1
|
Li T, Xu L, Li W, Wang C, Gin KYH, Chai X, Wu B. Dissolved organic carbon spurs bacterial-algal competition and phosphorus-paucity adaptation: Boosting Microcystis' phosphorus uptake capacity. WATER RESEARCH 2024; 255:121465. [PMID: 38569356 DOI: 10.1016/j.watres.2024.121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Dissolved organic carbon (DOC) can alter the availability of background nutrients by affecting the proliferation of heterotrophic bacteria, which exerts a notable influence on algal growth and metabolism. However, the mechanism of how allochthonous DOC (aDOC) precipitates shifts in bacterial-algal interactions and modulates the occurrence of cyanobacteria blooms remains inadequately elucidated. Therefore, this study investigated the relationship between bacteria and algae under aDOC stimulation. We found that excess aDOC triggered the breakdown and reestablishment of the equilibrium between Microcystis and heterotrophic bacteria. The rapid proliferation of heterotrophic bacteria led to a dramatic decrease in soluble phosphorus and thereby resulted in the inhibition of the Microcystis growth. When the available DOC was depleted, the rapid death of heterotrophic bacteria released large amounts of dissolved phosphorus, which provided sufficient nutrients for the recovery of Microcystis. Notably, Microcystis rejuvenated and showed higher cell density compared to the carbon-absent group. This phenomenon can be ascribed that Microcystis regulated the compositions of extracellular polymeric substances (EPS) and the expression of relevant proteins to adapt to a nutrient-limited environment. Using time of flight secondary ion mass spectrometry (TOF-SIM) and proteomic analysis, we observed an enhancement of the signal of organic matter and metal ions associated with P complexation in EPS. Moreover, Microcystis upregulated proteins related to organic phosphorus transformation to increase the availability of phosphorus in various forms. In summary, this study emphasized the role of DOC in algal blooms, revealing the underestimated enhancement of Microcystis nutrient utilization through DOC-induced heterotrophic competition and providing valuable insights into eutrophication management and control.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore, 138602, Singapore
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
3
|
Kim H, Gorman BL, Taylor MJ, Anderton CR. Atomistic simulations for investigation of substrate and salt effects on lipid in-source fragmentation in secondary ion mass spectrometry: A follow-up study. Biointerphases 2024; 19:011003. [PMID: 38341772 DOI: 10.1116/6.0003281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
In-source fragmentation (ISF) poses a significant challenge in secondary ion mass spectrometry (SIMS). These fragment ions increase the spectral complexity and can lead to incorrect annotation of fragments as intact species. The presence of salt that is ubiquitous in biological samples can influence the fragmentation and ionization of analytes in a significant manner, but their influences on SIMS have not been well characterized. To elucidate the effect of substrates and salt on ISF in SIMS, we have employed experimental SIMS in combination with atomistic simulations of a sphingolipid on a gold surface with various NaCl concentrations as a model system. Our results revealed that a combination of bond dissociation energy and binding energy between N-palmitoyl-sphingomyelin and a gold surface is a good predictor of fragment ion intensities in the absence of salt. However, ion-fragment interactions play a significant role in determining fragment yields in the presence of salt. Additionally, the charge distribution on fragment species may be a major contributor to the varying effects of salt on fragmentation. This study demonstrates that atomistic modeling can help predict ionization potential when salts are present, providing insights for more accurate interpretations of complex biological spectra.
Collapse
Affiliation(s)
- Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Brittney L Gorman
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Michael J Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
4
|
Jia F, Zhao X, Zhao Y. Advancements in ToF-SIMS imaging for life sciences. Front Chem 2023; 11:1237408. [PMID: 37693171 PMCID: PMC10483116 DOI: 10.3389/fchem.2023.1237408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
In the last 2 decades, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) has gained significant prominence as a powerful imaging technique in the field of life sciences. This comprehensive review provides an in-depth overview of recent advancements in ToF-SIMS instrument technology and its applications in metabolomics, lipidomics, and single-cell analysis. We highlight the use of ToF-SIMS imaging for studying lipid distribution, composition, and interactions in cells and tissues, and discuss its application in metabolomics, including the analysis of metabolic pathways. Furthermore, we review recent progress in single-cell analysis using ToF-SIMS, focusing on sample preparation techniques, in situ investigation for subcellular distribution of drugs, and interactions between drug molecules and biological targets. The high spatial resolution and potential for multimodal analysis of ToF-SIMS make it a promising tool for unraveling the complex molecular landscape of biological systems. We also discuss future prospects and potential advancements of ToF-SIMS in the research of life sciences, with the expectation of a significant impact in the field.
Collapse
Affiliation(s)
- Feifei Jia
- National Institutes for Food and Drug Control, Beijing, China
| | - Xia Zhao
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhou Y, Jiang X, Wang X, Huang J, Li T, Jin H, He J. Promise of spatially resolved omics for tumor research. J Pharm Anal 2023; 13:851-861. [PMID: 37719191 PMCID: PMC10499658 DOI: 10.1016/j.jpha.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tumors are spatially heterogeneous tissues that comprise numerous cell types with intricate structures. By interacting with the microenvironment, tumor cells undergo dynamic changes in gene expression and metabolism, resulting in spatiotemporal variations in their capacity for proliferation and metastasis. In recent years, the rapid development of histological techniques has enabled efficient and high-throughput biomolecule analysis. By preserving location information while obtaining a large number of gene and molecular data, spatially resolved metabolomics (SRM) and spatially resolved transcriptomics (SRT) approaches can offer new ideas and reliable tools for the in-depth study of tumors. This review provides a comprehensive introduction and summary of the fundamental principles and research methods used for SRM and SRT techniques, as well as a review of their applications in cancer-related fields.
Collapse
Affiliation(s)
- Yanhe Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| |
Collapse
|
6
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
7
|
Kinnun JJ, Scott HL, Bolmatov D, Collier CP, Charlton TR, Katsaras J. Biophysical studies of lipid nanodomains using different physical characterization techniques. Biophys J 2023; 122:931-949. [PMID: 36698312 PMCID: PMC10111277 DOI: 10.1016/j.bpj.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Timothy R Charlton
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
8
|
Lee S, Vu HM, Lee JH, Lim H, Kim MS. Advances in Mass Spectrometry-Based Single Cell Analysis. BIOLOGY 2023; 12:395. [PMID: 36979087 PMCID: PMC10045136 DOI: 10.3390/biology12030395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Technological developments and improvements in single-cell isolation and analytical platforms allow for advanced molecular profiling at the single-cell level, which reveals cell-to-cell variation within the admixture cells in complex biological or clinical systems. This helps to understand the cellular heterogeneity of normal or diseased tissues and organs. However, most studies focused on the analysis of nucleic acids (e.g., DNA and RNA) and mass spectrometry (MS)-based analysis for proteins and metabolites of a single cell lagged until recently. Undoubtedly, MS-based single-cell analysis will provide a deeper insight into cellular mechanisms related to health and disease. This review summarizes recent advances in MS-based single-cell analysis methods and their applications in biology and medicine.
Collapse
Affiliation(s)
- Siheun Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hung M. Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung-Hyun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Center for Cell Fate Reprogramming and Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
9
|
Zhang C, Kikushima K, Endo M, Kahyo T, Horikawa M, Matsudaira T, Tanaka T, Takanashi Y, Sato T, Takahashi Y, Xu L, Takayama N, Islam A, Mamun MA, Ozawa T, Setou M. Imaging and Manipulation of Plasma Membrane Fatty Acid Clusters Using TOF-SIMS Combined Optogenetics. Cells 2022; 12:cells12010010. [PMID: 36611804 PMCID: PMC9818728 DOI: 10.3390/cells12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane (PM) serves multiple functions to support cell activities with its heterogeneous molecular distribution. Fatty acids (FAs) are hydrophobic components of the PM whose saturation and length determine the membrane's physical properties. The FA distribution contributes to the PM's lateral heterogeneity. However, the distribution of PM FAs is poorly understood. Here, we proposed the FA cluster hypothesis, which suggested that FAs on the PM exist as clusters. By the optogenetic tool translocating the endoplasmic reticulum (ER), we were able to manipulate the distribution of PM FAs. We used time-of-flight combined secondary ion mass spectrometry (TOF-SIMS) to image PM FAs and discovered that PM FAs were presented and distributed as clusters and are also manipulated as clusters. We also found the existence of multi-FA clusters formed by the colocalization of more than one FA. Our optogenetic tool also decreased the clustering degree of FA clusters and the formation probability of multi-FA clusters. This research opens up new avenues and perspectives to study PM heterogeneity from an FA perspective. This research also suggests a possible treatment for diseases caused by PM lipid aggregation and furnished a convenient tool for therapeutic development.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mizuki Endo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takaomi Matsudaira
- Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Tatsuya Tanaka
- Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Yusuke Takanashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Naoki Takayama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence:
| |
Collapse
|
10
|
Intisar A, Shin HY, Kim W, Kang HG, Kim MY, Kim YS, Cho Y, Mo YJ, Lim H, Lee S, Lu QR, Lee Y, Kim MS. Implantable Electroceutical Approach Improves Myelination by Restoring Membrane Integrity in a Mouse Model of Peripheral Demyelinating Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201358. [PMID: 35975427 PMCID: PMC9661852 DOI: 10.1002/advs.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Hyun Young Shin
- CTCELLS Corp.Daegu42988Republic of Korea
- SBCure Corp.Daegu43017Republic of Korea
| | | | - Hyun Gyu Kang
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Min Young Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Yu Seon Kim
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Youngjun Cho
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Heejin Lim
- Department of New BiologyDGISTDaegu42988Republic of Korea
| | - Sanghoon Lee
- Department of Robotics and Mechatronics EngineeringDGISTDaegu42988Republic of Korea
| | - Q. Richard Lu
- Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| | - Yun‐Il Lee
- Well Aging Research CenterDGISTDaegu42988Republic of Korea
| | - Minseok S. Kim
- Department of New BiologyDGISTDaegu42988Republic of Korea
- CTCELLS Corp.Daegu42988Republic of Korea
- Translational Responsive Medicine Center (TRMC)DGISTDaegu42988Republic of Korea
- New Biology Research Center (NBRC)DGISTDaegu42988Republic of Korea
| |
Collapse
|
11
|
Kabatas Glowacki S, Agüi-Gonzalez P, Sograte-Idrissi S, Jähne S, Opazo F, Phan NTN, Rizzoli SO. An iodine-containing probe as a tool for molecular detection in secondary ion mass spectrometry. Chem Commun (Camb) 2022; 58:7558-7561. [PMID: 35708485 DOI: 10.1039/d2cc02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed here an iodine-containing probe that can be used to identify the molecules of interest in secondary ion mass spectrometry (SIMS) by simple immunolabelling procedures. The immunolabelled iodine probe was readily combined with previously-developed SIMS probes carrying fluorine, to generate dual-channel SIMS data. This probe should provide a useful complement to the currently available SIMS probes, thus expanding the scope of this technology.
Collapse
Affiliation(s)
- Selda Kabatas Glowacki
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany.
| | - Nhu T N Phan
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075 Göttingen, Germany. .,Department of Neuro and Sensory Physiology, University Medical Center, Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
| |
Collapse
|
12
|
Müller WH, McCann A, Arias AA, Malherbe C, Quinton L, De Pauw E, Eppe G. Imaging Metabolites in Agar‐Based Bacterial Co‐Cultures with Minimal Sample Preparation using a DIUTHAME Membrane in Surface‐Assisted Laser Desorption/Ionization Mass Spectrometry**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Andréa McCann
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions Laboratory Terra Teaching and Research Center Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory MolSys Research Unit Department of Chemistry University of Liège Liège Belgium
| |
Collapse
|
13
|
Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems. Biointerphases 2022; 17:020802. [DOI: 10.1116/6.0001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging offers a powerful, label-free method for exploring organic, bioorganic, and biological systems. The technique is capable of very high spatial resolution, while also producing an enormous amount of information about the chemical and molecular composition of a surface. However, this information is inherently complex, making interpretation and analysis of the vast amount of data produced by a single ToF-SIMS experiment a considerable challenge. Much research over the past few decades has focused on the application and development of multivariate analysis (MVA) and machine learning (ML) techniques that find meaningful patterns and relationships in these datasets. Here, we review the unsupervised algorithms—that is, algorithms that do not require ground truth labels—that have been applied to ToF-SIMS images, as well as other algorithms and approaches that have been used in the broader family of mass spectrometry imaging (MSI) techniques. We first give a nontechnical overview of several commonly used classes of unsupervised algorithms, such as matrix factorization, clustering, and nonlinear dimensionality reduction. We then review the application of unsupervised algorithms to various organic, bioorganic, and biological systems including cells and tissues, organic films, residues and coatings, and spatially structured systems such as polymer microarrays. We then cover several novel algorithms employed for other MSI techniques that have received little attention from ToF-SIMS imaging researchers. We conclude with a brief outline of potential future directions for the application of MVA and ML algorithms to ToF-SIMS images.
Collapse
|
14
|
Intisar A, Kim WH, Shin HY, Kim MY, Kim YS, Lim H, Kang HG, Mo YJ, Aly MAS, Lee YI, Kim MS. An electroceutical approach enhances myelination via upregulation of lipid biosynthesis in the dorsal root ganglion. Biofabrication 2021; 14. [PMID: 34933294 DOI: 10.1088/1758-5090/ac457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
As the myelin sheath is crucial for neuronal saltatory conduction, loss of myelin in the peripheral nervous system (PNS) leads to demyelinating neuropathies causing muscular atrophy, numbness, foot deformities and paralysis. Unfortunately, few interventions are available for such neuropathies, because previous pharmaceuticals have shown severe side effects and failed in clinical trials. Therefore, exploring new strategies to enhance PNS myelination is critical to provide solution for such intractable diseases. This study aimed to investigate the effectiveness of electrical stimulation (ES) to enhance myelination in the mouse dorsal root ganglion (DRG) - an ex vivo model of the PNS. Mouse embryonic DRGs were extracted at E13 and seeded onto Matrigel-coated surfaces. After sufficient growth and differentiation, screening was carried out by applying ES in the 1-100 Hz range at the beginning of the myelination process. DRG myelination was evaluated via immunostaining at the intermediate (19 DIV) and mature (30 DIV) stages. Further biochemical analyses were carried out by utilizing RNA sequencing, qPCR and biochemical assays at both intermediate and mature myelination stages. Imaging of DRG myelin lipids was carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS). With screening ES conditions, optimal condition was identified at 20 Hz, which enhanced the percentage of myelinated neurons and average myelin length not only at intermediate (129% and 61%) but also at mature (72% and 17%) myelination stages. Further biochemical analyses elucidated that ES promoted lipid biosynthesis in the DRG. ToF-SIMS imaging showed higher abundance of the structural lipids, cholesterol and sphingomyelin, in the myelin membrane. Therefore, promotion of lipid biosynthesis and higher abundance of myelin lipids led to ES-mediated myelination enhancement. Given that myelin lipid deficiency is culpable for most demyelinating PNS neuropathies, the results might pave a new way to treat such diseases via electroceuticals.
Collapse
Affiliation(s)
- Aseer Intisar
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Woon-Hae Kim
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Young Shin
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Min Young Kim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yu Seon Kim
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Heejin Lim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Gyu Kang
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun Jeoung Mo
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Mohamed Aly Saad Aly
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Minseok S Kim
- New Biology, DGIST, Room 313, Building E5, DGIST, Daegu, 42988, Korea (the Republic of)
| |
Collapse
|
15
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Gorman BL, Brunet MA, Kraft ML. Depth correction of 3D NanoSIMS images using secondary electron pixel intensities. Biointerphases 2021; 16:041005. [PMID: 34344157 PMCID: PMC8337084 DOI: 10.1116/6.0001092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Strategies that do not require additional characterization to be performed on the sample or the collection of additional secondary ion signals are needed to depth correct 3D SIMS images of cells. Here, we develop a depth correction strategy that uses the pixel intensities in the secondary electron images acquired during negative-ion NanoSIMS depth profiling to reconstruct the sample morphology. This morphology reconstruction was then used to depth correct the 3D SIMS images that show the components of interest in the sample. As a proof of concept, we applied this approach to NanoSIMS depth profiling data that show the 15N-enrichment and 18O-enrichment from 15N-sphingolipids and 18O-cholesterol, respectively, within a metabolically labeled Madin-Darby canine kidney cell. Comparison of the cell morphology reconstruction to the secondary electron images collected with the NanoSIMS revealed that the assumption of a constant sputter rate produced small inaccuracies in sample morphology after approximately 0.66 μm of material was sputtered from the cell. Nonetheless, the resulting 3D renderings of the lipid-specific isotope enrichments better matched the shapes and positions of the subcellular compartments that contained 15N-sphingolipids and 18O-cholesterol than the uncorrected 3D SIMS images. This depth correction of the 3D SIMS images also facilitated the detection of spherical cholesterol-rich compartments that were surrounded by membranes containing cholesterol and sphingolipids. Thus, we expect this approach will facilitate identifying the subcellular structures that are enriched with biomolecules of interest in 3D SIMS images while eliminating the need for correlated analyses or additional secondary ion signals for the depth correction of 3D NanoSIMS images.
Collapse
Affiliation(s)
- Brittney L Gorman
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Melanie A Brunet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mary L Kraft
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
17
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
18
|
Gold-Conjugated Nanobodies for Targeted Imaging Using High-Resolution Secondary Ion Mass Spectrometry. NANOMATERIALS 2021; 11:nano11071797. [PMID: 34361183 PMCID: PMC8308316 DOI: 10.3390/nano11071797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022]
Abstract
Nanoscale imaging with the ability to identify cellular organelles and protein complexes has been a highly challenging subject in the secondary ion mass spectrometry (SIMS) of biological samples. This is because only a few isotopic tags can be used successfully to target specific proteins or organelles. To address this, we generated gold nanoprobes, in which gold nanoparticles are conjugated to nanobodies. The nanoprobes were well suited for specific molecular imaging using NanoSIMS at subcellular resolution. They were demonstrated to be highly selective to different proteins of interest and sufficiently sensitive for SIMS detection. The nanoprobes offer the possibility of correlating the investigation of cellular isotopic turnover to the positions of specific proteins and organelles, thereby enabling an understanding of functional and structural relations that are currently obscure.
Collapse
|
19
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
20
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Abe M, Kobayashi T. Imaging Sphingomyelin- and Cholesterol-Enriched Domains in the Plasma Membrane Using a Novel Probe and Super-Resolution Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:81-90. [PMID: 33834433 DOI: 10.1007/978-981-33-6064-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we show the visualization of lipid domains using a specific lipid-binding protein and super-resolution microscopy. Lipid rafts are plasma membrane domains enriched in both sphingolipids and sterols that play key roles in various physiological events. We identified a novel protein that specifically binds to a complex of sphingomyelin (SM) and cholesterol (Chol). The isolated protein, nakanori, labels the SM/Chol complex at the outer leaflet of the plasma membrane in mammalian cells. Structured illumination microscopic images suggested that the influenza virus buds from the edges of the SM/Chol domains in MDCK cells. Furthermore, a photoactivated localization microscopy analysis indicated that the SM/Chol complex forms domains in the outer leaflet, just above the phosphatidylinositol 4,5-bisphosphate domains in the inner leaflet. These observations provide significant insight into the structure and function of lipid rafts.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama, Japan.,UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
22
|
Gardner W, Cutts SM, Phillips DR, Pigram PJ. Understanding mass spectrometry images: complexity to clarity with machine learning. Biopolymers 2020; 112:e23400. [PMID: 32937683 DOI: 10.1002/bip.23400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/08/2022]
Abstract
The application of artificial intelligence and machine learning to hyperspectral mass spectrometry imaging (MSI) data has received considerable attention over recent years. Various methodologies have shown great promise in their ability to handle the complexity and size of MSI data sets. Advances in this area have been particularly appealing for MSI of biological samples, which typically produce highly complicated data with often subtle relationships between features. There are many different machine learning approaches that have been applied to MSI data over the past two decades. In this review, we focus on a subset of non-linear machine learning techniques that have mostly only been applied in the past 5 years. Specifically, we review the use of the self-organizing map (SOM), SOM with relational perspective mapping (SOM-RPM), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP). While not their only functionality, we have grouped these techniques based on their ability to produce what we refer to as similarity maps. Similarity maps are color representations of hyperspectral data, in which spectral similarity between pixels-that is, their distance in high-dimensional space-is represented by relative color similarity. In discussing these techniques, we describe, briefly, their associated algorithms and functionalities, and also outline applications in MSI research with a strong focus on biological sample types. The aim of this review is therefore to introduce this relatively recent paradigm for visualizing and exploring hyperspectral MSI, while also providing a comparison between each technique discussed.
Collapse
Affiliation(s)
- Wil Gardner
- Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.,La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia.,CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Suzanne M Cutts
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Don R Phillips
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Guo L, Lai Z, Wang Y, Li Z. In situ probing changes in fatty-acyl chain length and desaturation of lipids in cancerous areas using mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4621. [PMID: 32776652 DOI: 10.1002/jms.4621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Aberrant changes in the expression levels and structure of lipids may shape tumor microenvironment. In this study, we have performed mass spectrometry imaging and profiling analysis of 63 tissues of five types of cancer, namely, breast, colorectal, esophageal, lung, and gastric cancer, using in situ liquid extraction electrosonic spray ionization mass spectrometry imaging. Alteration of fatty-acyl chain length of unsaturated phosphatidylcholines, phosphatidylinositols, and phosphatidylserines and of chain length of (un)saturated fatty acids are associated with different cancerous areas of five types of cancer. The ratios of the same fatty-acyl carbon atom lipids with one double bond difference and the ratios of the same chain-length fatty acids with one double bond difference exhibited significant differences among the cancerous areas of five types of cancer. Our data may reveal that there were different lipid metabolism networks among five types of cancer.
Collapse
Affiliation(s)
- Lei Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmin Wang
- Department of Clinical Laboratory, Heze Municipal Hospital, Heze, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Gorman BL, Brunet MA, Pham SN, Kraft ML. Measurement of Absolute Concentration at the Subcellular Scale. ACS NANO 2020; 14:6414-6419. [PMID: 32510923 DOI: 10.1021/acsnano.0c04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The concentration of a pharmaceutical drug or bioactive metabolite within the target organelle influences the effects elicited by the drug or metabolite. Although the relative concentrations of many compounds of interest within subcellular compartments have been measured, measurements of absolute concentrations in the organelle remain elusive. In this Perspective, we discuss a significant advance in using nano secondary ion mass spectrometry (nanoSIMS) to measure the absolute concentration of a 13C-labeled metabolite within secretory vesicles, as reported by Thomen et al. in the April issue of ACS Nano.
Collapse
|
25
|
Gorman BL, Kraft ML. High-Resolution Secondary Ion Mass Spectrometry Analysis of Cell Membranes. Anal Chem 2020; 92:1645-1652. [PMID: 31854976 DOI: 10.1021/acs.analchem.9b04492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This Feature describes the use a Cameca NanoSIMS instrument for directly imaging specific lipid and protein species in the plasma membranes of mammalian cells with approximately 100 nm-lateral resolution and discusses how these analyses have already begun to transform fundamental concepts in the field of membrane biology. Secondary ion generation is discussed with emphasis on the constraints that affect the detection and identification of membrane components, and then the sample preparation methodologies and data analysis strategies that address these constraints are described.
Collapse
|
26
|
Germeys C, Vandoorne T, Bercier V, Van Den Bosch L. Existing and Emerging Metabolomic Tools for ALS Research. Genes (Basel) 2019; 10:E1011. [PMID: 31817338 PMCID: PMC6947647 DOI: 10.3390/genes10121011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that aberrant energy metabolism could play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, studies applying advanced technologies to investigate energy metabolism in ALS remain scarce. The rapidly growing field of metabolomics offers exciting new possibilities for ALS research. Here, we review existing and emerging metabolomic tools that could be used to further investigate the role of metabolism in ALS. A better understanding of the metabolic state of motor neurons and their surrounding cells could hopefully result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
27
|
Ali A, Abouleila Y, Shimizu Y, Hiyama E, Emara S, Mashaghi A, Hankemeier T. Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Pan Y, Hu L, Zhao T. Applications of chemical imaging techniques in paleontology. Natl Sci Rev 2019; 6:1040-1053. [PMID: 34691967 PMCID: PMC8291642 DOI: 10.1093/nsr/nwy107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023] Open
Abstract
Chemical imaging techniques, based on a combination of microscopy and spectroscopy, are designed to analyse the composition and spatial distribution of heterogeneous chemical complexes within a sample. Over the last few decades, it has become an increasingly popular tool for characterizing trace elements, isotopic information and organic biomarkers (molecular biosignatures) found in fossils. Here, we introduce the analytical principle of each technique and the interpretation of the chemical signals, followed by a review of the main applications of these techniques in paleontology. We also demonstrate that each technique is associated with pros and cons, and the current limitations and obstacles associated with the use of each specific technique should be taken into account before being applied to fossil samples. Finally, we propose that, due to the rapid advances in the available technology and overall trends towards more multi-disciplinary studies in paleontology, chemical imaging techniques can be expected to have broader applications in paleontology in the near future.
Collapse
Affiliation(s)
- Yanhong Pan
- CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liang Hu
- CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
29
|
Lim H, Lee SY, Moon DW, Kim JY. Preparation of cellular samples using graphene cover and air-plasma treatment for time-of-flight secondary ion mass spectrometry imaging. RSC Adv 2019; 9:28432-28438. [PMID: 35529615 PMCID: PMC9071169 DOI: 10.1039/c9ra05205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
We report on sample preparation methods based on plasma treatment for an improvement of multiple molecular ion images of cellular membranes in the ToF-SIMS method. The air-plasma treatment of fixed cellular samples efficiently removed the organic residues of any solutions used during sample preparation and improved the quality of ToF-SIMS images due to the resulting clean surface. We also studied cell preparation methods that combine single-layer graphene covering with air-plasma treatment to achieve a synergistic effect that eliminates background spectra by organic impurities while minimizing morphological cell deformation in a vacuum environmental analysis. When the cellular sample on the glass substrate is completely covered with the single-layer graphene, the cells trapped between the graphene and the substrate can effectively reduce morphological deformation by slow-dehydration. After slow-dehydration of cells is completed inside the graphene-cover, the covered graphene layer can be peeled off by air-plasma treatment, and the unwanted organic residues on the surface of cells and substrate can also be removed by plasma cleaning, thereby much improving ion imaging of cells with the ToF-SIMS method. It is confirmed that the cell samples in which the graphene-cover was removed by air-plasma treatment maintained their morphology well in comparison with the rapid air-dried cells in atomic force microscopy (AFM) and ToF-SIMS images. Cell preparation methods that combine a single-layer graphene cover with air-plasma treatment for improvement of ToF-SIMS imaging.![]()
Collapse
Affiliation(s)
- Heejin Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| | - Sun Young Lee
- Division of Technology Business, National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Dae Won Moon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| | - Jae Young Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea .,Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| |
Collapse
|
30
|
Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst 2019; 144:824-845. [PMID: 30334031 DOI: 10.1039/c8an01190g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells are the most basic structural units that play vital roles in the functioning of living organisms. Analysis of the chemical composition and content of a single cell plays a vital role in ensuring precise investigations of cellular metabolism, and is a crucial aspect of lipidomic and proteomic studies. In addition, structural knowledge provides a better understanding of cell behavior as well as the cellular and subcellular mechanisms. However, single-cell analysis can be very challenging due to the very small size of each cell as well as the large variety and extremely low concentrations of substances found in individual cells. On account of its high sensitivity and selectivity, mass spectrometry holds great promise as an effective technique for single-cell analysis. Numerous mass spectrometric techniques have been developed to elucidate the molecular profiles at the cellular level, including electrospray ionization mass spectrometry (ESI-MS), secondary ion mass spectrometry (SIMS), laser-based mass spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). In this review, the recent advances in single-cell analysis by mass spectrometry are summarized. The strategies of different ionization modes to achieve single-cell analysis are classified and discussed in detail.
Collapse
Affiliation(s)
- Lei Yin
- Research Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Dongminzhu Street, Changchun 130061, PR China.
| | | | | | | | | |
Collapse
|
31
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
32
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
33
|
Tóth JT, Gulyás G, Hunyady L, Várnai P. Development of Nonspecific BRET-Based Biosensors to Monitor Plasma Membrane Inositol Lipids in Living Cells. Methods Mol Biol 2019; 1949:23-34. [PMID: 30790246 DOI: 10.1007/978-1-4939-9136-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
There are several difficulties to face when investigating the role of phosphoinositides. Although they are present in most organelles, their concentration is very low, sometimes undetectable with the available methods; moreover, their level can quickly change upon several external stimuli. Here we introduce a newly improved lipid sensor tool-set based on the balanced expression of luciferase-fused phosphoinositide recognizing protein domains and a Venus protein targeted to the plasma membrane, allowing us to perform Bioluminescence Resonance Energy Transfer (BRET) measurements that reflect phosphoinositide changes in a population of transiently transfected cells. This method is highly sensitive, specific, and capable of semiquantitative characterization of plasma membrane phosphoinositide changes with high temporal resolution.
Collapse
Affiliation(s)
- József T Tóth
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.,Faculty of Medicine, Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Gergő Gulyás
- Faculty of Medicine, Department of Physiology Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.,MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Várnai
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary. .,MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary.
| |
Collapse
|
34
|
Chen J, Hu Y, Lu Q, Wang P, Zhan H. Molecular imaging of small molecule drugs in animal tissues using laser desorption postionization mass spectrometry. Analyst 2018; 142:1119-1124. [PMID: 28294229 DOI: 10.1039/c6an02721k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Localization and quantification of the target drug in tissues is a key indicator of efficacy in drug discovery. In contrast to established methods that require matrices and complex sample pretreatment steps, matrix-free and low cost in situ analysis of small molecule drugs by mass spectrometry (MS) remains challenging. Here, we present a novel approach, laser desorption postionization (LDPI), which is coupled to a linear time-of-flight (TOF) MS and used to image the distribution of acriflavine (ACF) directly from a histological section of mouse kidney without any matrix or sample pretreatment. The identification of the mass peaks assigned to ACF was further confirmed by DESI-MS/MS. Moreover, the matrix effect from the tissue section was explored, showing minimal desorption and ionization suppression in the LDPI-MS process. LDPI-MS imaging (LDPI-MSI) was performed on 30 μm kidney sections from mice 15 min postdose that were dosed with 30 mg kg-1 of ACF by monitoring the fragment ion at m/z 209. The LDPI-MS image revealed a global view of the distribution of ACF in the kidney compartments (pelvis, medulla, and cortex). Estimated concentrations of ACF residue in mouse kidney were obtained by LDPI-MSI and LC-MS/MS and a 12.1% difference in measured tissue concentration was found. These results suggest that the use of LDPI-MS in small molecule drug localization and quantification directly from biological tissue at the same time is favorable.
Collapse
Affiliation(s)
- Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Qiao Lu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| |
Collapse
|
35
|
Laíns I, Gantner M, Murinello S, Lasky-Su JA, Miller JW, Friedlander M, Husain D. Metabolomics in the study of retinal health and disease. Prog Retin Eye Res 2018; 69:57-79. [PMID: 30423446 DOI: 10.1016/j.preteyeres.2018.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Metabolomics is the qualitative and quantitative assessment of the metabolites (small molecules < 1.5 kDa) in body fluids. The metabolites are the downstream of the genetic transcription and translation processes and also downstream of the interactions with environmental exposures; thus, they are thought to closely relate to the phenotype, especially for multifactorial diseases. In the last decade, metabolomics has been increasingly used to identify biomarkers in disease, and it is currently recognized as a very powerful tool with great potential for clinical translation. The metabolome and the associated pathways also help improve our understanding of the pathophysiology and mechanisms of disease. While there has been increasing interest and research in metabolomics of the eye, the application of metabolomics to retinal diseases has been limited, even though these are leading causes of blindness. In this manuscript, we perform a comprehensive summary of the tools and knowledge required to perform a metabolomics study, and we highlight essential statistical methods for rigorous study design and data analysis. We review available protocols, summarize the best approaches, and address the current unmet need for information on collection and processing of tissues and biofluids that can be used for metabolomics of retinal diseases. Additionally, we critically analyze recent work in this field, both in animal models and in human clinical disease, including diabetic retinopathy and age-related macular degeneration. Finally, we identify opportunities for future research applying metabolomics to improve our current assessment and understanding of mechanisms of vitreoretinal diseases, and to hence improve patient assessment and care.
Collapse
Affiliation(s)
- Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States; Faculty of Medicine, University of Coimbra, 3000 Coimbra, Portugal.
| | - Mari Gantner
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Salome Murinello
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Jessica A Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States.
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, 92037, United States; Scripps Research Institute, La Jolla, CA, 92037, United States.
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, United States.
| |
Collapse
|
36
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
37
|
Schaepe K, Bhandari DR, Werner J, Henss A, Pirkl A, Kleine-Boymann M, Rohnke M, Wenisch S, Neumann E, Janek J, Spengler B. Imaging of Lipids in Native Human Bone Sections Using TOF-Secondary Ion Mass Spectrometry, Atmospheric Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Orbitrap Mass Spectrometry, and Orbitrap-Secondary Ion Mass Spectrometry. Anal Chem 2018; 90:8856-8864. [PMID: 29944823 DOI: 10.1021/acs.analchem.8b00892] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 μm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 μm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 μm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods.
Collapse
Affiliation(s)
| | | | - Janina Werner
- Department of Veterinary Clinical Sciences , Small Animal Clinic, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen , Frankfurter Strasse 98 , 35392 Giessen , Germany
| | | | - Alexander Pirkl
- IONTOF GmbH , Heisenbergstrasse 15 , 48149 Münster , Germany
| | | | | | - Sabine Wenisch
- Department of Veterinary Clinical Sciences , Small Animal Clinic, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen , Frankfurter Strasse 98 , 35392 Giessen , Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology , Justus Liebig University Giessen, Kerckhoff-Clinic , Benekestrasse 2-8 , 61231 Bad Nauheim , Germany
| | | | | |
Collapse
|
38
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
39
|
Observation of endoplasmic reticulum tubules via TOF-SIMS tandem mass spectrometry imaging of transfected cells. Biointerphases 2018; 13:03B409. [PMID: 29482330 DOI: 10.1116/1.5019736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX®, which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS. Time-of-flight-SIMS tandem mass spectrometry (MS2) imaging was used to identify positively and negatively charged ions produced by the ER-Tracker stain. Then, these ions were used to localize the stain and thus the endoplasmic reticulum, within individual human embryonic kidney cells that contained higher numbers of endoplasmic reticulum-plasma membrane junctions on their surfaces. By performing MS2 imaging of selected ions in parallel with the precursor ion (MS1) imaging, the authors detected a chemical interference native to the cell at the same nominal mass as the pentafluorophenyl fragment from the ER-Tracker stain. Nonetheless, the fluorine secondary ions produced by the ER-Tracker stain provided a distinctive signal that enabled locating the endoplasmic reticulum using SIMS. This simple strategy for visualizing the endoplasmic reticulum in individual cells using SIMS could be combined with existing SIMS methodologies for imaging intracellular lipid distribution and to study the lipid composition within the endoplasmic reticulum.
Collapse
|
40
|
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8:22335-22350. [PMID: 35539746 PMCID: PMC9081429 DOI: 10.1039/c8ra01574k] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed. Metabolomics is the systematic study of all the metabolites present within a biological system, supply functional information and has received extensive attention in the field of life sciences.![]()
Collapse
Affiliation(s)
- Jun-Ling Ren
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ling Kong
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
41
|
Wang J, Liu F, Mo Y, Wang Z, Zhang S, Zhang X. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:114102. [PMID: 29195356 DOI: 10.1063/1.4994173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuxiang Mo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhaoying Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
43
|
Čižinauskas V, Elie N, Brunelle A, Briedis V. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery. Molecules 2017; 22:E1536. [PMID: 28895890 PMCID: PMC6151382 DOI: 10.3390/molecules22091536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 11/18/2022] Open
Abstract
Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.
Collapse
Affiliation(s)
- Vytis Čižinauskas
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukilėlių pr. 13, Kaunas 50166, Lithuania.
| | - Nicolas Elie
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
| | - Vitalis Briedis
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukilėlių pr. 13, Kaunas 50166, Lithuania.
| |
Collapse
|
44
|
Paine MRL, Kooijman PC, Fisher GL, Heeren RMA, Fernández FM, Ellis SR. Visualizing molecular distributions for biomaterials applications with mass spectrometry imaging: a review. J Mater Chem B 2017; 5:7444-7460. [PMID: 32264222 DOI: 10.1039/c7tb01100h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass spectrometry imaging (MSI) is a rapidly emerging field that is continually finding applications in new and exciting areas. The ability of MSI to measure the spatial distribution of molecules at or near the surface of complex substrates makes it an ideal candidate for many applications, including those in the sphere of materials chemistry. Continual development and optimization of both ionization sources and analyzer technologies have resulted in a wide array of MSI tools available, both commercially available and custom-built, with each configuration possessing inherent strengths and limitations. Despite the unique potential of MSI over other chemical imaging methods, their potential and application to (bio)materials science remains in our view a largely underexplored avenue. This review will discuss these techniques enabling high parallel molecular detection, focusing on those with reported uses in (bio)materials chemistry applications and highlighted with select applications. Different technologies are presented in three main sections; secondary ion mass spectrometry (SIMS) imaging, matrix-assisted laser desorption ionization (MALDI) MSI, and emerging MSI technologies with potential for biomaterial analysis. The first two sections (SIMS and MALDI) discuss well-established methods that are continually evolving both in technological advancements and in experimental versatility. In the third section, relatively new and versatile technologies capable of performing measurements under ambient conditions will be introduced, with reported applications in materials chemistry or potential applications discussed. The aim of this review is to provide a concise resource for those interested in utilizing MSI for applications such as biomimetic materials, biological/synthetic material interfaces, polymer formulation and bulk property characterization, as well as the spatial and chemical distributions of nanoparticles, or any other molecular imaging application requiring broad chemical speciation.
Collapse
Affiliation(s)
- Martin R L Paine
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht 6229 ER, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Yavas S, Macháň R, Wohland T. The Epidermal Growth Factor Receptor Forms Location-Dependent Complexes in Resting Cells. Biophys J 2017; 111:2241-2254. [PMID: 27851946 DOI: 10.1016/j.bpj.2016.09.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine kinase involved in cell growth and proliferation and associated with various cancers. It is commonly assumed that after activation by binding of epidermal growth factor to the extracellular domain it dimerizes, followed by autophosphorylation of tyrosine residues at the intracellular domain. However, its oligomerization state before activation is controversial. In the absence of ligands, EGFR has been found in various, inconsistent amounts of monomeric, inactive dimeric, and oligomeric forms. In addition, evidence suggests that the active conformation is not a simple dimer but contains higher oligomers. As experiments in the past have been conducted at different conditions, we investigate here the influence of cell lines (HEK293, COS-7, and CHO-K1), temperature (room temperature and 37°C), and membrane localization on the quantitation of preformed dimers using SW-FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement modality, temperature, and localization on upper or lower membranes have only a limited influence on the dimerization amount observed, the cell line and location to periphery versus center of the cell can change dimerization results significantly. The observed dimerization amount is strongly dependent on the expression level of endogenous EGFR in a cell line and shows a strong cell-to-cell variability even within the same cell line. In addition, using imaging FCCS, we find that dimers have a tendency to be found at the periphery of cells compared to central positions.
Collapse
Affiliation(s)
- Sibel Yavas
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Radek Macháň
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
46
|
Meiling D, Chao Z, Jinhong L. Coherence and polarization properties of laser propagating through biological tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 172:88-94. [PMID: 28531795 DOI: 10.1016/j.jphotobiol.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022]
Abstract
Based on the extended Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements for random electromagnetic Gaussian Schell-model (GSM) beam propagating in biological tissues are derived, and used to study the changes in spectral degree of coherence μ and spectral degree of polarization P of random electromagnetic GSM beams with the propagation distance z propagating through the different biological tissues. It is shown that the changes closely depend on the species of the biological tissues, beam wave length, the interval between two field points and propagation distance. The spectral degree of coherence μ and the spectral degree of polarization P of the ultraviolet ray (λ=0.325μm) will quickly decrease during the propagation process, which implies that the damage of the ultraviolet ray to biological tissues is strong. The bigger structure constant of the refractive-index Cn2 corresponds to the smaller change of μ and P. There exists the obvious effect of the interval between two field points on the spectral degree of coherence and the spectral degree of polarization of random electromagnetic GSM beams passing biological tissues. The obtained results can provide the theoretical and experimental basis for the analysis to the coherence and polarization properties of random electromagnetic beams propagating through the complex biological tissues.
Collapse
Affiliation(s)
- Duan Meiling
- Department of Physics, North University of China, Taiyuan 030051, China.
| | - Zhang Chao
- Department of Physics, North University of China, Taiyuan 030051, China
| | - Li Jinhong
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
47
|
Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC. Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 2017; 1:141-153. [PMID: 29071183 PMCID: PMC5646720 DOI: 10.7150/ntno.18897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
We have developed a simple, rapid, high-throughput cancer diagnosis system using functional nanoparticles (NPs) consisting of poly(catechin) capped-gold NPs (Au@PC NPs) and smaller nucleolin-binding aptamer (AS1411) conjugated gold NPs (AS1411-Au NPs). The AS1411-Au NPs/Au@PC NP is used as a targeting agent in laser desorption/ionization mass spectrometry (LDI-MS)-based tumor tissue imaging. Self-assembled core-shell Au@PC NPs are synthesized by a simple reaction of tetrachloroaurate(III) with catechin. Au@PC NPs with a well-defined and dense poly(catechin) shell (~40-60 nm) on the surface of each Au core (~60-80 nm) are obtained through careful control of the ratio of catechin to gold ions, as well as the pH of the reaction solution. Furthermore, we have shown that AS1411-conjugated Au NPs (13-nm) self-assembled on Au@PC NP can from a satellite-like gold nanocomposite. The high density of AS1411-Au NPs on the surface of Au@PC NP enhances multivalent binding with nucleolin molecules on tumor cell membranes. We have employed LDI-MS to detect AS1411-Au NPs/Au@PC NPs labeled nucleolin-overexpressing MCF-7 breast cancer cells through the monitoring of Au cluster ions ([Aun]+; 1 ≤ n ≤ 3). The ultrahigh signal amplification from Au NPs through the formation of a huge number of [Aun]+ ions results in a sensing platform with a limit of detection of 100 MCF-7 cells mL-1. Further, we have applied the satellite-like AS1411-Au NPs/Au@PC NP nanocomposite as a labeling agent for tumor tissue imaging by LDI-MS. Our nanocomposite-assisted LDI-MS imaging platform can be extended for simultaneous analysis of different tumor markers on cell membranes when using different ligand-modified metal nanoparticles.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Chien-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
48
|
Comi TJ, Do TD, Rubakhin SS, Sweedler JV. Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. J Am Chem Soc 2017; 139:3920-3929. [PMID: 28135079 PMCID: PMC5364434 DOI: 10.1021/jacs.6b12822] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 02/06/2023]
Abstract
The chemical differences between individual cells within large cellular populations provide unique information on organisms' homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements.
Collapse
Affiliation(s)
- Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep 2017; 7:44277. [PMID: 28281674 PMCID: PMC5345070 DOI: 10.1038/srep44277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endo-lysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 μM, 5 μM). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 μM) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 μM), while changes in CD63 pattern already occurred at intermediate concentrations (5 μM). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs.
Collapse
|
50
|
Fatty acids penetration into human skin ex vivo: A TOF-SIMS analysis approach. Biointerphases 2017; 12:011003. [DOI: 10.1116/1.4977941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|