic conditions, induces serious diabetic complications. Diabetic encephalopathy has been defined as one of the major complications of diabetes, and is characterized by neurochemical and neurodegenerative changes. However, little is known about the effect of long-term exposure to high glucose on neuronal cells. In the present study, we showed that exposure to glutamate (100 mM) for 7 days induced toxicity in primary cortical neurons using the MTT assay. Additionally, high glucose increased the sensitivity of AMPA- or NMDA-induced neurotoxicity, and decreased extracellular glutamate levels in primary cortical neurons. In Western blot analyses, the protein levels of the GluA1 and GluA2 subunits of the AMPA receptor as well as synaptophysin in neurons treated with high glucose were significantly increased compared with the control (25 mM glucose). Therefore, long-term exposure to high glucose induced neuronal death through the disruption of glutamate homeostasis.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan.
| | - Emi Sanai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mariko Kanemaru
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Gaku Kamanaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan.
| |
Collapse
|
13
|
Borges-Araújo L, Domingues MM, Fedorov A, Santos NC, Melo MN, Fernandes F. Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains. Commun Chem 2021; 4:164. [PMID: 36697613 PMCID: PMC9814227 DOI: 10.1038/s42004-021-00603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays a critical role in the regulation of various plasma membrane processes and signaling pathways in eukaryotes. A significant amount of cellular resources are spent on maintaining the dominant 1-stearoyl-2-arachidonyl PI(4,5)P2 acyl-chain composition, while less abundant and more saturated species become more prevalent in response to specific stimuli, stress or aging. Here, we report the impact of acyl-chain structure on the biophysical properties of cation-induced PI(4,5)P2 nanodomains. PI(4,5)P2 species with increasing levels of acyl-chain saturation cluster in progressively more ordered nanodomains, culminating in the formation of gel-like nanodomains for fully saturated species. The formation of these gel-like domains was largely abrogated in the presence of 1-stearoyl-2-arachidonyl PI(4,5)P2. This is, to the best of our knowledge, the first report of the impact of PI(4,5)P2 acyl-chain composition on cation-dependent nanodomain ordering, and provides important clues to the motives behind the enrichment of PI(4,5)P2 with polyunsaturated acyl-chains. We also show how Ca2+-induced PI(4,5)P2 nanodomains are able to generate local negative curvature, a phenomenon likely to play a role in membrane remodeling events.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Alexander Fedorov
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
14
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
15
|
Das K, Watanabe N, Nozaki T. Two StAR-related lipid transfer proteins play specific roles in endocytosis, exocytosis, and motility in the parasitic protist Entamoeba histolytica. PLoS Pathog 2021; 17:e1009551. [PMID: 33909710 PMCID: PMC8109825 DOI: 10.1371/journal.ppat.1009551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/10/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Lipid transfer proteins (LTPs) are the key contributor of organelle-specific lipid distribution and cellular lipid homeostasis. Here, we report a novel implication of LTPs in phagocytosis, trogocytosis, pinocytosis, biosynthetic secretion, recycling of pinosomes, and motility of the parasitic protist E. histolytica, the etiological agent of human amoebiasis. We show that two StAR-related lipid transfer (START) domain-containing LTPs (named as EhLTP1 and 3) are involved in these biological pathways in an LTP-specific manner. Our findings provide novel implications of LTPs, which are relevant to the elucidation of pathophysiology of the diseases caused by parasitic protists. We showed that EhLTP1, but not EhLTP3, is involved in secretion of cysteine protease, the well-established degrading factor of host cells and the extracellular matrix, and in pseudopod formation and migration. In contrast, EhLTP3, but not EhLTP1, is exclusively involved in pinocytosis of the fluid-phase marker. Both EhLTP1 and EhLTP3 are also involved in trogocytosis (ingestion by nibbling) of live mammalian cells and phagocytosis of dead cells. In trogocytosis and phagcytosis, these two LTPs displayed distinct patterns of recruitment: e.g., EhLTP1 was associated at the ligand attachment site at the initiation of trogocytosis, followed by the recruitment of EhLTP3 onto the “trogocytic tunnel” at the intermediate stage of trogocytosis before the closure of the trogosome. Such tempo-spatially coordinated involvement of LTPs in the course of trogo- and phagocytosis has never been demonstrated in unicellular eukaryotes. Neither has LTP been shown to be involved in both endocytosis and exocytosis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Iuliano M, Seeley C, Sapp E, Jones EL, Martin C, Li X, DiFiglia M, Kegel-Gleason KB. Disposition of Proteins and Lipids in Synaptic Membrane Compartments Is Altered in Q175/Q7 Huntington's Disease Mouse Striatum. Front Synaptic Neurosci 2021; 13:618391. [PMID: 33815086 PMCID: PMC8013775 DOI: 10.3389/fnsyn.2021.618391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Dysfunction at synapses is thought to be an early change contributing to cognitive, psychiatric and motor disturbances in Huntington's disease (HD). In neurons, mutant Huntingtin collects in aggregates and distributes to the same sites as wild-type Huntingtin including on membranes and in synapses. In this study, we investigated the biochemical integrity of synapses in HD mouse striatum. We performed subcellular fractionation of striatal tissue from 2 and 6-month old knock-in Q175/Q7 HD and Q7/Q7 mice. Compared to striata of Q7/Q7 mice, proteins including GLUT3, Na+/K+ ATPase, NMDAR 2b, PSD95, and VGLUT1 had altered distribution in Q175/Q7 HD striata of 6-month old mice but not 2-month old mice. These proteins are found on plasma membranes and pre- and postsynaptic membranes supporting hypotheses that functional changes at synapses contribute to cognitive and behavioral symptoms of HD. Lipidomic analysis of mouse fractions indicated that compared to those of wild-type, fractions 1 and 2 of 6 months Q175/Q7 HD had altered levels of two species of PIP2, a phospholipid involved in synaptic signaling, increased levels of cholesterol ester and decreased cardiolipin species. At 2 months, increased levels of species of acylcarnitine, phosphatidic acid and sphingomyelin were measured. EM analysis showed that the contents of fractions 1 and 2 of Q7/Q7 and Q175/Q7 HD striata had a mix of isolated synaptic vesicles, vesicle filled axon terminals singly or in clusters, and ER and endosome-like membranes. However, those of Q175/Q7 striata contained significantly fewer and larger clumps of particles compared to those of Q7/Q7. Human HD postmortem putamen showed differences from control putamen in subcellular distribution of two proteins (Calnexin and GLUT3). Our biochemical, lipidomic and EM analysis show that the presence of the HD mutation conferred age dependent disruption of localization of synaptic proteins and lipids important for synaptic function. Our data demonstrate concrete biochemical changes suggesting altered integrity of synaptic compartments in HD mice that may mirror changes in HD patients and presage cognitive and psychiatric changes that occur in premanifest HD.
Collapse
|
17
|
Chen Y, Wang YH, Zheng Y, Li M, Wang B, Wang QW, Fu CL, Liu YN, Li X, Yao J. Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep 2021; 34:108842. [PMID: 33730593 DOI: 10.1016/j.celrep.2021.108842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 01/19/2023] Open
Abstract
Synaptic vesicle (SV) docking is a dynamic multi-stage process that is required for efficient neurotransmitter release in response to nerve impulses. Although the steady-state SV docking likely involves the cooperation of Synaptotagmin-1 (Syt1) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), where and how the docking process initiates remains unknown. Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) can interact with Syt1 and SNAREs to contribute to vesicle exocytosis. In the present study, using the CRISPRi-mediated multiplex gene knockdown and 3D electron tomography approaches, we show that in mouse hippocampal synapses, SV docking initiates at ∼12 nm to the active zone (AZ) by Syt1. Furthermore, we demonstrate that PI(4,5)P2 is the membrane partner of Syt1 to initiate SV docking, and disrupting their interaction could abolish the docking initiation. In contrast, the SNARE complex contributes only to the tight SV docking within 0-2 nm. Therefore, Syt1 interacts with PI(4,5)P2 to loosely dock SVs within 2-12 nm to the AZ in hippocampal neurons.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying-Han Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zheng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meijing Li
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bing Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueming Li
- MOE Key Laboratory of Protein Science, Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Wen Y, Vogt VM, Feigenson GW. PI(4,5)P 2 Clustering and Its Impact on Biological Functions. Annu Rev Biochem 2021; 90:681-707. [PMID: 33441034 DOI: 10.1146/annurev-biochem-070920-094827] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; , ,
| |
Collapse
|
19
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
21
|
Activity and Cytosolic Na + Regulate Synaptic Vesicle Endocytosis. J Neurosci 2020; 40:6112-6120. [PMID: 32605936 DOI: 10.1523/jneurosci.0119-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Retrieval of synaptic vesicles via endocytosis is essential for maintaining sustained synaptic transmission, especially for neurons that fire action potentials at high frequencies. However, how neuronal activity regulates synaptic vesicle recycling is largely unknown. Here we report that Na+ substantially accumulated in the mouse calyx of Held terminals of either sex during repetitive high-frequency spiking. Elevated presynaptic Na+ accelerated both slow and rapid forms of endocytosis and facilitated endocytosis overshoot, but did not affect the readily releasable pool size, Ca2+ influx, or exocytosis. To examine whether this facilitation of endocytosis is related to the Na+-dependent vesicular content change, we dialyzed glutamate into the presynaptic cytosol or blocked the vesicular glutamate uptake with bafilomycin and found that the rate of endocytosis was not affected by regulating the vesicular glutamate content. Endocytosis is critically dependent on intracellular Ca2+, and the activity of Na+/Ca2+ exchanger (NCX) may be altered when the Na+ gradient is changed. However, neither NCX inhibitor nor change of extracellular Na+ concentration affected the endocytosis rate. Moreover, two-photon Ca2+ imaging showed that presynaptic Na+ did not affect the action potential-evoked intracellular Ca2+ transient and decay. Therefore, we revealed a novel mechanism of cytosolic Na+ in accelerating vesicle endocytosis. During high-frequency synaptic transmission, when large numbers of synaptic vesicles were fused, the rapid buildup of presynaptic cytosolic Na+ promoted vesicle recycling and sustained synaptic transmission.SIGNIFICANCE STATEMENT High-frequency firing neurons are widely distributed in the CNS. A large number of synaptic vesicles are released during high-frequency synaptic transmission; accordingly, synaptic vesicles need to be recycled rapidly to replenish the vesicle pool. Synaptic vesicle exocytosis and endocytosis are tightly coupled, and their coupling is essential for synaptic function and structural stability. We showed here that intracellular Na+ concentration at the calyx of Held terminal increased rapidly during spike activity and the increased Na+ accelerated endocytosis. Thus, when large numbers of synaptic vesicles are released during high-frequency synaptic transmission, Na+ accumulated in terminals and facilitated vesicle recycling. These findings represent a novel cellular mechanism that supports reliable synaptic transmission at high frequency in the CNS.
Collapse
|
22
|
Restoration of MARCKS enhances chemosensitivity in cancer. J Cancer Res Clin Oncol 2020; 146:843-858. [PMID: 32056006 PMCID: PMC7085482 DOI: 10.1007/s00432-020-03149-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 11/23/2022]
Abstract
Purpose Increased ATP-binding-cassette (ABC) transporter activity is a major cause of chemotherapy resistance in cancer. The ABC transporter family member ABCB1 is often overexpressed in colorectal cancer (CRC). Phosphatidylinositol-4,5-bisphosphat (PI(4,5)P2)-dependent pathways are involved in the regulation of ABCB1 function. The protein Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) is a pivotal regulator of PI(4,5)P2 and inactivated in many CRC cancers via genetic deletion or hyperphosphorylation. Therefore, MARCKS may critically impact ABCB1. Methods CRC samples as well as CRC cell lines were tested for a connection between MARCKS and ABCB1 via immunofluorescence and Western-blot analysis. ABCB1 function was studied via calcein influx assay under treatment with known ABCB1 inhibitors (verapamil, tariquidar) as well as the kinase inhibitor bosutinib. ABCB1 internalization and MARCKS translocation was analyzed via confocal microscopy exploiting the endocytosis inhibitors chlorpromazine and dynasore. Abundance of PI(4,5)P2 was monitored by intramolecular fluorescence resonance energy transfer (FRET). Reproductive cell survival was studied via colorimetric WST-1 and clonogenic assays in combination with exposure to the chemotherapeutics doxorubicin and 5-fuorouracil (5-FU). Results We found increased ABCB1 expression in MARCKS negative CRC patient tumor samples and established CRC cell lines. Mechanistically, the reconstitution of MARCKS function via recombinant expression or the pharmacological inhibition of MARCKS phosphorylation led to a substantial decrease in ABCB1 activity. In CRC cells, bosutinib treatment resulted in a MARCKS translocation from the cytosol to the plasma membrane, while simultaneously, ABCB1 was relocated to intracellular compartments. Inhibition of MARCKS phosphorylation via bosutinib rendered cells more sensitive to the chemotherapeutics doxorubicin and 5-FU. Conclusions Cells devoid of MARCKS function showed incomplete ABCB1 internalization, leading to higher ABCB1 activity enhancing chemoresistance. Vice versa our data suggest the prevention of MARCKS inhibition by reversing hyperphosphorylation or genomic restoration after deletion as two promising approaches to overcome tumor cell resistance towards chemotherapeutic ABCB1 substrates.
Collapse
|
23
|
Latcheva NK, Delaney TL, Viveiros JM, Smith RA, Bernard KM, Harsin B, Marenda DR, Liebl FLW. The CHD Protein, Kismet, is Important for the Recycling of Synaptic Vesicles during Endocytosis. Sci Rep 2019; 9:19368. [PMID: 31852969 PMCID: PMC6920434 DOI: 10.1038/s41598-019-55900-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodeling proteins of the chromodomain DNA-binding protein family, CHD7 and CHD8, mediate early neurodevelopmental events including neural migration and differentiation. As such, mutations in either protein can lead to neurodevelopmental disorders. How chromatin remodeling proteins influence the activity of mature synapses, however, is relatively unexplored. A critical feature of mature neurons is well-regulated endocytosis, which is vital for synaptic function to recycle membrane and synaptic proteins enabling the continued release of synaptic vesicles. Here we show that Kismet, the Drosophila homolog of CHD7 and CHD8, regulates endocytosis. Kismet positively influenced transcript levels and bound to dap160 and endophilin B transcription start sites and promoters in whole nervous systems and influenced the synaptic localization of Dynamin/Shibire. In addition, kismet mutants exhibit reduced VGLUT, a synaptic vesicle marker, at stimulated but not resting synapses and reduced levels of synaptic Rab11. Endocytosis is restored at kismet mutant synapses by pharmacologically inhibiting the function of histone deacetyltransferases (HDACs). These data suggest that HDAC activity may oppose Kismet to promote synaptic vesicle endocytosis. A deeper understanding of how CHD proteins regulate the function of mature neurons will help better understand neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nina K Latcheva
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.,Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Jennifer M Viveiros
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Rachel A Smith
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Kelsey M Bernard
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Benjamin Harsin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Daniel R Marenda
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.,Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA.
| |
Collapse
|
24
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
25
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
26
|
de Jong APH, Roggero CM, Ho MR, Wong MY, Brautigam CA, Rizo J, Kaeser PS. RIM C 2B Domains Target Presynaptic Active Zone Functions to PIP 2-Containing Membranes. Neuron 2018; 98:335-349.e7. [PMID: 29606581 DOI: 10.1016/j.neuron.2018.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022]
Abstract
Rapid and efficient synaptic vesicle fusion requires a pool of primed vesicles, the nearby tethering of Ca2+ channels, and the presence of the phospholipid PIP2 in the target membrane. Although the presynaptic active zone mediates the first two requirements, it is unclear how fusion is targeted to membranes with high PIP2 content. Here we find that the C2B domain of the active zone scaffold RIM is critical for action potential-triggered fusion. Remarkably, the known RIM functions in vesicle priming and Ca2+ influx do not require RIM C2B domains. Instead, biophysical experiments reveal that RIM C2 domains, which lack Ca2+ binding, specifically bind to PIP2. Mutational analyses establish that PIP2 binding to RIM C2B and its tethering to the other RIM domains are crucial for efficient exocytosis. We propose that RIM C2B domains are constitutive PIP2-binding modules that couple mechanisms for vesicle priming and Ca2+ channel tethering to PIP2-containing target membranes.
Collapse
Affiliation(s)
- Arthur P H de Jong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos M Roggero
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Ru Ho
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Man Yan Wong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Maritzen T, Haucke V. Coupling of exocytosis and endocytosis at the presynaptic active zone. Neurosci Res 2018; 127:45-52. [DOI: 10.1016/j.neures.2017.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023]
|
28
|
Kaempf N, Maritzen T. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function. Front Cell Neurosci 2017; 11:320. [PMID: 29085282 PMCID: PMC5649181 DOI: 10.3389/fncel.2017.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis.
Collapse
Affiliation(s)
- Natalie Kaempf
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
29
|
MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 2017. [PMID: 28628655 PMCID: PMC5491321 DOI: 10.1371/journal.ppat.1006449] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells respond to environmental stimuli when cell surface receptors are bound by environmental ligands. The binding initiates a signal transduction cascade that results in the appropriate intracellular responses. Studies have shown that endocytosis is critical for receptor internalization and signaling activation. In the rice blast fungus Magnaporthe oryzae, a non-canonical G-protein coupled receptor, Pth11, and membrane sensors MoMsb2 and MoSho1 are thought to function upstream of G-protein/cAMP signaling and the Pmk1 MAPK pathway to regulate appressorium formation and pathogenesis. However, little is known about how these receptors or sensors are internalized and transported into intracellular compartments. We found that the MoEnd3 protein is important for endocytic transport and that the ΔMoend3 mutant exhibited defects in efficient internalization of Pth11 and MoSho1. The ΔMoend3 mutant was also defective in Pmk1 phosphorylation, autophagy, appressorium formation and function. Intriguingly, restoring Pmk1 phosphorylation levels in ΔMoend3 suppressed most of these defects. Moreover, we demonstrated that MoEnd3 is subject to regulation by MoArk1 through protein phosphorylation. We also found that MoEnd3 has additional functions in facilitating the secretion of effectors, including Avr-Pia and AvrPiz-t that suppress rice immunity. Taken together, our findings suggest that MoEnd3 plays a critical role in mediating receptor endocytosis that is critical for the signal transduction-regulated development and virulence of M. oryzae.
Collapse
|
30
|
Liang K, Wei L, Chen L. Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 2017; 10:109. [PMID: 28469555 PMCID: PMC5395637 DOI: 10.3389/fnmol.2017.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway may be pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical UniversityBeijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
31
|
Raben DM, Barber CN. Phosphatidic acid and neurotransmission. Adv Biol Regul 2016; 63:15-21. [PMID: 27671966 DOI: 10.1016/j.jbior.2016.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Shinoda Y, Ishii C, Fukazawa Y, Sadakata T, Ishii Y, Sano Y, Iwasato T, Itohara S, Furuichi T. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3-CA1 synapses in adult hippocampus. Sci Rep 2016; 6:31540. [PMID: 27545744 PMCID: PMC4992871 DOI: 10.1038/srep31540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yugo Fukazawa
- Department of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
33
|
Yadav R, Vattepu R, Beck MR. Phosphoinositide Binding Inhibits Actin Crosslinking and Polymerization by Palladin. J Mol Biol 2016; 428:4031-4047. [PMID: 27487483 DOI: 10.1016/j.jmb.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling requires the coordinated action of a large number of actin binding proteins that reorganize the actin cytoskeleton by promoting polymerization, stabilizing filaments, causing branching, or crosslinking filaments. Palladin is a key cytoskeletal actin binding protein whose normal function is to enable cell motility during development of tissues and organs of the embryo and in wound healing, but palladin is also responsible for regulating the ability of cancer cells to become invasive and metastatic. The membrane phosphoinositide phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P2] is a well-known precursor for intracellular signaling and a bona fide regulator of actin cytoskeleton reorganization. Our results show that two palladin domains [immunoglobulin (Ig) 3 and 34] interact with the head group of PI(4,5)P2 with moderate affinity (apparent Kd=17μM). Interactions with PI(4,5)P2 decrease the actin polymerizing activity of Ig domain 3 of palladin (Palld-Ig3). Furthermore, NMR titration and docking studies show that residues K38 and K51, which are present on the β-sheet C and D, form salt bridges with the head group of PI(4,5)P2. Moreover, charge neutralization at lysine 38 in the Palld-Ig3 domain severely limits the actin polymerizing and bundling activity of Palld-Ig3. Our results provide biochemical proof that PI(4,5)P2 functions as a moderator of palladin activity and have also identified residues directly involved in the crosslinking activity of palladin.
Collapse
Affiliation(s)
- Rahul Yadav
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Ravi Vattepu
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| | - Moriah R Beck
- Chemistry Department, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA.
| |
Collapse
|
34
|
Wang YH, Bucki R, Janmey PA. Cholesterol-Dependent Phase-Demixing in Lipid Bilayers as a Switch for the Activity of the Phosphoinositide-Binding Cytoskeletal Protein Gelsolin. Biochemistry 2016; 55:3361-9. [PMID: 27224309 DOI: 10.1021/acs.biochem.5b01363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lateral distribution of phosphatidylinositol 4,5-bisphosphate (PIP2) in lipid bilayers is affected both by divalent cation-mediated attractions and cholesterol-dependent phase demixing. The effects of lateral redistribution of PIP2 within a membrane on PIP2-protein interactions are explored with an N-terminal fragment of gelsolin (NtGSN) that severs actin in a Ca(2+)-insensitive manner. The extent of NtGSN inhibition by PIP2-containing large unilamellar vesicles (LUVs) depends on the lateral organization of the membrane as quantified by an actin-severing assay. At a fixed PIP2 mole fraction, the inhibition is largely enhanced by the segregation of liquid ordered/liquid disordered (Lo/Ld) phases that is induced by altering either cholesterol content or temperature, whereas the presence of Ca(2+) only slightly improves the inhibition. Inhibition of gelsolin induced by demixed LUVs is more effective with decreasing temperature, coincident with increasing membrane order as determined by Laurdan generalized polarization and is reversible as the temperature increases. This result suggests that PIP2-mediated inhibition of gelsolin function depends not only on changes in global concentration but also on lateral distribution of PIP2. These observations imply that gelsolin, and perhaps other PIP2-regulated proteins, can be activated or inactivated by the formation of nanodomains or clusters without changing PIP2 bulk concentration in the cell membrane.
Collapse
Affiliation(s)
- Yu-Hsiu Wang
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
35
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-8608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
36
|
Pan PY, Marrs J, Ryan TA. Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem 2015. [PMID: 26224632 DOI: 10.1074/jbc.m115.651711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal.
Collapse
Affiliation(s)
- Ping-Yue Pan
- From the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021
| | - Julia Marrs
- From the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021
| | - Timothy A Ryan
- From the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021
| |
Collapse
|
37
|
Kohout SC, Villalba-Galea CA. Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes. Front Pharmacol 2015. [PMID: 26217228 PMCID: PMC4495603 DOI: 10.3389/fphar.2015.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
38
|
Pellett S, Tepp WH, Scherf JM, Johnson EA. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling. PLoS One 2015; 10:e0133737. [PMID: 26207366 PMCID: PMC4514655 DOI: 10.1371/journal.pone.0133737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the causative agent of the severe and long-lasting disease botulism. At least seven different serotypes of BoNTs (denoted A-G) have been described. All BoNTs enter human or animal neuronal cells via receptor mediated endocytosis and cleave cytosolic SNARE proteins, resulting in a block of synaptic vesicle exocytosis, leading to the flaccid paralysis characteristic of botulism. Previous data have indicated that once a neuronal cell has been intoxicated by a BoNT, further entry of the same or other BoNTs is prevented due to disruption of synaptic vesicle recycling. However, it has also been shown that cultured neurons exposed to BoNT/A are still capable of taking up BoNT/E. In this report we show that in general BoNTs can enter cultured human or mouse neuronal cells that have previously been intoxicated with another BoNT serotype. Quantitative analysis of cell entry by assessing SNARE cleavage revealed none or only a minor difference in the efficiency of uptake of BoNTs into previously intoxicated neurons. Examination of the endocytic entry pathway by specific endocytosis inhibitors indicated that BoNTs are taken up by clathrin coated pits in both non pre-exposed and pre-exposed neurons. LDH release assays indicated that hiPSC derived neurons exposed consecutively to two different BoNT serotypes remained viable and healthy except in the case of BoNT/E or combinations of BoNT/E with BoNT/B, /D, or /F. Overall, our data indicate that previous intoxication of neuronal cells with BoNT does not inhibit further uptake of BoNTs.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Jacob M. Scherf
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| |
Collapse
|
39
|
Tello-Lafoz M, Ghai R, Collins B, Mérida I. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse. BIOARCHITECTURE 2015; 4:215-20. [PMID: 25996807 DOI: 10.1080/19490992.2015.1031950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SNX27 is a member of the sorting nexin family that plays an important role in the recycling of receptors from endosomes to the cell surface. In addition to a PX (Phox homology) domain that regulates its endosomal localization, SNX27 has a unique PDZ (Psd-95/Dlg/ZO1) domain and an atypical FERM (4.1, ezrin, radixin, moesin) domain that both function to bind short peptide sequence motifs in the cytoplasmic domains of the cargo receptors. Using the T cell immune synapse (IS) as a model for polarized protein recycling, we recently identified an additional mechanism that enhances SNX27 localization to the endosomal recycling compartment (ERC). Our study defined a phosphoinositide (PI) lipid-binding site within the SNX27 FERM domain, with a clear preference for bi- and triphosphorylated PIs, which may promote SNX27 localization to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and/or PtdIns(3,4,5)P3-enriched membrane domains. Using fluorescently tagged lipid-binding probes, we studied the kinetics of distinct PIs in living T cells during IS formation. Our results suggest that PtdIns(3,4,5)P3 accumulates at the contact site simultaneously with early SNX27 recruitment to the plasma membrane (PM), and this is partly controlled by by lipid binding through the FERM domain. These studies define 2 independent binding sites for PtdIns-derived lipids in SNX27, that contribute to the dynamic recruitment of SNX27 to distinct membranes during T cell activation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| | - Rajesh Ghai
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia.,c Current address: The School of Biotechnology and Biomolecular Sciences , The University of New South Wales , Sydney , NSW , Australia
| | - Brett Collins
- b Institute for Molecular Bioscience ; The University of Queensland ; St. Lucia , Australia
| | - Isabel Mérida
- a Lipid Signaling Laboratory ; Centro Nacional de Biotecnología (CNB)/CSIC ; Madrid , Spain
| |
Collapse
|
40
|
Castle PM, Zolman KD, Kohout SC. Voltage-sensing phosphatase modulation by a C2 domain. Front Pharmacol 2015; 6:63. [PMID: 25904865 PMCID: PMC4389355 DOI: 10.3389/fphar.2015.00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in VSP function.
Collapse
Affiliation(s)
- Paul M Castle
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Kevin D Zolman
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
41
|
Vanhauwaert R, Verstreken P. Flies with Parkinson's disease. Exp Neurol 2015; 274:42-51. [PMID: 25708988 DOI: 10.1016/j.expneurol.2015.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is an incurable neurodegenerative disease. Most cases of the disease are of sporadic origin, but about 10% of the cases are familial. The genes thus far identified in Parkinson's disease are well conserved. Drosophila is ideally suited to study the molecular neuronal cell biology of these genes and the pathogenic mutations in Parkinson's disease. Flies reproduce quickly, and their elaborate genetic tools in combination with their small size allow researchers to analyze identified cells and neurons in large numbers of animals. Furthermore, fruit flies recapitulate many of the cellular and molecular defects also seen in patients, and these defects often result in clear locomotor and behavioral phenotypes, facilitating genetic modifier screens. Hence, Drosophila has played a prominent role in Parkinson's disease research and has provided invaluable insight into the molecular mechanisms of this disease.
Collapse
Affiliation(s)
- Roeland Vanhauwaert
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49,3000 Leuven, Belgium; Laboratory of Neuronal Communication, Leuven Institute for Neurodegenerative Disease (LIND), Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
42
|
Capsaicin modulates acetylcholine release at the myoneural junction. Eur J Pharmacol 2014; 744:211-9. [PMID: 25446918 DOI: 10.1016/j.ejphar.2014.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022]
Abstract
Transient receptor potential (TRP) proteins are non-selective cation channel proteins that are expressed throughout the body. Previous studies demonstrated the expression of TRP Vanilloid 1 (TRPV1), capsaicin (CAP) receptor, in sensory neurons. Recently, we reported TRPV1 expression in mouse motor nerve terminals [MNTs; (Thyagarajan et al., 2009)], where we observed that CAP protected MNTs from botulinum neurotoxin A (BoNT/A). Phrenic nerve diaphragm nerve muscle preparations (NMP) isolated from isoflurane anesthetized adult mice were analyzed for twitch tension, spontaneous (mEPCs) and nerve stimulus evoked (EPCs) acetylcholine release. When acutely applied to isolated NMP, CAP produced a concentration-dependent decline of twitch tension and produced a significant decline in the amplitude of EPCs and quantal content without any effect on the mEPCs. The suppression of nerve stimulus evoked acetylcholine release by CAP was antagonized by capsazepine (CPZ), a TRPV1 antagonist. CAP did not suppress phrenic nerve stimulus evoked acetylcholine release in TRPV1 knockout mice. Also, CAP treatment, in vitro, interfered with the localization of adapter protein 2 in cholinergic Neuro 2a cells. Wortmannin, (WMN; non-selective phosphoinositol kinase inhibitor), mimicked the effects of CAP by inhibiting the acetylcholine exocytosis. Our data suggest that TRPV1 proteins expressed at the MNT are coupled to the exo-endocytic mechanisms to regulate neuromuscular functions.
Collapse
|
43
|
Martin TFJ. PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:785-93. [PMID: 25280637 DOI: 10.1016/j.bbalip.2014.09.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 12/27/2022]
Abstract
PI(4,5)P₂participates directly in priming and possibly in fusion steps of Ca²⁺-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P₂reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P₂ domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P₂directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P₂-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P₂effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P₂, which promotes clustering, but an activating role for PI(4,5)P₂in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P₂-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P₂-binding proteins. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Thomas F J Martin
- Biochemistry Department, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2014; 77:81-104. [PMID: 25293526 DOI: 10.1146/annurev-physiol-021113-170358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0551;
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sakagami H, Katsumata O, Hara Y, Tamaki H, Fukaya M. Preferential localization of type I phosphatidylinositol 4-phosphate 5-kinase γ at the periactive zone of mouse photoreceptor ribbon synapses. Brain Res 2014; 1586:23-33. [PMID: 25152467 DOI: 10.1016/j.brainres.2014.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/22/2023]
Abstract
Type I phosphatidylinositol 4-phosphate 5 kinase γ (PIP5KIγ) constitutes a major pathway for the generation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) that regulates a variety of neuronal functions at both presynaptic and postsynaptic compartments. In this study, we examined the expression and localization of PIP5KIγ in the adult mouse retina. RT-PCR analysis revealed that PIP5KIγ_v2 was predominantly expressed in the retina while PIP5KIγ_v3 was also expressed faintly. Immunostaining of the adult mouse retina revealed intense PIP5KIγ-immunoreactivity in the inner and outer plexiform layers in a punctate manner. In the photoreceptor ribbon synapse, PIP5KIγ was highly concentrated at the periactive zone. These findings suggest that PIP5KIγ, especially PIP5KIγ_i2, is localized at the periactive zone, a functionally suitable compartment for the endocytosis of synaptic vesicles in photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan.
| | - Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideaki Tamaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
46
|
Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TFJ. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell 2013; 25:508-21. [PMID: 24356451 PMCID: PMC3923642 DOI: 10.1091/mbc.e12-11-0829] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca(2+)-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca(2+)-triggered fusion were unknown. Ca(2+)-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca(2+)-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca(2+)-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca(2+) influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca(2+)-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | | | | | | |
Collapse
|
47
|
Penniston JT, Padányi R, Pászty K, Varga K, Hegedus L, Enyedi A. Apart from its known function, the plasma membrane Ca²⁺ATPase can regulate Ca²⁺ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 2013; 127:72-84. [PMID: 24198396 DOI: 10.1242/jcs.132548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂], but if and how they control the PtdIns(4,5)P₂ pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P₂ in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P₂ binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P₂ binding can lead to less inositol 1,4,5-triphosphate (InsP₃) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P₂; these pockets bind PtdIns(4,5)P₂ strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P₂, PMCAs can control the accessibility of PtdIns(4,5)P₂ for PLC and other PtdIns(4,5)P₂-mediated processes.
Collapse
Affiliation(s)
- John T Penniston
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
48
|
Puchkov D, Haucke V. Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol 2013; 23:493-503. [DOI: 10.1016/j.tcb.2013.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/18/2022]
|
49
|
Molino D, Galli T. Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie 2013; 96:75-84. [PMID: 24075975 DOI: 10.1016/j.biochi.2013.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
Lipids in biological membranes show astonishing chemical diversity, but they also show some key conserved structures in different organisms. In addition, some of their biophysical properties have been related to specific functions. In this review, we aim to discuss the role of sphingolipids- and cholesterol-rich micro- and nano-membrane domains (MD) and highlight their pivotal role in lipid-protein clustering processes, vesicle biogenesis and membrane fusion. We further review potential connections between human pathologies and defects in MD biosynthesis, recycling and homeostasis. Brain, which is second only to the adipose tissues in term of lipid abundance, is particularly affected by MD defects which are linked to neurodegenerative disorders. Finally we propose a potential connection between MD and several nutrient-related processes and envision how diet and autophagy could bring insights towards understanding the impact of global lipid homeostasis on human health and disease.
Collapse
Affiliation(s)
- Diana Molino
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; INSERM ERL U950, Membrane Traffic in Neuronal and Epithelial Morphogenesis, F-75013 Paris, France.
| | | |
Collapse
|
50
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|