1
|
Stuttgen GM, Ring CJ, Guda VS, Valdivia Esparza GK, Sahoo D. The cardioprotective role of the G protein-coupled receptor FFAR4 in atherosclerosis is independent of macrophage foam cell regulation. J Biol Chem 2025; 301:108463. [PMID: 40157537 DOI: 10.1016/j.jbc.2025.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
Free fatty acid receptor 4 (FFAR4), also known as G protein-coupled receptor 120, is a long-chain unsaturated fatty acid receptor expressed in multiple tissue types including macrophages. Activation of FFAR4 maintains metabolic homeostasis by regulating adipogenesis, insulin sensitivity, and inflammation. While FFAR4 is best known for its protective role in obesity and diabetes, recent studies have demonstrated that FFAR4 may also prevent the development of atherosclerosis and cardiovascular disease. Given FFAR4's importance in anti-inflammatory signaling in macrophages, we used peritoneal macrophages from WT and FFAR4 KO (Ffar4-/-) mice to test the hypothesis that FFAR4 prevents the development of macrophage foam cell formation. Our data suggest that neither activation of FFAR4 nor deficiency of FFAR4 has any influence on foam cell outcome in oxidized low-density lipoprotein-treated macrophages. These data suggest that FFAR4's cardioprotective roles in atherosclerosis are independent of the regulation of macrophage foam cell formation.
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Caroline J Ring
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vishnu S Guda
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guadalupe K Valdivia Esparza
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
2
|
Stuttgen GM, Bobek J, Penoske R, Wadding-Lee C, Lam M, Hader SN, Owens AP, Sahoo D. FFAR4 Deficiency Increases Necrotic Cores in Advanced Lesions of ApoE -/- Mice-Brief Report. Arterioscler Thromb Vasc Biol 2025; 45:675-682. [PMID: 40047073 PMCID: PMC12018153 DOI: 10.1161/atvbaha.124.322371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND FFAR4 (free fatty acid receptor 4) has emerged as a target for preventing cardiovascular disease through its ability to control macrophage inflammation and foam cell formation. Previous studies have shown that FFAR4 activation can protect against the accumulation of arterial plaque buildup in atherosclerotic animal models. The goal of our study is to test the hypothesis that FFAR4 deficiency will increase atherosclerotic plaque development in apoE-/- mice. METHODS Male and female apoE-/-/Ffar4-/- mice and their apoE-/- controls were fed a Western diet for 8 or 16 weeks to assess early and advanced atherosclerotic lesions, respectively. At the end of each study, atherosclerotic plaque severity was determined by analyzing the aortic sinus lesion area of the heart and the en face lesion area of the aortic arch. RESULTS Following 8 weeks of Western diet feeding, lesions from apoE-/-/Ffar4-/- male and female mice had 33% and 22% decreases, respectively, in the aortic sinus lesion area with no changes in the aortic arch lesion area. After 16 weeks of Western diet feeding, the lesions showed no changes in the area or volume of the aortic sinus between apoE-/-/Ffar4-/- mice and apoE-/- controls. However, male apoE-/-/Ffar4-/- mice had a 27% increase in the plaque lesion area in the aortic arch compared with apoE-/- controls. Despite similar sizes of lesions in the aortic sinus, apoE-/-/Ffar4-/- mice had larger necrotic cores compared with the apoE-/- control mice. In fact, male and female mice had 43% and 37% increases in the necrotic lesion area, respectively. CONCLUSIONS These data suggest a novel role for FFAR4 in reducing necrotic core lesion formation and support a protective role for FFAR4 in stabilizing atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Female
- Male
- Plaque, Atherosclerotic
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Necrosis
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Disease Models, Animal
- Mice, Knockout, ApoE
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Diet, Western
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Mice, Inbred C57BL
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Mice
- Sinus of Valsalva/pathology
- Sinus of Valsalva/metabolism
- Mice, Knockout
- Severity of Illness Index
Collapse
Affiliation(s)
- Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Renee Penoske
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Caris Wadding-Lee
- Department of Internal Medicine, Division of Cardiovascular Health & Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Lam
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shelby N. Hader
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - A. Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health & Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Jerab D, Blangero F, da Costa PCT, de Brito Alves JL, Kefi R, Jamoussi H, Morio B, Eljaafari A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025; 17:1253. [PMID: 40219010 PMCID: PMC11990730 DOI: 10.3390/nu17071253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to help resolve inflammation through generation of anti-inflammatory eicosanoids and specialized pro-resolving mediators, including resolvins, protectins, and maresins. Through binding to the GPR120/FFAR4 receptor, their beneficial effects result from phospholipid membrane remodeling, impairment of inflammatory signaling molecules clustering, subsequent inhibition of NF-κB and inflammasome activation, and a reduction in oxidative stress. Obesity, a chronic inflammatory disease that contributes to metabolic disorders, is alleviated by n-3 PUFAs. In the adipose tissue (AT) of individuals with obesity, n-3 PUFAs counteract hypoxia, inhibit immune cell infiltration and AT inflammation, improve insulin sensitivity, and reduce fat mass. Beyond AT, n-3 PUFAs also alleviate other metabolic disorders such as metabolic-associated steatotic liver disease (MASLD), gut dysbiosis, and/or renal dysfunction. In cardiovascular disease (CVD), they are mainly recommended as a secondary prevention for patients with coronary heart disease risks. This review provides an in-depth analysis of the benefits of n-3 PUFAs in obesity and related metabolic diseases, examining both the mechanistic and clinical aspects. Additionally, it also explores the effects of n-3 PUFAs in obesity-related chronic inflammatory conditions, including inflammatory bowel disease, psoriasis, rheumatoid arthritis, osteoarthritis, and multiple sclerosis, by targeting specific pathophysiological mechanisms. Clinical applications and limitations of n-3 PUFAs are discussed based on findings from human clinical trials.
Collapse
Affiliation(s)
- Donia Jerab
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Ferdinand Blangero
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil (J.L.d.B.A.)
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Henda Jamoussi
- Research Unit “Obesity: Etiopathology and Treatment, UR18ES01”, Faculty of Medicine, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Beatrice Morio
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
| | - Assia Eljaafari
- CarMeN Laboratory, Institut National de Recherche pour l’ Agriculture, l’ Alimentation et l’Environnement, UMR1397, Institut National de la Santé et de la Recherche Médicale, U 1060, Université Claude Bernard Lyon I, 69310 Pierre-Bénite, France (B.M.)
- Department of Clinical Research, Hospices Civils de Lyon, 69002 Lyon, France
| |
Collapse
|
4
|
Teyani RL, Moniri NH. Biased agonism at free-fatty acid receptor-4 (FFA4/GPR120). Pharmacol Ther 2025; 266:108784. [PMID: 39719174 PMCID: PMC11727506 DOI: 10.1016/j.pharmthera.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Free-fatty acid receptor-4 (FFA4), previously known as GPR120, is a G protein-coupled receptor (GPCR) activated by medium-to-long chain free fatty acids (FFAs), including saturated, monounsaturated, and polyunsaturated fats, many of which (e.g., omega-3 fatty acids) are critical contributors to human health and disease. FFA4 is widely expressed across human tissues, and its activation supports a range of physiological functions, including the release of gastrointestinal incretin hormones like glucagon-like peptide-1 (GLP-1), regulation of pancreatic hormone secretion, peripheral glucose uptake, adipose regulation, and anti-inflammatory responses in macrophages. Due to its pivotal role in energy metabolism and inflammation, FFA4 has emerged as a major target in drug discovery. Historically, FFA4 signaling was linked to the Gαq/11 family of intracellular heterotrimeric G proteins, which mediate its GLP-1 releasing effects. However, emerging evidence indicates that FFA4 can signal through other Gα proteins in various cellular contexts. Notably, its anti-inflammatory effects are also dependent on interactions with β-arrestin proteins, further broadening the receptor's signaling versatility. This review explores the concept of biased agonism at FFA4, emphasizing how this receptor selectively signals through distinct transduction pathways, including Gα proteins and β-arrestins. We also examine the key structural elements of FFA4 that govern its interactions with different signaling partners, the elucidation of which has laid the groundwork for the development of biased agonists aimed at selectively modulating these FFA4-mediated pathways for therapeutic application.
Collapse
Affiliation(s)
- Razan L Teyani
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States of America
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, United States of America; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, United States of America.
| |
Collapse
|
5
|
Liu L, Zhang Q, Ma Y, Lin L, Liu W, Ding A, Wang C, Zhou S, Cai J, Tang H. Recent Developments in Drug Design of Oral Synthetic Free Fatty Acid Receptor 1 Agonists. Drug Des Devel Ther 2024; 18:5961-5983. [PMID: 39679134 PMCID: PMC11646431 DOI: 10.2147/dddt.s487469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Over the past two decades, synthetic FFAR1 agonists such as TAK-875 and TSL1806 have undergone meticulous design and extensive clinical trials. However, due to issues primarily related to hepatotoxicity, no FFAR1 agonist has yet received regulatory approval. Research into the sources of hepatotoxicity suggests that one potential cause lies in the molecular structure itself. These structures typically feature lipid-like carboxylic acid head groups, which tend to generate toxic metabolites. Strategies to mitigate these risks focus on optimizing chemical groups to reduce lipophilicity and prevent the formation of reactive metabolites. Recent studies have concentrated on developing low-molecular-weight compounds that more closely resemble natural products, with CPL207280 showing promising potential and liver safety, currently in Phase II clinical trials. Moreover, ongoing research continues to explore the potential applications of FFAR1 agonists in diabetes management, as well as in conditions such as non-alcoholic fatty liver disease (NAFLD) and cerebrovascular diseases. Utilizing advanced technologies such as artificial intelligence and computer-aided design, the development of compact molecules that mimic natural structures represents a hopeful direction for future research and development.
Collapse
Affiliation(s)
- Lei Liu
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Qinghua Zhang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Yichuan Ma
- China Medical University (CMU)-The Queen’s University of Belfast (QUB) Joint College, Shenyang, Liaoning, People’s Republic of China
| | - Ling Lin
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Wenli Liu
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Aizhong Ding
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Chunjian Wang
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Shuiping Zhou
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Jinyong Cai
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Hai Tang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Li T, Zhu F, Dai L, Hogstrand C, Li B, Yue X, Wang J, Yu L, Li D. Effects of 2-ethylhexyl diphenyl phosphate (EHDPP) on glycolipid metabolism in male adult zebrafish revealed by targeted lipidomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174248. [PMID: 38936724 DOI: 10.1016/j.scitotenv.2024.174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The present study aims to evaluate the effects of 2-ethylhexyldiphenyl phosphate (EHDPP) on glycolipid metabolism in vivo. Adult male zebrafish were exposed to various concentrations (0, 1, 10, 100 and 250 μg/L) of EHDPP for 28 days, and changes in lipid and glucose levels were measured. Results indicated significant liver damages in the 100 and 250 μg/L EHDPP groups, which both exhibited significant decreases in hepatic somatic index (HSI), elevated activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and liver, as well as hepatocyte vacuolation and nuclear pyknosis. Exposure to 100 and 250 μg/L EHDPP led to significant reductions in serum and liver cholesterol (TC), triglycerides (TGs), and lipid droplet deposition, indicating a significant inhibition of EHDPP on hepatic lipid accumulation. Lipidomic analyses manifested that 250 μg/L EHDPP reduced the levels of 103 lipid metabolites which belong to glycerides (TGs, diglycerides, and monoglycerides), fatty acyles (fatty acids), sterol lipids (cholesterol, bile acids), sphingolipids, and glycerophospholipids, and downregulated genes involved in de novo synthesis of fatty acids (fas, acc, srebp1, and dagt2), while upregulated genes involved in fatty acid β-oxidation (pparα and cpt1). KEGG analyses revealed that EHDPP significantly disrupted glycerolipid metabolism, steroid biosynthesis and fatty acid biosynthesis pathways. Collectively, the results showed that EHDPP induced lipid reduction in zebrafish liver, possibly through inhibiting lipid synthesis and disrupting glycerolipid metabolism. Our findings provide a theoretical basis for evaluating the ecological hazards and health effects of EHDPP on glycolipid metabolism.
Collapse
Affiliation(s)
- Tao Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengyue Zhu
- National Agricultural Science Observing and Experimental Station of Chongqing, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Christer Hogstrand
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, United Kingdom
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xikai Yue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
7
|
Takai M, Yamamoto M, Yashiro N, Tamura M, Taniguchi A, Nagano S, Kusumoto Y, Tsujiuchi T. FFAR-mediated signaling drives migration of pancreatic cancer cells in hypoxic fibroblast co-cultures. Biochem Biophys Res Commun 2024; 727:150322. [PMID: 38945064 DOI: 10.1016/j.bbrc.2024.150322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The tumor microenvironment (TME) comprises cancer and non-cancerous stromal cells, including fibroblasts. Free fatty acids (FFAs) regulate various biological responses by binding to G protein-coupled FFA receptors (FFARs). In this study, we examined the impact of FFAR1 and FFAR4 on the cell migration of pancreatic cancer PANC-1 cells co-cultured with 3T3 fibroblast cells under hypoxic conditions. PANC-1 cells cultured at 1 % O2 exhibited elevated FFAR1 expression and decreased FFAR4 expression compared to those at 21 % O2. Cell migration of PANC-1 cells was reduced under 1 % O2 conditions. FFAR1 knockdown enhanced PANC-1 cell migration, whereas FFAR4 knockdown inhibited it. Co-culture of PANC-1 cells with 3T3 cells at 1 % O2 significantly increased FFAR4 expression, while FFAR1 expression remained unchanged. To evaluate the effects of FFAR1 and FFAR4 on PANC-1 cell migration in co-culture with 3T3 cells, we conducted a wound healing assay using the Culture-Insert 2 Well. PANC-1 and 3T3 cells were individually seeded into the two wells and incubated at both 21 % and 1 % O2 for 13 h. The cell migration of PANC-1 cells co-cultured with 3T3 cells at 1 % O2 was notably higher compared to 21 % O2. TUG-770 reduced and TUG-891 enhanced the cell migration of PANC-1 cells co-cultured with 3T3 cells under both 21 % and 1 % O2 conditions. These findings suggest that FFAR1 and FFAR4 play important roles in regulating the cell migration of PANC-1 cells co-cultured with 3T3 cells under hypoxic conditions.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Moemi Tamura
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Anri Taniguchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shion Nagano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Kusumoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
8
|
Yu F, Zong B, Ji L, Sun P, Jia D, Wang R. Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. Int J Mol Sci 2024; 25:7853. [PMID: 39063095 PMCID: PMC11277118 DOI: 10.3390/ijms25147853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The metabolic network's primary sources of free fatty acids (FFAs) are long- and medium-chain fatty acids of triglyceride origin and short-chain fatty acids produced by intestinal microorganisms through dietary fibre fermentation. Recent studies have demonstrated that FFAs not only serve as an energy source for the body's metabolism but also participate in regulating arterial function. Excess FFAs have been shown to lead to endothelial dysfunction, vascular hypertrophy, and vessel wall stiffness, which are important triggers of arterial hypertension and atherosclerosis. Nevertheless, free fatty acid receptors (FFARs) are involved in the regulation of arterial functions, including the proliferation, differentiation, migration, apoptosis, inflammation, and angiogenesis of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). They actively regulate hypertension, endothelial dysfunction, and atherosclerosis. The objective of this review is to examine the roles and heterogeneity of FFAs and FFARs in the regulation of arterial function, with a view to identifying the points of intersection between their actions and providing new insights into the prevention and treatment of diseases associated with arterial dysfunction, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Fengzhi Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lili Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| |
Collapse
|
9
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
10
|
Yashiro N, Takai M, Yamamoto M, Amano Y, Hara K, Tsujiuchi T. Effects of free fatty acid receptor (FFAR) signaling on the modulation of cancer cell functions under hypoxic conditions. Biochem Biophys Res Commun 2024; 699:149554. [PMID: 38280308 DOI: 10.1016/j.bbrc.2024.149554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
In the tumor environment, hypoxia promotes tumor progression, such as cancer cell growth, migration and chemoresistance. This study aimed to evaluate the roles of free fatty acid receptors (FFARs) in the regulation of cancer cell functions under hypoxic conditions, using fibrosarcoma HT1080 cells. HT1080 cells expressed FFAR1, FFAR2 and FFAR3 genes, but not FFAR4 gene. FFAR1, FFAR2 and FFAR3 expression levels in HT1080 cells cultured at 1 % O2 were elevated, compared with 21 % O2. The cell growth activities of HT1080 cells cultured at 21 % O2 were inhibited by acetic acid (AA) and propanoic acid (PA), but not 1 % O2. HT1080 cell motility was markedly reduced by culturing at 1 % O2. The cell growth and motility of HT1080 cells were enhanced by FFAR2 knockdown. The cell viability to cisplatin (CDDP) of HT1080 cells cultured at 1 % O2 was increased, compared with 21 % O2. FFAR2 knockdown suppressed the cell viability to CDDP of HT1080 cells. On the other hand, the cell motility and viability to CDDP of HT1080 cells cultured at 21 % O2 were suppressed by TUG-770. When HT1080 cells were cultured at 1 % O2, the cell motility and viability to CDDP were decreased, correlating with FFAR1 expression level. Moreover, FFAR1 knockdown increased the cell viability to CDDP of HT1080 cells cultured at 1 % O2. These results suggest that FFAR-mediated signaling plays an important role in the modulation of cellular functions of HT1080 cells under hypoxic conditions.
Collapse
Affiliation(s)
- Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Amano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Koki Hara
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
11
|
Lu Y, Zhou X, Wu Y, Cui Q, Tian X, Yi H, Gong P, Zhang L. Metabolites 13,14-Dihydro-15-keto-PGE2 Participates in Bifidobacterium animalis F1-7 to Alleviate Opioid-Induced Constipation by 5-HT Pathway. Mol Nutr Food Res 2024; 68:e2200846. [PMID: 38054625 DOI: 10.1002/mnfr.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/13/2023] [Indexed: 12/07/2023]
Abstract
SCOPE People suffer from constipation caused by many factors, including constipation (Opioid-Induced Constipation, OIC) during analgesic treatment. Microorganisms may be a potent solution to this problem, but the mechanism is still unclear. METHODS AND RESULTS Based on models in vivo and in vitro, the potential mechanism involving Bifidobacterium animalis F1-7 (B. animalis F1-7), screened in the previous studies, is explored through non-targeted metabonomics, electrophysiological experiment and molecular level docking. The results showed that B. animalis F1-7 effectively alleviates OIC and promotes the expression of chromogranin A (CGA) and 5-hydroxytryptamine (5-HT). The metabolite 13,14-dihydro-15-keto-PGE2 related to B. animalis F1-7 is found, which has a potential improvement effect on OIC at 20 mg kg BW-1 in vivo. At 30 ng mL-1 it effectively stimulates secretion of CGA/5-HT (408.95 ± 1.18 ng mL-1 ) by PC-12 cells and changes the membrane potential potassium ion current without affecting the sodium ion current in vitro. It upregulates the target of free fatty acid receptor-4 protein(FFAR4/β-actin, 0.81 ± 0.02). CONCLUSION The results demonstrate that metabolite 13,14-dihydro-15-keto-PGE2 participated in B. animalis F1-7 to alleviate OIC via the 5-HT pathway.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), China
| | | | - Yeting Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
12
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, Zhang C. Structural basis for the ligand recognition and signaling of free fatty acid receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553924. [PMID: 37662198 PMCID: PMC10473637 DOI: 10.1101/2023.08.20.553924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Free fatty acid receptors 1-4 (FFA1-4) are class A G protein-coupled receptors (GPCRs). FFA1-3 share substantial sequence similarity whereas FFA4 is unrelated. Despite this FFA1 and FFA4 are activated by the same range of long chain fatty acids (LCFAs) whilst FFA2 and FFA3 are instead activated by short chain fatty acids (SCFAs) generated by the intestinal microbiota. Each of FFA1, 2 and 4 are promising targets for novel drug development in metabolic and inflammatory conditions. To gain insights into the basis of ligand interactions with, and molecular mechanisms underlying activation of, FFAs by LCFAs and SCFAs, we determined the active structures of FFA1 and FFA4 bound to the polyunsaturated LCFA docosahexaenoic acid (DHA), FFA4 bound to the synthetic agonist TUG-891, as well as SCFA butyrate-bound FFA2, each complexed with an engineered heterotrimeric Gq protein (miniGq), by cryo-electron microscopy. Together with computational simulations and mutagenesis studies, we elucidated the similarities and differences in the binding modes of fatty acid ligands with varying chain lengths to their respective GPCRs. Our findings unveil distinct mechanisms of receptor activation and G protein coupling. We anticipate that these outcomes will facilitate structure-based drug development and underpin future research to understand allosteric modulation and biased signaling of this group of GPCRs.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Abdul-Akim Guseinov
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, OH44106, USA
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
14
|
Roy J, Baranek E, Marandel L. Characterization of free fatty acid receptor family in rainbow trout (Oncorhynchus mykiss): towards a better understanding of their involvement in fatty acid signalisation. BMC Genomics 2023; 24:130. [PMID: 36941594 PMCID: PMC10029227 DOI: 10.1186/s12864-023-09181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
Since 20 years of research, free fatty acids receptors (FFARs) have received considerable attention in mammals. To date, four FFARs (FFAR1, FFAR2, FFAR3 and FFAR4) are especially studied owing to their physiological importance in various biological processes. This ubiquitist group of G protein-coupled receptors (GPCRs) are majors reports in the key physiological functions such as the regulation of energy balance, metabolism or fatty acid sensing. However, up till date, even some studies were interested in their potential involvement in fatty acid metabolism, no genome investigation of these FFARs have been carried out in teleost fish. Through genome mining and phylogenetic analysis, we identified and characterised 7 coding sequences for ffar2 in rainbow trout whereas no ffar3 nor ffar4 gene have been found. This larger repertoire of ffar2 genes in rainbow trout results from successive additional whole-genome duplications which occurred in early teleosts and salmonids, respectively. A syntenic analysis was used to assign a new nomenclature to the salmonid ffar2 and showed a clear conservation of genomic organisation, further supporting the identity of these genes as ffar2. RT-qPCR was then used to examine, firstly during ontogenesis and secondly on feeding response the expression pattern of ffar1 and ffar2 genes in proximal gut and brain of all trout ffar genes. Overall, this study presents a comprehensive overview of the ffar family in rainbow trout.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France.
| | - Elodie Baranek
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France
| | - Lucie Marandel
- INRAE, University of Pau and Pays de L'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapole, F-64310, Saint-Pee-Sur-Nivelle, France
| |
Collapse
|
15
|
Song F, Zhang K, Yang J, Wilson AS, Chen C, Xu X. The Hypolipidemic Characteristics of a Methanol Extract of Fermented Green Tea and Spore of Eurotium cristatum SXHBTBU1934 in Golden Hamsters. Nutrients 2023; 15:1329. [PMID: 36986059 PMCID: PMC10055714 DOI: 10.3390/nu15061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fuzhuan brick tea (FBT), a distinctive Chinese dark tea with the predominant fungus of Eurotium cristatum, offered significant health benefits to Chinese people. In the current study, the in vivo bioactivities of E. cristatum (SXHBTBU1934) fermented green tea and spores of E. cristatum fermented on wheat were investigated, respectively. The methanol extract of fermented green tea and spore of E. cristatum both showed potent lipid-lowering activity in the blood of a high-fat diet induced hyperlipidemia model in golden hamsters and significantly reduced the accumulation of fat granules in the liver. These results indicated that the key active components were produced by E. cristatum. Chemical investigations suggested similar components in the two extracts and led to the identification of a new alkaloid, namely variecolorin P (1), along with four known structurally related compounds, (-)-neoechinulin A (2), neoechinulin D (3), variecolorin G (4), and echinulin (5). The structure of the new alkaloid was elucidated by HRESIMS, 1H, 13C, and 2D NMR analysis. The lipid-lowering activity of these compounds was evaluated using an oleic acid-induced HepG2 cell line model. Compound 1 significantly reduced the lipid accumulation in the HepG2 cell line with an IC50 value of 0.127 μM.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Jinpeng Yang
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| | - Annette S. Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| |
Collapse
|
16
|
Kurisu R, Takai M, Takamoto M, Tsujiuchi T. Effects of free fatty acid receptor-2 (FFAR2)-mediated signaling on the regulation of cellular functions in osteosarcoma cells. Biochem Biophys Res Commun 2023; 646:56-62. [PMID: 36706706 DOI: 10.1016/j.bbrc.2023.01.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
G protein coupled free fatty acid receptors (FFARs) are involved in the pathogenesis of several human diseases. FFAR2 and FFAR3 are activated by the binding of short-chain fatty acids (SCFAs). This study aimed to evaluate the roles of FFAR2 in the regulation of cellular functions in osteosarcoma HOS cells, using acetic acid and propanoic acid as FFAR2 and FFAR3 agonists. FFAR2 and FFAR3 genes were expressed in HOS cells. The cell motile activity of HOS cells was significantly stimulated by acetic acid and propanoic acid. In contrast, acetic acid and propanoic acid had no impact on the activation of matrix metalloproteinase-2 (MMP-2) and MMP-9. In cell survival assay, the cell survival rate to cisplatin (CDDP) of HOS cells was elevated by acetic acid and propanoic acid. To assess the effects of FFAR2 on cellular functions, FFAR2 knockdown (HOS-FFAR2) cells were generated from HOS cells. The cell motile activity of HOS-FFAR2 cells was enhanced by acetic acid and propanoic acid. In the presence of acetic acid and propanoic acid, MMP-2 and MMP-9 activities were reduced in HOS-FFAR2 cells, compared with control cells. When cells were treated with acetic acid and propanoic acid, the cell survival rate to CDDP of HOS-FFAR2 cells was significantly lower than that of control cells. These results suggest that activation of FFAR2-mediated signaling is involved in the modulation of cellular functions in HOS cells.
Collapse
Affiliation(s)
- Rio Kurisu
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Miyu Takamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
17
|
Zhou W, Wang Y, Wang J, Peng C, Wang Z, Qin H, Li G, Li D. Geosmin disrupts energy metabolism and locomotor behavior of zebrafish in early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160222. [PMID: 36400299 DOI: 10.1016/j.scitotenv.2022.160222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Geosmin has been commonly detected both in various aquatic environments and biota, but its exact toxicological mechanisms to organisms need further experimentation. In the present study, zebrafish embryos were exposed to geosmin at nominal concentrations of 50, 500 and 5000 ng/L for 120 h post-fertilization (hpf), followed by locomotor activity and biochemical parameter examination, and multi-omics investigation of the transcriptome and metabolome. The results showed that geosmin exposure significantly reduced the mitochondrial electron transport chain (ETC) complexes I-V, ATP content and mitochondrial respiration and suppressed the locomotor behavior of zebrafish larvae. Transcriptomics analysis revealed that the transcripts of genes involved in oxidative phosphorylation, glycolysis, and lipid metabolism were significantly affected, indicating that geosmin disrupts energy metabolism. Furthermore, metabolomics results showed that 3 classes of lipids, namely glycerophospholipids (GPs), sphingolipids (SLs) and fatty acyls (FAs) were significantly decreased after geosmin exposure. This study provides novel insight into the underlying mechanisms of geosmin-induced energy metabolism and highlights the need for concern about geosmin exposure.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, PR China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
18
|
Vetrani C, Verde L, Savastano S, Colao A, Muscogiuri G, Barrea L. Supplementation with medium-chain fatty acids increases body weight loss during very low-calorie ketogenic diet: a retrospective analysis in a real-life setting. J Transl Med 2023; 21:29. [PMID: 36647097 PMCID: PMC9843941 DOI: 10.1186/s12967-023-03880-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Very low-calorie ketogenic diet (VLCKD) has shown to significantly reduce body weight and fat mass, as well as inflammation. These effects are supported by nutritional ketosis, which triggers the utilization of the ketone body as an energy source. Medium-chain fatty acids (MCTs) might serve as potential enhancers of ketone bodies production with a greater effect on weight loss. Nevertheless, no clinical studies have evaluated the effect of MCTs supplementation in addition to VLCKD. Therefore, the present study aimed to evaluate whether the supplementation with MCTs can induce a greater weight reduction during the ketogenic phase of VLCKD. METHODS In this retrospective study, 263 women with overweight/obesity (body mass index, BMI: 35.7 ± 5.3 kg/m2) aged 37.5 ± 14.2 years followed one of these dietary protocols for 45 days: (a) Control group, 83 participants (31.6%) (VLCKD without MCTs), (b) VLCKD + MCTs group, 86 participants (32.7%) (MCTs supplementation - 20 g/day- during VLCKD starting from the first day of the active phase), (c) VLCKD + earlyMCTs, 94 participants (35.7%) (MCTs supplementation - 20 g/day-starting from 5 days before the beginning of the VLCKD active phase. Anthropometric measures, body composition, and c-reactive protein (CRP) concentrations were collected at the beginning and at the end (45 days) of the VLCKD intervention. RESULTS MCTs supplementation significantly decreased body weight, BMI, and waist circumference as compared to the control group, with a greater effect in the VLCKD + earlyMCTs group. A two-fold decrease in fat mass and an increase in muscle mass were observed in the VLCKD + earlyMCTs group as compared to the control group. As for inflammation, hs-CRP concentrations (assessed as absolute percent change) were significantly lower in the VLCKD + MCTs group (p = 0.009) and the VLCKD + earlyMCTs group (p = 0.011) than in the control group. A logistic regression model showed that VLCKD + earlyMCTs increase the likelihood of improvement of BMI classes (OR: 1.85, 95% CI 1.02-3.36) also after adjusting for the potential confounding factors. CONCLUSION MCTs supplementation (20 g/day) may be a useful tool to enhance the beneficial effect of VLCKD on the reduction of body weight and fat mass. In particular, MCTs supplementation before the beginning of the VLCKD active phase might facilitate ketosis thus contributing to the effectiveness of the nutritional intervention.
Collapse
Affiliation(s)
- Claudia Vetrani
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, Isola F2, 80143 Naples, Italy ,grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ludovica Verde
- grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XUNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, Naples, Italy
| | - Giovanna Muscogiuri
- grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy ,grid.4691.a0000 0001 0790 385XUNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, Naples, Italy
| | - Luigi Barrea
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, Isola F2, 80143 Naples, Italy ,grid.4691.a0000 0001 0790 385XCentro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
19
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
20
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
21
|
Noguchi M, Shimizu M, Lu P, Takahashi Y, Yamauchi Y, Sato S, Kiyono H, Kishino S, Ogawa J, Nagata K, Sato R. Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids. J Biol Chem 2022; 298:102534. [PMID: 36162507 PMCID: PMC9636582 DOI: 10.1016/j.jbc.2022.102534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria–produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid β-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.
Collapse
Affiliation(s)
- Makoto Noguchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo.
| | - Peng Lu
- Food Biotechnology and Structural Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Yu Takahashi
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo; Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama
| | - Hiroshi Kiyono
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Future Medicine Education and Research Organization, Chiba University, Chiba
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto
| | - Koji Nagata
- Food Biotechnology and Structural Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo.
| |
Collapse
|
22
|
Lim C, Lim B, Kil DY, Kim JM. Hepatic transcriptome profiling according to growth rate reveals acclimation in metabolic regulatory mechanisms to cyclic heat stress in broiler chickens. Poult Sci 2022; 101:102167. [PMID: 36257074 PMCID: PMC9579409 DOI: 10.1016/j.psj.2022.102167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Climate change has numerous effects on poultry that result in welfare concerns and economic losses in agricultural industries. However, the mechanisms underlying the acclimation to heat stress in poultry have not been comprehensively defined. Therefore, identifying associated patterns of gene regulation and understanding the molecular mechanisms of acclimation to a warmer environment will provide insights into the acclimation system of broiler chickens. We profiled differentially expressed genes (DEGs) associated with differences in growth performance under heat stress conditions in the liver tissues of broilers based on RNA sequencing data. The DEGs were identified by comparison to the gene expression levels of broilers exhibiting average growth at 28 d of age (D28A) and D36A relative to those at D21A. In D36A, 507 and 312 DEGs were up- and downregulated, respectively, whereas 400 and 156 DEGs were up- and downregulated in D28A, respectively. Pathway enrichment analysis further revealed that “fatty acid degradation” and “heat shock protein expression” were upregulated in broilers exhibiting a higher growth and weight, whereas “cell cycle arrest” and “amino acid metabolism” were downregulated. Transcriptome profiling revealed that the acclimatized group supplied fat and energy from the liver to tissues through the breakdown of fatty acids. Furthermore, homeostasis was maintained via heat shock proteins and antioxidant enzymes. The characterized candidate genes and mechanisms associated with the response to heat stress might serve as a foundation for improving the ability of broilers to acclimatize under heat stress conditions.
Collapse
Affiliation(s)
- C Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - B Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - J M Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
23
|
Tuftelin 1 Facilitates Hepatocellular Carcinoma Progression through Regulation of Lipogenesis and Focal Adhesion Maturation. J Immunol Res 2022; 2022:1590717. [PMID: 35769513 PMCID: PMC9234046 DOI: 10.1155/2022/1590717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy with poor prognosis worldwide. Emerging evidences demonstrated critical roles of lipid de novo synthesis in HCC progression, yet its regulatory mechanisms are not fully understood. Herein, we found that tuftelin 1 (TUFT1), an acidic phosphorylated glycoprotein with secretory capacity, was significantly upregulated in HCC and had an excellent correlation with patient survival and malignancy features. Through database mining and experimental validation, we found that TUFT1 was associated with fatty acid metabolism and promoted lipid accumulation in HCC cells. Further, we found that TUFT1 can interact with CREB1, a transcription factor for hepatic lipid metabolism, and regulate its activity and the transcriptions of key enzymes for lipogenesis. TUFT1 promoted HCC cell proliferation significantly, which was partially reversed by treatment of an inhibitor of CREB1, KG-501. Moreover, TUFT1 promoted the capacity of HCC cell invasion in vitro, which was likely mediated by its association with zyxin, a zinc-binding phosphoprotein responsible for the formation of fully mature focal adhesions on extracellular matrix. We found that TUFT1 can interact with ZYX and inhibit its expression and recruitments to focal complexes in HCC cells. Collectively, our study uncovered new regulatory mechanisms of TUFT1-mediated lipogenesis, cell proliferation, and invasion.
Collapse
|
24
|
Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid-based regulators of immunity. Bioeng Transl Med 2022; 7:e10288. [PMID: 35600637 PMCID: PMC9115682 DOI: 10.1002/btm2.10288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.
Collapse
Affiliation(s)
- Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Dora A. Ogbonna
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
25
|
Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook. Cells 2022; 11:cells11040750. [PMID: 35203397 PMCID: PMC8870169 DOI: 10.3390/cells11040750] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Fatty acids (FFAs) are important biological molecules that serve as a major energy source and are key components of biological membranes. In addition, FFAs play important roles in metabolic regulation and contribute to the development and progression of metabolic disorders like diabetes. Recent studies have shown that FFAs can act as important ligands of G-protein-coupled receptors (GPCRs) on the surface of cells and impact key physiological processes. Free fatty acid-activated receptors include FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), and FFAR4 (GPR120). FFAR2 and FFAR3 are activated by short-chain fatty acids like acetate, propionate, and butyrate, whereas FFAR1 and FFAR4 are activated by medium- and long-chain fatty acids like palmitate, oleate, linoleate, and others. FFARs have attracted considerable attention over the last few years and have become attractive pharmacological targets in the treatment of type 2 diabetes and metabolic syndrome. Several lines of evidence point to their importance in the regulation of whole-body metabolic homeostasis including adipose metabolism. Here, we summarize our current understanding of the physiological functions of FFAR isoforms in adipose biology and explore the prospect of FFAR-based therapies to treat patients with obesity and Type 2 diabetes.
Collapse
|
26
|
Häussler S, Sadri H, Ghaffari MH, Sauerwein H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J Dairy Sci 2022; 105:3648-3669. [PMID: 35181138 DOI: 10.3168/jds.2021-21220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
The involvement of adipose tissue (AT) in metabolism is not limited to energy storage but turned out to be much more complex. We now know that in addition to lipid metabolism, AT is important in glucose homeostasis and AA metabolism and also has a role in inflammatory processes. With the discovery of leptin in 1994, the concept of AT being able to secrete messenger molecules collectively termed as adipokines, and acting in an endo-, para-, and autocrine manner emerged. Moreover, based on its asset of receptors, many stimuli from other tissues reaching AT via the bloodstream can also elicit distinct responses and thus integrate AT as a control element in the regulatory circuits of the whole body's functions. The protein secretome of human differentiated adipocytes was described to comprise more than 400 different proteins. However, in dairy cows, the characterization of the physiological time course of adipokines in AT during the transition from pregnancy to lactation is largely limited to the mRNA level; for the protein level, the analytical methods are limited and available assays often lack sound validation. In addition to proteinaceous adipokines, small compounds such as steroids can also be secreted from AT. Due to the lipophilic nature of steroids, they are stored in AT, but during the past years, AT became also known as being able to metabolize and even to generate steroid hormones de novo. In high-yielding dairy cows, AT is substantially mobilized due to increased energy requirements related to lactation. As to whether the steroidogenic system in AT is affected and may change during the common loss of body fat is largely unknown. Moreover, most research about AT in transition dairy cows is based on subcutaneous AT, whereas other depots have scarcely been investigated. This contribution aims to review the changes in adipokine mRNA and-where available-protein expression with time relative to calving in high-yielding dairy cows at different conditions, including parity, body condition, diet, specific feed supplements, and health disorders. In addition, the review provides insights into steroidogenic pathways in dairy cows AT, and addresses differences between fat depots where possible.
Collapse
Affiliation(s)
- Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
27
|
Jia Z, Chen X, Chen J, Zhang L, Oprescu SN, Luo N, Xiong Y, Yue F, Kuang S. ACSS3 in brown fat drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin Transl Med 2022; 12:e665. [PMID: 35184387 PMCID: PMC8858619 DOI: 10.1002/ctm2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Propionate is a gut microbial metabolite that has been reported to have controversial effects on metabolic health. Here we show that propionate is activated by acyl-CoA synthetase short-chain family member 3 (ACSS3), located on the mitochondrial inner membrane in brown adipocytes. Knockout of Acss3 gene (Acss3-/- ) in mice reduces brown adipose tissue (BAT) mass but increases white adipose tissue (WAT) mass, leading to glucose intolerance and insulin resistance that are exacerbated by high-fat diet (HFD). Intriguingly, Acss3-/- or HFD feeding significantly elevates propionate levels in BAT and serum, and propionate supplementation induces autophagy in cultured brown and white adipocytes. The elevated levels of propionate in Acss3-/- mice similarly drive adipocyte autophagy, and pharmacological inhibition of autophagy using hydroxychloroquine ameliorates obesity, hepatic steatosis and insulin resistance of the Acss3-/- mice. These results establish ACSS3 as the key enzyme for propionate metabolism and demonstrate that accumulation of propionate promotes obesity and Type 2 diabetes through triggering adipocyte autophagy.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Jingjuan Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Lijia Zhang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Stephanie N. Oprescu
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
| | - Nanjian Luo
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Yan Xiong
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Center for Cancer ResearchPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
28
|
Yang X, Liu X, Song F, Wei H, Gao F, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal expressions of GPR41 and GPR43 in the colon of the wild ground squirrels ( Spermophilus dauricus). Eur J Histochem 2022; 66. [PMID: 35057584 PMCID: PMC8847768 DOI: 10.4081/ejh.2022.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptor 41 (GPR41) and G-protein-coupled receptor 43 (GPR43) are important short-chain fatty acids (SCFAs) receptors. Previous studies indicated that GPR41 and GPR43 are involved in the secretion of gastrointestinal peptides, and glucose and lipid metabolism, and are closely related to obesity and type II diabetes, and other diseases. The purpose of the study was to explore the relationship between the GPR41 and GPR43 and seasonal breeding, and provide new prospects for further exploring the nutritional needs of breeding. We identified the localization and expression levels of GPR41 and GPR43 in the colon of the wild ground squirrels (Spermophilus dauricus) both in the breeding season and non-breeding season. The histological results revealed that the lumen diameter of the colon had obvious seasonal changes, and the diameter of the colonic lumen in the non-breeding season was larger than that in the breeding season. Immunohistochemical staining suggested GPR41 and GPR43 have expressed in the simple layer columnar epithelium. In addition, compared with the breeding season, the mRNA and protein expression levels of GPR41 and GPR43 in the colon were higher during the non-breeding season. In general, these results indicated GPR41 and GPR43 might play a certain role in regulating seasonal breeding.
Collapse
|
29
|
Bartoszek A, Fichna J, Tarasiuk A, Binienda A, Fabisiak A, Krajewska JB, Mosińska P, Niewinna K, Salaga M. Free Fatty Acid Receptors as New Potential Targets in Colorectal Cancer. Curr Drug Targets 2021; 21:1397-1404. [PMID: 31721710 DOI: 10.2174/1389450120666191112141901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. In developed countries, its mortality remains high, yet the prevalence has established owing to effective screening programs; however due to the westernization of lifestyle, the incidences in many other countries have increased. Although the treatment of CRC has improved in the last few years, the side effects of these approaches cannot be neglected. Recently, members of the family of free fatty acid receptors (FFARs) have become attractive pharmacological targets in many diseases, including asthma; studies also point to their role in carcinogenesis. Here, we discuss current knowledge and future directions in FFAR research related to CRC. Contradictory results of FFARs modulation may derive from the pleiotropic effects of FFAR ligands, receptor distribution and different signal transduction. Hence, we indicate directions of further studies to fully use the potential of FFARs in CRC.
Collapse
Affiliation(s)
- Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland,Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Julia B Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
30
|
Abstract
Free fatty acids (FFAs) are implicated in the pathogenesis of metabolic diseases that includes obesity, type 2 diabetes mellitus, and cardiovascular disease (CVD). FFAs serve as ligands for free fatty acid receptors (FFARs) that belong to the family of rhodopsin-like G protein-coupled receptors (GPCRs) and are expressed throughout the body to maintain energy homeostasis under changing nutritional conditions. Free fatty acid receptor 4 (FFAR4), also known as G protein-coupled receptor 120, is a long-chain fatty acid receptor highly expressed in adipocytes, endothelial cells, and macrophages. Activation of FFAR4 helps maintain metabolic homeostasis by regulating adipogenesis, insulin sensitivity, and inflammation. Furthermore, dysfunction of FFAR4 is associated with insulin resistance, obesity, and eccentric remodeling in both humans and mice, making FFAR4 an attractive therapeutic target for treating or preventing metabolic diseases. While much of the previous literature on FFAR4 has focused on its role in obesity and diabetes, recent studies have demonstrated that FFAR4 may also play an important role in the development of atherosclerosis and CVD. Most notably, FFAR4 activation reduces monocyte-endothelial cell interaction, enhances cholesterol efflux from macrophages, reduces lesion size in atherogenic mouse models, and stimulates oxylipin production in myocytes that functions in a feed-forward cardioprotective mechanism. This review will focus on the role of FFAR4 in metabolic diseases and highlights an underappreciated role of FFAR4 in the development of atherosclerosis and CVD.
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
31
|
Guo X, Lv J, Xi R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 2021; 289:4773-4796. [PMID: 34115929 DOI: 10.1111/febs.16067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals. Additionally, studies of genetic model organisms-especially Drosophila melanogaster-have also provided insights about the molecular processes underlying EEC specification from ISCs and about the establishment of diverse EEC subtypes. In this review, we compare the regulation of EEC specification and function in mammals and Drosophila, with a focus on EEC subtype characterization, on how internal and external regulators mediate EEC subtype specification, and on how EEC-mediated intra- and interorgan communications affect gastrointestinal physiology and pathology.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, Beijing, China
| | - Jiaying Lv
- National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Huang L, Gao L, Chen C. Role of Medium-Chain Fatty Acids in Healthy Metabolism: A Clinical Perspective. Trends Endocrinol Metab 2021; 32:351-366. [PMID: 33832826 DOI: 10.1016/j.tem.2021.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) serve not only as an energy source but also regulate glucose and lipid metabolism. The unique transport and rapid metabolism of MCFAs provide additional clinical benefits over other substrates such as long-chain fatty acids (LCFAs) and have prompted interest in the use of MCFAs for treating metabolic and neurological disorders. This review focuses on the metabolic role of MCFAs in modulating cellular signaling and regulating key circulating metabolites and hormones. The potential of MCFAs in treating various metabolic diseases in a clinical setting has also been analyzed.
Collapse
Affiliation(s)
- Lili Huang
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Lin Gao
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
33
|
Jia M, Zhang Y, Gao Y, Ma X. Effects of Medium Chain Fatty Acids on Intestinal Health of Monogastric Animals. Curr Protein Pept Sci 2021; 21:777-784. [PMID: 31889482 DOI: 10.2174/1389203721666191231145901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.
Collapse
Affiliation(s)
- Manyi Jia
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuqi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University,
No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
34
|
Manaithiya A, Alam O, Sharma V, Javed Naim M, Mittal S, Khan IA. GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. Bioorg Chem 2021; 113:104998. [PMID: 34048996 DOI: 10.1016/j.bioorg.2021.104998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus type 2 (T2D) is a group of genetically heterogeneous metabolic disorders whose frequency has gradually risen worldwide. Diabetes mellitus Type 2 (T2D) has started to achieve a pandemic level, and it is estimated that within the next decade, cases of diabetes might get double due to increase in aging population. Diabetes is rightly called the 'silent killer' because it has emerged to be one of the major causes, leading to renal failure, loss of vision; besides cardiac arrest in India. Thus, a clinical requirement for the oral drug molecules monitoring glucose homeostasis appears to be unmet. GPR119 agonist, a family of G-protein coupled receptors, usually noticed in β-cells of pancreatic as well as intestinal L cells, drew considerable interest for type 2 diabetes mellitus (T2D). GPR119 monitors physiological mechanisms that enhance homeostasis of glucose, such as glucose-like peptide-1, gastrointestinal incretin hormone levels, pancreatic beta cell-dependent insulin secretion and glucose-dependent insulinotropic peptide (GIP). In this manuscript, we have reviewed the work done in the last five years (2015-2020) which gives an approach to design, synthesize, evaluate and study the structural activity relationship of novel GPR119 agonist-based lead compounds. Our article would help the researchers and guide their endeavours in the direction of strategy and development of innovative, effective GPR119 agonist-based compounds for the management of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Shruti Mittal
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
35
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
36
|
Hu T, Sun Y, Li H, Du P, Liu L, An Z. Dual derivatization strategy for the comprehensive quantification and double bond location characterization of fatty acids by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1639:461939. [PMID: 33530009 DOI: 10.1016/j.chroma.2021.461939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Comprehensive analysis of fatty acids (FAs) has long been challenging due to their poor ionization efficiency, lack of characteristic fragment ions and difficulty of identifying C=C bond locations. In this study, a high coverage ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the quantification and C=C bond location characterization of FAs using two structural analogues, 2-hydrazinyl-4,6-dimethylpyrimidine (DMP) and 2-hydrazinylpyrimidine (DP), as dual derivatization reagents. DP-labeled FA standards were used as internal standards to reduced matrix effects, which guaranteed the accurate quantification of FAs. The derivatization yields of FAs were larger than 99% and the sensitivities were increased by 400-fold compared with non-derivatized FAs. Pretreatment and instrumental analysis of FAs can be completed in 20 minutes. Only 5 μL rat plasma can satisfy the quantification of 36 FAs with good linearity (r>0.99). Both intra-day and inter-day accuracies were in the range of 85-105%, and the precisions were less than 15%. The extraction recoveries were investigated to be in the range of 88-112%. No obvious matrix effects were observed for the derivatized FAs. In addition, the locations of C=C bonds in DMP-derivatized FAs could be identified by diagnostic fragment ions generated from 1,4-hydrogen elimination and allylic cleavage under low energy collision induced dissociation (CID). The new method was finally employed for FA profiling in plasma from rats with moxifloxacin-induced liver injury. Significant downregulation of butyric acid was observed in moxifloxacin treated model rats, which was believed to be related to the liver injury.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuan Sun
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
37
|
Jiao A, Yu B, He J, Yu J, Zheng P, Luo Y, Luo J, Yan H, Wang Q, Wang H, Mao X, Chen D. Sodium acetate, propionate, and butyrate reduce fat accumulation in mice via modulating appetite and relevant genes. Nutrition 2021; 87-88:111198. [PMID: 33761444 DOI: 10.1016/j.nut.2021.111198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Acetate, propionate, and butyrate, three of the most common short-chain fatty acids (SCFAs), can be produced when some non-digestible carbohydrates enter the large intestine and undergo bacterial fermentation. The aim of this study was to investigate the effects of these three SCFAs on appetite regulation and lipid metabolism and to determine the extent that appetite contributes to the beneficial influences of SCFAs. METHODS In a 35-d study, 48 C57BL/6J male mice were randomly allocated to six groups: control; 5% sodium acetate; 5% sodium propionate; 5% sodium butyrate; pair fed 1; and pair fed 2. RESULTS The study showed that dietary supplementation of sodium acetate reduced serum triacylglycerol, free fatty acids, glucose, and interleukin (IL)-6 levels (P < 0.05), increased serum glucagon-like peptide 1, and leptin levels (P < 0.05), downregulated the mRNA expressions of fatty acid synthase, peroxisome proliferator-activated receptor, and lipoprotein lipase (P < 0.05), and upregulated the mRNA expressions of fasting-induced adipose factor, nuclear respiratory factor 1, mitochondrial transcription factor A, tumor necrosis factor receptor superfamily member 9, cytochrome-C oxidase IV and free fatty acid receptor 2 (P < 0.05). Sodium propionate also reduced serum IL-1β level (P < 0.05), increased serum peptide YY level (P < 0.05), downregulated the mRNA expressions of acetyl-coenzyme A carboxylase and sterol regulatory element-binding protein 1c (P < 0.05), and upregulated the mRNA expression of transmembrane protein 26 (P < 0.05). Additionally, sodium butyrate decreased average daily feed intake (P < 0.05) downregulated the mRNA expression of myosin heavy-chain (MyHc) Ⅱb (P < 0.05), and upregulated the mRNA expressions of lipase hormone-sensitive, MyHC Ⅱa and carnitine palmitoyltransferase-1α (P < 0.05). Moreover, the metabolic benefits of SCFAs were partly attributed to the reduction of feed intake. CONCLUSION Taken together, SCFAs could reduce appetite and fat accumulation via modulating relevant genes and hormones, which might further illustrate the potential mechanisms that underlay the effects of SCFAs on lipid homeostasis and control of body weight.
Collapse
Affiliation(s)
- Anran Jiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Ya'an, Sichuan Province, China.
| |
Collapse
|
38
|
Yu J, Xiang H, Xie Q. The difference of regulatory effect of two Inonotus obliquus extracts on high-fat diet mice in relation to the fatty acid elongation function of gut microbiota. Food Sci Nutr 2021; 9:449-458. [PMID: 33473306 PMCID: PMC7802550 DOI: 10.1002/fsn3.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease that causes metabolic disorders in the human body and is closely related to intestinal microbes. This experiment compares the therapeutic effects of two Inonotus obliquus extracts on high-fat diet (HFD) mice and explores the effects and mechanisms of intestinal flora and its metabolites. The energy intake (EI), weight gain (BWG), fecal flora diversity, fecal and urine metabolites, and fecal triglycerides (TG) of mice were measured at 4 temporal points. We found that due to the difference in energy intake between the two groups in the early stage of the experiment, the ethanol extract of Inonotus obliquus (IOE) had a stronger effect on the accumulated BWG than the polysaccharide (IOP) of Inonotus obliquus at the end of the experiment. Moreover, the difference caused by IOE and IOP intake was the largest in the second week, in four temporal points. Compared with IOP, IOE in the second week can reduce EI, fecal short-chain fatty acids (SCFA) and TG, reduce host metabolism, increase fecal Akkermansia and fatty acid elongation, and increase host substrate phosphorylation. The change trend of the fatty acid elongation P value from 2 to 14 weeks is consistent with the overall difference trend between the two groups. The difference in the regulating effect of the two Inonotus obliquus extracts on HFD mice is related to the fatty acid elongation function of the intestinal flora, which leads to the reduction of IOE and the effect of BWG is better than IOP. It provides a theoretical reference for the development of functional food using the extract of Inonotus obliquus.
Collapse
Affiliation(s)
- Jian Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunJilinChina
- School of Life SciencesJilin UniversityChangchunJilinChina
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunJilinChina
- School of Life SciencesJilin UniversityChangchunJilinChina
| |
Collapse
|
39
|
Hosomi K, Kunisawa J. Diversity of energy metabolism in immune responses regulated by micro-organisms and dietary nutrition. Int Immunol 2020; 32:447-454. [PMID: 32219308 PMCID: PMC7318777 DOI: 10.1093/intimm/dxaa020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Immune metabolism has been recognized as a new paradigm in the regulation of host immunity. In the environment, there are many micro-organisms including pathogenic and non-pathogenic and/or beneficial ones. Immune cells exhibit various responses against different types of microbes, which seem to be associated with changes in energy metabolism. In addition, dietary nutrition influences host metabolism and consequent responses by immune cells. In this review, we describe the complex network of immune metabolism from the perspectives of nutrition, micro-organisms and host immunity for the control of immunologic health and diseases.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki City, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Ibaraki City, Osaka, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Density, Osaka University, Yamadaoka, Suita-shi, Osaka, Japan.,Graduate School of Medicine, Kobe University, Tyuou-ku, Kobe-shi, Hyogo, Japan
| |
Collapse
|
40
|
Locatelli CAA, Mulvihill EE. Islet Health, Hormone Secretion, and Insulin Responsivity with Low-Carbohydrate Feeding in Diabetes. Metabolites 2020; 10:E455. [PMID: 33187118 PMCID: PMC7697690 DOI: 10.3390/metabo10110455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022] Open
Abstract
Exploring new avenues to control daily fluctuations in glycemia has been a central theme for diabetes research since the Diabetes Control and Complications Trial (DCCT). Carbohydrate restriction has re-emerged as a means to control type 2 diabetes mellitus (T2DM), becoming increasingly popular and supported by national diabetes associations in Canada, Australia, the USA, and Europe. This approval comes from many positive outcomes on HbA1c in human studies; yet mechanisms underlying their success have not been fully elucidated. In this review, we discuss the preclinical and clinical studies investigating the role of carbohydrate restriction and physiological elevations in ketone bodies directly on pancreatic islet health, islet hormone secretion, and insulin sensitivity. Included studies have clearly outlined diet compositions, including a diet with 30% or less of calories from carbohydrates.
Collapse
Affiliation(s)
- Cassandra A. A. Locatelli
- Energy Substrate Laboratory, The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, ON KIY 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, ON K1H 8L1, Canada
| | - Erin E. Mulvihill
- Energy Substrate Laboratory, The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, ON KIY 4W7, Canada;
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, ON K1H 8L1, Canada
- Montreal Diabetes Research Centre CRCHUM-Pavillion R, 900 Saint-Denis-Room R08.414, Montreal, QC H2X 0A9, Canada
- Centre for Infection, Immunity and Inflammation, The University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Luscombe VB, Lucy D, Bataille CJR, Russell AJ, Greaves DR. 20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor? DNA Cell Biol 2020; 39:1926-1937. [PMID: 33001759 DOI: 10.1089/dna.2020.5846] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPR84 is an inflammation-induced receptor highly expressed on immune cells, yet its endogenous ligand is still unknown. This makes any interpretation of its physiological activity in vivo difficult. However, experiments with potent synthetic agonists have highlighted what the receptor can do, namely, enhance proinflammatory signaling and macrophage effector functions such as phagocytosis. Developing drugs to block these effects has attracted interest from the scientific community with the aim of decreasing disease activity in inflammatory disorders or enhancing inflammation resolution. In this review, we critically reassess the widely held belief that the major role of GPR84 is that of being a medium-chain fatty acid (MCFA) receptor. While MCFAs have been shown to activate GPR84, it remains to be demonstrated that they are present in relevant tissues at appropriate concentrations. In contrast to four other "full-time" free fatty acid receptor subtypes, GPR84 is not expressed by enteroendocrine cells and has limited expression in the gastrointestinal tract. Across multiple tissues and cell types, the highest expression levels of GPR84 are observed hours after exposure to an inflammatory stimulus. These factors obscure the relationship between ligand and receptor in the human body and do not support the exclusive physiological pairing of MCFAs with GPR84. To maximize the chances of developing efficacious drugs for inflammatory diseases, we must advance our understanding of GPR84 and what it does in vivo.
Collapse
Affiliation(s)
- Vincent B Luscombe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel Lucy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Chemistry and University of Oxford, Oxford, United Kingdom
| | | | - Angela J Russell
- Department of Chemistry and University of Oxford, Oxford, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Zhao YF, Li XC, Liang XY, Zhao YY, Xie R, Zhang LJ, Zhang XC, Chen C. GPR120 Regulates Pancreatic Polypeptide Secretion From Male Mouse Islets via PLC-Mediated Calcium Mobilization. Endocrinology 2020; 161:5900686. [PMID: 32877513 DOI: 10.1210/endocr/bqaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023]
Abstract
The free fatty acid receptor G protein-coupled receptor 120 (GPR120) is expressed in pancreatic islets, but its specific cell distribution and function have not been fully established. In this study, a GPR120-IRES-EGFP knockin (KI) mouse was generated to identify GPR120-expressing cells with enhanced green fluorescence proteins (EGFP). EGFP-positive cells collected from KI mouse islets by flow cytometry had a significantly higher expression of pancreatic polypeptide (PP) evidenced by reverse transcriptase (RT)-quantitative polymerase chain reaction (qPCR). Single-cell RT-PCR and immunocytochemical double staining also demonstrated the coexpression of GPR120 with PP in mouse islets. The GPR120-specific agonist TUG-891 significantly increased plasma PP levels in mice. TUG-891 significantly increased PP levels in islet medium in vitro, which was markedly attenuated by GPR120 small interfering RNA treatment. TUG-891-stimulated PP secretion in islets was fully blocked by pretreatment with YM-254890 (a Gq protein inhibitor), U73122 (a phospholipase C inhibitor), or thapsigargin (an inducer of endoplasmic reticulum Ca2+ depletion), respectively. TUG-891 triggered the increase in intracellular free Ca2+ concentrations ([Ca2+]i) in PP cells, which was also eliminated by YM-254890, U73122, or thapsigargin. GPR120 gene expression was significantly reduced in islets of high-fat diet (HFD)-induced obese mice. TUG-891-stimulated PP secretion was also significantly diminished in vivo and in vitro in HFD-induced obese mice compared with that in normal-chow diet control mice. In summary, this study demonstrated that GPR120 is expressed in mouse islet PP cells and GPR120 activation stimulated PP secretion via the Gq/PLC-Ca2+ signaling pathway in normal-chow diet mice but with diminished effects in HFD-induced obese mice.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Cheng Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiang-Yan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yan-Yan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Rong Xie
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Li-Jun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiao-Chun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
43
|
Yamamoto I, Kawasumi K, Ohkusu‐Tsukada K, Arai T. Molecular characterization of free fatty acid receptors FFAR2 and FFAR3 in the domestic cat. Vet Med Sci 2020; 7:77-85. [PMID: 32929853 PMCID: PMC7840215 DOI: 10.1002/vms3.356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022] Open
Abstract
G protein‐coupled receptors 41 and 43 were identified and characterized as free fatty acid receptors (FFAR) 3 and 2, respectively. FFAR2 and FFAR3 mediate short‐chain fatty acids (SCFAs) as signalling molecules. The present study aimed to give molecular characterization of FFAR2 and FFAR3 in the domestic cat. High homology with that in other mammals was revealed by cDNA cloning of cat FFAR2 FFAR3. We analyzed the tissue distribution of cat FFAR2 and FFAR3 mRNA using quantitative polymerase chain reaction. The inhibition of intracellular cAMP concentrations was observed in cells transfected with cat FFAR2 or FFAR3 and treated with SCFAs. The activation of nuclear factor of activated T cells‐luciferase reporter was only observed in cat FFAR2 transfected cells but not in FFAR3. Split luciferase assay (NanoLuc Binary Technology; NanoBiT) for FFAR2 or FFAR3 and Arrestin‐3/β‐arrestin‐2 revealed acetate‐/propionate‐induced recruitment to cat FFAR2 or FFAR3 in CHO‐K1 cells. Our results indicate that FFAR2 and FFAR3 are functional receptor proteins that are expressed in cat tissues and show differential distribution patterns.
Collapse
Affiliation(s)
- Ichiro Yamamoto
- Department of Basic Veterinary MedicineSchool of Veterinary MedicineFaculty of Veterinary ScienceNippon Veterinary and Life Science UniversityMusashino‐shiTokyoJapan
| | - Koh Kawasumi
- Department of Basic Veterinary MedicineSchool of Veterinary MedicineFaculty of Veterinary ScienceNippon Veterinary and Life Science UniversityMusashino‐shiTokyoJapan
| | - Kozo Ohkusu‐Tsukada
- Department of Veterinary PathologySchool of Veterinary MedicineFaculty of Veterinary ScienceNippon Veterinary and Life‐Science UniversityMusashino‐shiTokyoJapan
| | - Toshiro Arai
- Department of Basic Veterinary MedicineSchool of Veterinary MedicineFaculty of Veterinary ScienceNippon Veterinary and Life Science UniversityMusashino‐shiTokyoJapan
| |
Collapse
|
44
|
Velasco C, Conde-Sieira M, Comesaña S, Chivite M, Díaz-Rúa A, Míguez JM, Soengas JL. The long-chain fatty acid receptors FFA1 and FFA4 are involved in food intake regulation in fish brain. J Exp Biol 2020; 223:jeb227330. [PMID: 32665445 DOI: 10.1242/jeb.227330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
We hypothesized that the free fatty acid receptors FFA1 and FFA4 might be involved in the anorectic response observed in fish after rising levels of long-chain fatty acids (LCFAs) such as oleate. In one experiment we demonstrated that intracerebroventricular (i.c.v.) treatment of rainbow trout with FFA1 and FFA4 agonists elicited an anorectic response 2, 6 and 24 h after treatment. In a second experiment, the same i.c.v. treatment resulted after 2 h in an enhancement in the mRNA abundance of anorexigenic neuropeptides pomca1 and cartpt and a decrease in the values of orexigenic peptides npy and agrp1 These changes occurred in parallel with those observed in the mRNA abundance and/or protein levels of the transcription factors Creb, Bsx and FoxO1, protein levels and phosphorylation status of Ampkα and Akt, and mRNA abundance of plcb1 and itrp3 Finally, we assessed in a third experiment the response of all these parameters after 2 h of i.c.v. treatment with oleate (the endogenous ligand of both free fatty acid receptors) alone or in the presence of FFA1 and FFA4 antagonists. Most effects of oleate disappeared in the presence of FFA1 and FFA4 antagonists. The evidence obtained supports the involvement of FFA1 and FFA4 in fatty acid sensing in fish brain, and thus involvement in food intake regulation through mechanisms not exactly comparable (differential response of neuropeptides and cellular signalling) to those known in mammals.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
45
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
46
|
Walnut Oil Alleviates Intestinal Inflammation and Restores Intestinal Barrier Function in Mice. Nutrients 2020; 12:nu12051302. [PMID: 32370215 PMCID: PMC7284466 DOI: 10.3390/nu12051302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis belongs to inflammatory bowel diseases, which is a group of chronic disorders of the gastrointestinal tract. It is a debilitating condition with a wide range of symptoms including rectal bleeding, diarrhea, and visceral pain. Current dietary habits often lead to imbalance in n-6/n-3 polyunsaturated fatty acids (PUFA) in favor of n-6 PUFA. Recent data showed the potential anti-inflammatory advantage of n-3 PUFA. Walnut oil (WO) is rich in those fatty acids and mainly consists of linoleic and linolenic acids that may act via free fatty acids receptors (FFARs). We assessed the anti-inflammatory effect of WO in the mouse model of dextran sulfate sodium (DSS)-induced colitis. Moreover, we examined changes in the expression of tight junction proteins (TJ), pro-inflammatory cytokines, and FFAR proteins in the inflamed mouse colon. WO improves the damage score in inflamed tissue, significantly restoring ion transport and colonic wall permeability. Inflammation caused changes in TJ, FFAR, and pro-inflammatory gene proteins expression, which WO was able to partially reverse. WO has anti-inflammatory properties; however, its exact mechanism of action remains unclear. This stems from the pleiotropic effects of n-3 PUFA ligands associated with receptor distribution and targeted signaling pathways.
Collapse
|
47
|
Cho H, Kim K, Kim N, Woo M, Kim HY. Effect of propolis phenolic compounds on free fatty acid receptor 4 activation. Food Sci Biotechnol 2020; 29:579-584. [PMID: 32296569 PMCID: PMC7142188 DOI: 10.1007/s10068-019-00688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Propolis is known to have multiple biological and pharmacological properties including the regulation of energy homeostasis. Although phenolic compounds are considered to be the major active components in propolis, there is little information available about their mechanisms underlying the regulation of energy homeostasis. In this study, the effects of five phenolic compounds in propolis, chrysin, pinocembrin, galangin, pinobanksin, and caffeic acid phenethyl ester (CAPE) were evaluated on the activation of free fatty acid receptor 4 (FFA4), which are involved in the control of energy homeostasis by enhancing insulin signaling, increasing glucose uptake, and regulating adipogenesis. The results showed that three phenolic compounds exhibited the activation of FFA4, which were ranked in the order of pinocembrin, CAPE and pinobanksin in FFA4-expressing cells. These results suggest that some phenolic compounds in propolis, particularly pinocembrin, may affect the control of energy homeostasis via the activation of FFA4.
Collapse
Affiliation(s)
- Hyunnho Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Kyong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Nayeon Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Minji Woo
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| | - Hye Young Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Korea
| |
Collapse
|
48
|
Nishida S, Horinouchi A, Higashimura Y, Akahori R, Matsumoto K. Cholestyramine, a Bile Acid Sequestrant, Increases Cecal Short Chain Fatty Acids and Intestinal Immunoglobulin A in Mice. Biol Pharm Bull 2020; 43:565-568. [PMID: 31852854 DOI: 10.1248/bpb.b19-00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saki Nishida
- Department of Food Science, Ishikawa Prefectural University
| | | | | | - Reina Akahori
- Department of Food Science, Ishikawa Prefectural University
| | | |
Collapse
|
49
|
Short-chain fatty acid mitigates adenine-induced chronic kidney disease via FFA2 and FFA3 pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158666. [PMID: 32061840 DOI: 10.1016/j.bbalip.2020.158666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022]
Abstract
Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, are produced when colonic bacteria in the human gastrointestinal tract ferment undigested fibers. Free fatty acid receptor 2 (FFA2) and FFA3 are G-protein-coupled receptors recently identified as SCFA receptors that may modulate inflammation. We previously showed through in vitro experiments that SCFAs activate FFA2 and FFA3, thereby mitigating inflammation in human renal cortical epithelial cells. This study used a murine model of adenine-induced renal failure to investigate whether or not SCFAs can prevent the progression of renal damage. We also examined whether or not these FFA2 and FFA3 proteins have some roles in this protective mechanism in vivo. Immunohistochemical analyses of mouse kidneys showed that FFA2 and FFA3 proteins were expressed mainly in the distal renal tubules and collecting tubules. First, we observed that the administration of propionate mitigated the renal dysfunction and pathological deterioration caused by adenine. Consistent with this, the expression of inflammatory cytokines and fibrosis-related genes was reduced. Furthermore, the mitigation of adenine-induced renal damage by the administration of propionate was significantly attenuated in FFA2-/- and FFA3-/- mice. Therefore, the administration of propionate significantly protects against adenine-induced renal failure, at least in part, via the FFA2 and FFA3 pathways. Our data suggest that FFA2 and FFA3 are potential new therapeutic targets for preventing or delaying the progression of chronic kidney disease.
Collapse
|
50
|
Minami K, Ueda N, Ishimoto K, Tsujiuchi T. Regulation of cell survival through free fatty acid receptor 1 (FFA1) and FFA4 induced by endothelial cells in osteosarcoma cells. J Recept Signal Transduct Res 2020; 40:181-186. [PMID: 32026734 DOI: 10.1080/10799893.2020.1725047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Free fatty acid receptor 1 (FFA1) and FFA4 belong to a family of free fatty acid (FFA) receptors. FFA1- and FFA4-mediated signaling regulates a variety of malignant properties in cancer cells. It is known that stromal cells in the tumor microenvironment promote tumor progression. In the present study, to assess the roles of FFA1 and FFA4 in cellular functions modulated by endothelial cells, highly migratory MG63-CR7(F2) cells were generated from osteosarcoma MG-63 cells, using endothelial F2 cell supernatants. Expression levels of FFAR1 and FFAR4 genes in MG63-CR7(F2) cells were significantly higher than those of MG-63 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate of MG-63 cells was significantly elevated by an FFA1 agonist TUG-770 as well as an FFA4 agonist TUG-891. Moreover, the cell survival rate of MG63-CR7(F2) cells was higher than that of MG-63 cells in the presence of TUG-770 or TUG-891, correlating with FFAR1 and FFAR4 expression levels. To validate the effects of FFA1 and FFA4 on cell survival to CDDP, FFA1 and FFA4 knockdown cell were generated from MG-63 cells. The cell survival rate of MG-63 cells was markedly inhibited by FFA1 or FFA4 knockdown. These results suggest that FFA1 and FFA4 may play an important role in the modulation of cellular functions by endothelial cells in osteosarcoma cells.
Collapse
Affiliation(s)
- Kanako Minami
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Nanami Ueda
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Kaichi Ishimoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| |
Collapse
|