1
|
Liang B, Fu L, Liu P. Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins. Trends Cell Biol 2025; 35:153-165. [PMID: 39603915 DOI: 10.1016/j.tcb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The superfamily of hydroxysteroid dehydrogenases (HSDs) has been well-characterized as enzymes in lipid metabolism, and especially in steroid hormone metabolism from bacteria to mammals. Recently, a subset of HSDs members, including 3β-HSD, 11β-HSD, and 17β-HSD, have been shown to be lipid droplet (LD)-associated proteins that are involved in LD dynamics beyond their canonical functions. This review summarizes current understanding of these LD-associated HSD proteins, focusing on how they regulate different LDs with respect to distinct neutral lipids including triacylglycerols (TAGs), cholesterol esters (CEs), and retinyl esters (REs), the evolutionally conserved role of some LD-associated 17β-HSDs in preventing lipolysis, and specific targeting of HSDs for the treatment of metabolic diseases and viral infections.
Collapse
Affiliation(s)
- Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China.
| | - Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming 650500, China; Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wölk M, Fedorova M. The lipid droplet lipidome. FEBS Lett 2024; 598:1215-1225. [PMID: 38604996 DOI: 10.1002/1873-3468.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| |
Collapse
|
3
|
Makiyama T, Obama T, Watanabe Y, Chatani M, Azetsu Y, Kawaguchi K, Imanaka T, Itabe H. Behavior of intracellular lipid droplets during cell division in HuH7 hepatoma cells. Exp Cell Res 2023; 433:113855. [PMID: 37995922 DOI: 10.1016/j.yexcr.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.
Collapse
Affiliation(s)
- Tomohiko Makiyama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Takashi Obama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure City, Hiroshima, 737-0112, Japan
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
5
|
Plewes MR, Talbott HA, Saviola AJ, Woods NT, Schott MB, Davis JS. Luteal Lipid Droplets: A Novel Platform for Steroid Synthesis. Endocrinology 2023; 164:bqad124. [PMID: 37586092 PMCID: PMC10445418 DOI: 10.1210/endocr/bqad124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Progesterone is an essential steroid hormone that is required to initiate and maintain pregnancy in mammals and serves as a metabolic intermediate in the synthesis of endogenously produced steroids, including sex hormones and corticosteroids. Steroidogenic luteal cells of the corpus luteum have the tremendous capacity to synthesize progesterone. These specialized cells are highly enriched with lipid droplets that store lipid substrate, which can be used for the synthesis of steroids. We recently reported that hormone-stimulated progesterone synthesis by luteal cells requires protein kinase A-dependent mobilization of cholesterol substrate from lipid droplets to mitochondria. We hypothesize that luteal lipid droplets are enriched with steroidogenic enzymes and facilitate the synthesis of steroids in the corpus luteum. In the present study, we analyzed the lipid droplet proteome, conducted the first proteomic analysis of lipid droplets under acute cyclic adenosine monophosphate (cAMP)-stimulated conditions, and determined how specific lipid droplet proteins affect steroidogenesis. Steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 and 3 beta-hydroxysteroid dehydrogenase (HSD3B), were highly abundant on lipid droplets of the bovine corpus luteum. High-resolution confocal microscopy confirmed the presence of active HSD3B on the surface of luteal lipid droplets. We report that luteal lipid droplets have the capacity to synthesize progesterone from pregnenolone. Lastly, we analyzed the lipid droplet proteome following acute stimulation with cAMP analog, 8-Br-cAMP, and report increased association of HSD3B with luteal lipid droplets following stimulation. These findings provide novel insights into the role of luteal lipid droplets in steroid synthesis.
Collapse
Affiliation(s)
- Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
- Department of Research Services, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| | - Heather A Talbott
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045USA
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198-6805, USA
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
- Department of Research Services, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| |
Collapse
|
6
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
7
|
Mak KM, Wu C, Cheng CP. Lipid droplets, the Holy Grail of hepatic stellate cells: In health and hepatic fibrosis. Anat Rec (Hoboken) 2022; 306:983-1010. [PMID: 36516055 DOI: 10.1002/ar.25138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are distinct morphological markers of hepatic stellate cells (HSCs). They are composed of a core of predominantly retinyl esters and triacylglycerols surrounded by a phospholipid layer; the latter harbors perilipins 2, 3, and 5, which help control LD lipolysis. Electron microscopy distinguishes between Types I and II LDs. Type I LDs are surrounded by acid phosphatase-positive lysosomes, which likely digest LDs. LD count and retinoid concentration are modulated by vitamin A intake. Alcohol consumption depletes hepatic retinoids and HSC LDs, with concomitant transformation of HSCs to fibrogenic myofibroblast-like cells. LD loss and accompanying HSC activation occur in HSC cell culture models. Loss of LDs is a consequence of and not a prerequisite for HSC activation. LDs are endowed with enzymes for synthesizing retinyl esters and triacylglycerols as well as neutral lipases and lysosomal acid lipase for breaking down LDs. HSCs have two distinct metabolic LD pools: an "original" pool in quiescent HSCs and a "new" pool emerging in HSC activation; this two-pool model provides a platform for analyzing LD dynamics in HSC activation. Besides lipolysis, LDs are degraded by lipophagy; however, the coordination between and relative contributions of these two pathways to LD removal are unclear. While induction of autophagy accelerates LD loss in quiescent HSCs and promotes HSC activation, blocking autophagy impairs LD degradation and inhibits HSC activation and fibrosis. This article is a critique of five decades of investigations into the morphology, molecular structure, synthesis, and degradation of LDs associated with HSC activation and fibrosis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine Wu
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P Cheng
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
Koganti PP, Tu LN, Selvaraj V. Functional metabolite reserves and lipid homeostasis revealed by the MA-10 Leydig cell metabolome. PNAS NEXUS 2022; 1:pgac215. [PMID: 36714831 PMCID: PMC9802464 DOI: 10.1093/pnasnexus/pgac215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
In Leydig cells, intrinsic factors that determine cellular steroidogenic efficiency is of functional interest to decipher and monitor pathophysiology in many contexts. Nevertheless, beyond basic regulation of cholesterol storage and mobilization, systems biology interpretation of the metabolite networks in steroidogenic function is deficient. To reconstruct and describe the different molecular systems regulating steroidogenesis, we profiled the metabolites in resting MA-10 Leydig cells. Our results identified 283-annotated components (82 neutral lipids, 154 membrane lipids, and 47 other metabolites). Neutral lipids were represented by an abundance of triacyglycerols (97.1%), and low levels of cholesterol esters (2.0%). Membrane lipids were represented by an abundance of glycerophospholipids (77.8%), followed by sphingolipids (22.2%). Acylcarnitines, nucleosides, amino acids and their derivatives were the other metabolite classes identified. Among nonlipid metabolites, we recognized substantial reserves of aspartic acid, choline, creatine, betaine, glutamine, homoserine, isoleucine, and pantothenic acid none of which have been previously considered as a requirement in steroidogenic function. Individually limiting use of betaine, choline, or pantothenic acid, during luteinizing hormone-induced steroidogenesis in MA-10 cells resulted in substantial decreases to acute steroidogenic capacity, explained by intermediary metabolite imbalances affecting homeostasis. As such, our dataset represents the current level of baseline characterization and unravels the functional resting state of steroidogenic MA-10 Leydig cells. In identifying metabolite stockpiles and causal mechanisms, these results serve to further comprehend the cellular setup and regulation of steroid biosynthesis.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Zhou J, Zhang Y, Zeng L, Wang X, Mu H, Wang M, Pan H, Su P. Paternal cadmium exposure affects testosterone synthesis by reducing the testicular cholesterol pool in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113947. [PMID: 35999762 DOI: 10.1016/j.ecoenv.2022.113947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cadmium(Cd) is a heavy metal that is harmful to human health. Early studies have shown that cadmium can damage testicular structure, affecting testosterone synthesis and spermatogenesis. However, the effect of paternal Cd exposure on the reproductive system of offspring remains unclear. In this study, male 8-week C57BL/6 J mice were used as research objects, and Cd was injected intraperitoneally every other day at a dose of 1 mg/kg for 5 weeks, after which the effect on the reproductive system of offspring male mice was studied. Our results showed that the body weight of the offspring male mice increased faster, with increases of the testicular and epididymis indices under Cd exposure. At the same time, the serum testosterone and free cholesterol decreased, total cholesterol increased, and the sperm concentration decreased. Further qRT-PCR and western blot analyses showed that the expressions of StAR, P450scc, 3β-HSD and 17β-HSD, which are related to testosterone synthesis, was significantly downregulated. Additionally, ATGL, LDLR and SR-BI, which are related to the intracellular cholesterol pool were downregulated, leading to the reduction of the cholesterol pool and the accumulation of lipid droplets. Oil red O and BODIPY staining revealed an increase in the abundance of lipid droplets in testicular tissue of newborn and adult mice. Prediction of tsRNA target genes in the sperm of parents and testicular transcriptome of newborn mice showed that the differentially expressed genes were associated with catabolism of fatty acids, cholesterol and ion channels, while the mitochondrial and lysosome functions of testicular tissue of adult offspring mice were decreased. Overall, our results suggest that paternal Cd exposure reduced the intracellular cholesterol pool of testicular of offspring, affected testosterone synthesis and reproductive system development.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and echnology, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
10
|
Zhu Q, Guo L, An W, Huang Z, Liu H, Zhao J, Lu W, Wang J. Melatonin inhibits testosterone synthesis in Roosters Leydig cells by regulating lipolysis of lipid droplets. Theriogenology 2022; 189:118-126. [PMID: 35753225 DOI: 10.1016/j.theriogenology.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Leydig cells are important component of testis cells, which can synthesize testosterone with free cholesterol derived from lipid droplets (LDs). It is well known that melatonin could regulate synthesis of testosterone. However, it is still unclear whether melatonin participates in the synthesis of testosterone by regulating the lipolysis of LDs in Leydig cells. The purpose of this study was to elucidate the effect of melatonin on synthesis of testosterone in roosters Leydig cells by regulating lipolysis of LDs. The results showed that melatonin decreased synthesis of testosterone and intracellular free cholesterol in roosters Leydig cells. Exogenous addition of 22-OH-Cholesterol counteracted the inhibitory effect of melatonin on synthesis of testosterone. Furthermore, melatonin increased the LDs content and expression of perilipin 1 (PLIN1), and decreased expression of hormone-sensitive lipase (HSL) and triacylglycerol hydrolase (ATGL) in roosters Leydig cells. In addition, silencing PLIN1 reversed the inhibitory effect of melatonin on synthesis of testosterone in roosters Leydig cells by increasing free cholesterol content and expression of HSL and ATGL, and decreasing the lipid droplet content. Activation of cAMP/PKA pathway by using the pathway activators Forskolin and 8-Bromo-cAMP attenuated the inhibitory effect of melatonin on synthesis of testosterone accompanied by increasing level of free cholesterol content and expression of HSL and ATGL, and decreasing level of lipid droplet content and expression of PLIN1 in roosters Leydig cells. These results suggested that melatonin could inhibit the synthesis of testosterone in roosters Leydig cells by reducing the content of intracellular free cholesterol in which expression of PLIN1 and cAMP/PKA pathway were inhibited to reduce the lipolysis of LDs.
Collapse
Affiliation(s)
- Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wen An
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhuncheng Huang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
11
|
Sar1 Affects the Localization of Perilipin 2 to Lipid Droplets. Int J Mol Sci 2022; 23:ijms23126366. [PMID: 35742827 PMCID: PMC9223735 DOI: 10.3390/ijms23126366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that are ubiquitous in many types of cells. The LD core consists of triacylglycerols (TGs) surrounded by a phospholipid monolayer and surface proteins such as perilipin 2 (PLIN2). Although TGs accumulate in the phospholipid bilayer of the endoplasmic reticulum (ER) and subsequently nascent LDs buds from ER, the mechanism by which LD proteins are transported to LD particles is not fully understood. Sar1 is a GTPase known as a regulator of coat protein complex Ⅱ (COPⅡ) vesicle budding, and its role in LD formation was investigated in this study. HuH7 human hepatoma cells were infected with adenoviral particles containing genes coding GFP fused with wild-type Sar1 (Sar1 WT) or a GTPase mutant form (Sar1 H79G). When HuH7 cells were treated with oleic acid, Sar1 WT formed a ring-like structure around the LDs. The transient expression of Sar1 did not significantly alter the levels of TG and PLIN2 in the cells. However, the localization of PLIN2 to the LDs decreased in the cells expressing Sar1 H79G. Furthermore, the effects of Sar1 on PLIN2 localization to the LDs were verified by the suppression of endogenous Sar1 using the short hairpin RNA technique. In conclusion, it was found that Sar1 has some roles in the intracellular distribution of PLIN2 to LDs in liver cells.
Collapse
|
12
|
Wang Y, Li T, Li H, Liang Y, Mai W, Liu C, Chen H, Huang Y, Zhang Q. CORO1A regulates lipoprotein uptake in Leydig cells exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113255. [PMID: 35121256 DOI: 10.1016/j.ecoenv.2022.113255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the most common environmental pollutants, which has a long biological half-life. Maternal Cd-exposure in the natural environment causes steroidogenesis defects resulting in spermatogenesis disorder in male offspring. For better understanding its underlying mechanism, we have employed iTRAQ to screen the differentially expressed protein and found that the expression of CORO1A and Cofilin 1 was up-regulated approximately 2 fold in Leydig cells of maternal Cd-exposure offspring. As the major source of steroid hormone, cholesterol is transported to cells via receptor-mediated endocytosis which relies on the remodel of cytoskeleton, then stores in lipid droplets (LDs). However, few studies have focused on the role of cytoskeleton in abnormal steroidogenesis. This study was performed to explore the role of CORO1A in androgen deficiency caused by Cd exposure and its involvement of low-density lipoprotein (LDL) uptake and effects on LDs. We found that Cd resulted in the up-regulation of CORO1A and Cofilin 1, and down-regulation of Profilin 1 in the testis of male offspring with maternal exposure. The structure of filamentous actin was broken, disordered and even crumpled up in Cd-treated R2C cells. F-actin disassembly led to a low uptake of LDL with a reduced number of LDs, followed by decreased total cholesterol and low progesterone production. When CORO1A was silenced, the expression of Cofilin 1 was down-regulated and Profilin 1 was up-regulated in Cd-treated R2C cells. The filamentous actin was rescued and the integrated cytoskeleton prompted LDL uptake, which resulted in the increased total cholesterol and high progesterone production. These findings highlight the crucial role of CORO1A as a cytoskeleton regulatory protein in steroidogenesis, which may help to better understand Cd-induced steroid hormone deficiency in children.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Teng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haoji Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Tao L, Zhang H, Wang H, Li L, Huang L, Su F, Yuan X, Luo M, Ge L. Characteristics of lipid droplets and the expression of proteins involved in lipolysis in the murine cervix during mid-pregnancy. Reprod Fertil Dev 2021; 32:967-975. [PMID: 32693909 DOI: 10.1071/rd19425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/30/2020] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are reservoirs of arachidonoyl lipids for prostaglandin (PG) E2 synthesis, and progesterone can stimulate PGE2 synthesis; however, the relationship between progesterone and LD metabolism in the murine cervix remains unclear. In the present study we examined LD distribution and changes in the expression of proteins involved in lipolysis and autophagy in the murine cervix during pregnancy, and compared the findings with those in dioestrous mice. During mid-pregnancy, LDs were predominantly distributed in the cervical epithelium. Electron microscopy revealed the transfer of numerous LDs from the basal to apical region in the luminal epithelium, marked catabolism of LDs, an elevated number of LDs and autophagosomes and a higher LD:mitochondrion size ratio in murine cervical epithelial cells (P<0.05). In addition, immunohistochemical and western blotting analyses showed significantly higher cAMP-dependent protein kinase, adipose triglyceride lipase and hormone-sensitive lipase expression, and a higher light chain 3 (LC3) II:LC3I ratio in the stroma and smooth muscles and, particularly, in murine cervical epithelial cells, during mid-pregnancy than late dioestrus. In conclusion, these results suggest that the enhanced lipolysis of LDs and autophagy in murine cervical tissues were closely related to pregnancy and were possibly controlled by progesterone because LD catabolism may be necessary for energy provision and PGE2 synthesis to maintain a closed pregnant cervix.
Collapse
Affiliation(s)
- Longlong Tao
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Hongyan Zhang
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Hongmei Wang
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Liuhui Li
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Libo Huang
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Feng Su
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Xuejun Yuan
- College of Life Science, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China
| | - Mingjiu Luo
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China; and Corresponding author. ;
| | - Lijiang Ge
- College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China; and Corresponding author. ;
| |
Collapse
|
14
|
Gharwalová L, Palyzová A, Marešová H, Kolouchová I, Kyselová L, Řezanka T. Identification of Homologous Polyprenols from Thermophilic Bacteria. Microorganisms 2021; 9:microorganisms9061168. [PMID: 34071687 PMCID: PMC8226974 DOI: 10.3390/microorganisms9061168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Sixteen strains of five genera of thermophilic bacteria, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus, were cultivated at a temperature from 42 to 70 °C. Twelve strains were obtained from the Czech Collection of Microorganisms, while four were directly isolated and identified by 16S rRNA gene sequencing from the hot springs of the world-famous Carlsbad spa (Czech Republic). Polyprenol homologs from C40 to C65 as well as free undecaprenol (C55), undecaprenyl phosphate, and undecaprenyl diphosphate were identified by shotgun analysis and RP-HPLC/MS-ESI+ (reverse phase high-performance liquid chromatography–high-resolution positive electrospray ionization mass spectrometry). The limit of detection (50 pM) was determined for individual homologs and free polyprenols and their phosphates. Thus, it has been shown that at least some thermophilic bacteria produce not just the major C55 polyprenol as previously described, but a mixture of homologs.
Collapse
Affiliation(s)
- Lucia Gharwalová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Andrea Palyzová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Helena Marešová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Irena Kolouchová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, 120 44 Prague, Czech Republic;
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
- Correspondence:
| |
Collapse
|
15
|
Saini S, Bhat RA, Waiz HA, Waiz SA. A study on steroidogenic elaborations of stroma and their regulation in response to ovarian hormones in goats. Anim Reprod Sci 2021; 228:106748. [PMID: 33845412 DOI: 10.1016/j.anireprosci.2021.106748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
Stromal tissue is an essential componenlt of the ovary not only for providing structural support but also for contributing to the early follicular growth with their bi-directional paracrine signaling. Estradiol is a major female hormone mainly secreted by the follicular cells in the ovary. To examine the relationship between 17β-estradiol and the factors involved in androgen production in stromal cells, ovarian stromal cells were cultured in the graded concentrations (50 and 100 ng/mL) of 17β-estradiol for varying time periods (24 and 48 h). The cells were processed for transmission electron microscopy to study the changes in steroidogenic functions of the cells. The effect of estradiol treatment was also evaluated on the quantity of androgen production and abundance of steroidogenic enzymes and proteins. The results indicated 17β-estradiol increased androgen production in ovarian stromal cells. In addition to enhanced androstenedione and testosterone production, estradiol stimulation was also based on the marked increase in abundance of mRNA transcript of steroidogenic enzymes [Star (Steroidogenic Acute Regulatory Protein), Cyp11a1, Cyp17a1, and hsd3b1 (3β-hydroxysteroid dehydrogenase)], as well as abundances of StAR and CYP11A1 protein. Thus, 17β-estradiol enhanced steroidogenesis in ovarian stromal cells. This study provided a basis for further exploration of regulation of steroidogenesis in ovarian stromal cells and the feedback mechanisms in association with estradiol.
Collapse
Affiliation(s)
- Sudha Saini
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, India
| | - Rayees Ahmad Bhat
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, India.
| | - Hina Ashraf Waiz
- Assistant Professor Livestock Production and Management CVAS, Navania, Udaipur, Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | | |
Collapse
|
16
|
Liu Q, Liang Y, Gao N, Gao J, Wang Y, Li X, Qin J, Xiang Q, Wu X, Chen H, Huang Y, Zhang Q. Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115541. [PMID: 32892022 DOI: 10.1016/j.envpol.2020.115541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl2 during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl2 for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Collapse
Affiliation(s)
- Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Ning Gao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Gao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Xiang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co.,Ltd, Guangzhou, 510632, China.
| |
Collapse
|
17
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
18
|
Chung JY, Chen H, Papadopoulos V, Zirkin B. Cholesterol accumulation, lipid droplet formation, and steroid production in Leydig cells: Role of translocator protein (18-kDa). Andrology 2019; 8:719-730. [PMID: 31738001 DOI: 10.1111/andr.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholesterol import into the mitochondria of steroid-producing cells is the rate-determining step in steroidogenesis. Numerous studies have provided evidence that the cholesterol-binding translocator protein (18 kDa TSPO) plays an important role in cholesterol translocation into mitochondria and that it also might act on cholesterol homeostasis. Several TSPO-specific ligands have been shown to increase steroid production in vitro and in vivo. OBJECTIVES The present study assessed the effects of the TSPO drug ligand FGIN-1-27 on cholesterol accumulation and lipid droplet formation in relationship to steroid formation. MATERIALS AND METHODS Using MA-10 and primary Leydig cells, immunocytochemical and molecular methods were used to examine cholesterol accumulation, the formation of lipid droplets, and steroid formation in response to LH and FGIN-1-27. Additionally, we determined the effects of Tspo knockout by CRISPR/Cas9, and of siRNA knockdowns of Tspo and Plin2 (Perilipin 2; also known as adipose differentiation-related protein, ADFP) on LH- and FGIN-1-27-induced steroidogenesis. RESULTS In response to LH and FGIN-1-27, cultured MA-10 cells and primary Leydig cells increased steroid formation, cholesterol accumulation, and lipid droplet formation. Cholesterol accumulation in the lipid droplets also was increased in Tspo knockout cells. Knockout of Tspo or its knockdown in MA-10 cells resulted in reduced progesterone formation in response to both LH and FGIN-1-27, as did knockdown of Plin2. Steroid production also was inhibited by the cholesteryl ester hydrolase inhibitor diethylumbelliferyl phosphate. DISCUSSION AND CONCLUSION These results support the conclusion that FGIN-1-27 stimulates steroid formation by increasing TSPO-mediated cholesterol translocation into the inner mitochondria for steroidogenesis, as well as into the cytosol for lipid droplet formation. FGIN-1-27 also increased steroid formation at least in part by inducing the conversion of cholesteryl ester located in lipid droplets to cholesterol, thus making available more substrate for steroid formation.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
19
|
Haseeb A, Tarique I, Iqbal A, Gandahi NS, Ali Vistro W, Bai X, Liang Y, Huang Y, Chen H, Chen Q, Yang P. Characterization of multilamellar bodies and telocytes within the testicular interstitium of naked mole rat Heterocephalus glabe. Theriogenology 2019; 138:111-120. [PMID: 31325741 DOI: 10.1016/j.theriogenology.2019.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Multilamellar bodies (MLBs) are produced and secreted by many cell types. In this study, we report the existence and ultrastructure of MLBs that are produced by Leydig cells and identification of telocytes in the testicular interstitium of naked mole rat. This study was performed on both breeder and non-breeder male naked mole rats using light microscopy, transmission electron microscopy, and morphometric approaches. In the testicular interstitium, the most prominent cells were Leydig cells, which contained numerous lipid droplets (LDs) in the cytoplasm. We found that MLBs were associated with the LDs of Leydig cells and were secreted into the extracellular or interstitial environment via exocytosis. After their release from Leydig cells, MLBs localized to the space between Leydig cells near blood vessels and attached to telocytes. We also identified telocytes in the testicular interstitium, and their cellular extensions were distributed throughout the interstitium. MLBs were aligned along the cellular extensions of telocytes, and membrane-to-membrane contact was observed between the cellular extensions of telocytes and MLBs, suggesting that telocytes may play a role in the transport of MLBs within the interstitial space. No ultrastructural differences were found in Leydig cells, telocytes, or MLBs between breeder and non-breeder testes. However, morphometric analysis revealed a significant difference in the number of MLBs between the breeder and non-breeder animals. Furthermore, both selective autophagy of LDs and non-selective autophagy were observed in Leydig cells. Typical features of macrolipophagy were also observed, as a few LDs were entirely enclosed by a limiting membrane. Remarkably, autophagy may be a key factor in the biogenesis of MLBs and steroid hormone production. The appearance of MLBs in the testicular interstitium of naked mole rats could thus be related to lipid storage and trafficking.
Collapse
Affiliation(s)
- Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China; Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Adeela Iqbal
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Noor Samad Gandahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Waseem Ali Vistro
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Yu Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu Province, 210095, China.
| |
Collapse
|
20
|
Upmanyu N, Dietze R, Bulldan A, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates steroidogenesis in Leydig cells via the α3 isoform of the sodium pump. J Steroid Biochem Mol Biol 2019; 191:105372. [PMID: 31042565 DOI: 10.1016/j.jsbmb.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Cardiotonic steroids such as ouabain are potent inhibitors of the sodium pump and have been widely used for centuries in the treatment of congestive heart failure. In recent decades, however, they have also been identified as hormone-like molecules that trigger signaling cascades of physiological relevance by using the various sodium pump α subunit isoforms as receptors. The murine Leydig cell line MLTC-1 expresses both the ubiquitous, relatively ouabain-insensitive α1 isoform of the sodium pump and the ouabain-sensitive α3 isoform that is normally found in neuronal cells. The physiological relevance of the simultaneous presence of the two isoforms in Leydig cells has not been previously addressed. MLTC-1 Leydig cells contain lipid droplets (LDs) and are capable of progesterone biosynthesis when stimulated by luteinizing hormone (LH). When exposed to low nanomolar concentrations of ouabain, they respond with stimulation of Erk1/2, CREB, and ATF-1 phosphorylation, LD enlargement, and perilipin2 mobilization to the LDs. As a result, progesterone biosynthesis is augmented. Abrogation of α3 isoform expression by siRNA prevents all of the above responses, indicating that it is the hormone/receptor-like interaction of ouabain exclusively with this isoform that triggers the signaling events that normally occur when LH binds to its receptor. Considering that ouabain is produced endogenously and is found in seminal fluid, one can speculate that effects of this substance on germ and somatic cells of the testis might play a role in male reproductive physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ahmed Bulldan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
21
|
Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function. Cells 2019; 8:cells8020187. [PMID: 30795549 PMCID: PMC6406896 DOI: 10.3390/cells8020187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the PNPLA2 and in the ABHD5/CGI58 genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-β hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles. Indeed, LDs are critical for both lipid metabolism and energy homeostasis. Partial or total PNPLA2 or ABHD5/CGI58 knockdown is characteristic of the cells of NLSD patients; thus, these cells are natural models with which one can unravel LD function. In this review we firstly summarize genetic and clinical data collected from NLSD patients, focusing particularly on muscle, skin, heart, and liver damage due to impaired LD function. Then, we discuss how NLSD cells were used to investigate and expand the current structural and functional knowledge of LDs.
Collapse
|
22
|
Zemanová L, Navrátilová H, Andrýs R, Šperková K, Andrejs J, Kozáková K, Meier M, Möller G, Novotná E, Šafr M, Adamski J, Wsól V. Initial characterization of human DHRS1 (SDR19C1), a member of the short-chain dehydrogenase/reductase superfamily. J Steroid Biochem Mol Biol 2019; 185:80-89. [PMID: 30031147 DOI: 10.1016/j.jsbmb.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
Many enzymes from the short-chain dehydrogenase/reductase superfamily (SDR) have already been well characterized, particularly those that participate in crucial biochemical reactions in the human body (e.g. 11β-hydroxysteroid dehydrogenase 1, 17β-hydroxysteroid dehydrogenase 1 or carbonyl reductase 1). Several other SDR enzymes are completely or almost completely uncharacterized, such as DHRS1 (also known as SDR19C1). Based on our in silico and experimental approaches, DHRS1 is described as a likely monotopic protein that interacts with the membrane of the endoplasmic reticulum. The highest expression level of DHRS1 protein was observed in human liver and adrenals. The recombinant form of DHRS1 was purified using the detergent n-dodecyl-β-D-maltoside, and DHRS1 was proven to be an NADPH-dependent reductase that is able to catalyse the in vitro reductive conversion of some steroids (estrone, androstene-3,17-dione and cortisone), as well as other endogenous substances and xenobiotics. The expression pattern and enzyme activities fit to a role in steroid and/or xenobiotic metabolism; however, more research is needed to fully clarify the exact biological function of DHRS1.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Hana Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kristýna Šperková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Andrejs
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klára Kozáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marc Meier
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine in Hradec Králové, Charles University and University Hospital in Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Liu Y, Xu S, Zhang C, Zhu X, Hammad MA, Zhang X, Christian M, Zhang H, Liu P. Hydroxysteroid dehydrogenase family proteins on lipid droplets through bacteria, C. elegans, and mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:881-894. [DOI: 10.1016/j.bbalip.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023]
|
24
|
Ma Y, Zhou Y, Zhu YC, Wang SQ, Ping P, Chen XF. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells. Endocrinology 2018; 159:1119-1129. [PMID: 29304246 DOI: 10.1210/en.2017-03020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
In recent years, autophagy was found to regulate lipid metabolism through a process termed lipophagy. Lipophagy modulates the degradation of cholesteryl esters to free cholesterol (FC), which is the substrate of testosterone biosynthesis. However, the role of lipophagy in testosterone production is unknown. To investigate this, primary rat Leydig cells and varicocele rat models were administered to inhibit or promote autophagy, and testosterone, lipid droplets (LDs), total cholesterol (TC), and FC were evaluated. The results demonstrated that inhibiting autophagy in primary rat Leydig cells reduced testosterone production. Further studies demonstrated that inhibiting autophagy increased the number and size of LDs and the level of TC, but decreased the level of FC. Furthermore, hypoxia promoted autophagy in Leydig cells. We found that short-term hypoxia stimulated testosterone secretion; however, the inhibition of autophagy abolished stimulated testosterone release. Hypoxia decreased the number and size of LDs in Leydig cells, but the changes could be largely rescued by blocking autophagy. In experimental varicocele rat models, the administration of autophagy inhibitors substantially reduced serum testosterone. These data demonstrate that autophagy contributes to testosterone biosynthesis at least partially through degrading intracellular LDs/TC. Our observations might reveal an autophagic regulatory mode regarding testosterone biosynthesis.
Collapse
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yan Zhou
- Department of Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yin-Ci Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Si-Qi Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Ping Ping
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
- Shanghai Human Sperm Bank, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
25
|
Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, Huang T, Ferguson C, Parton RG, Yang H, Li P. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 2018; 217:975-995. [PMID: 29367353 PMCID: PMC5839781 DOI: 10.1083/jcb.201704184] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Lipid incorporation from endoplasmic reticulum (ER) to lipid droplet (LD) is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link mediating ER and LD cross talk remains elusive. Here, we identified Rab18 as an important Rab guanosine triphosphatase in controlling LD growth and maturation. Rab18 deficiency resulted in a drastically reduced number of mature LDs and decreased lipid storage, and was accompanied by increased ER stress. Rab3GAP1/2, the GEF of Rab18, promoted LD growth by activating and targeting Rab18 to LDs. LD-associated Rab18 bound specifically to the ER-associated NAG-RINT1-ZW10 (NRZ) tethering complex and their associated SNAREs (Syntaxin18, Use1, BNIP1), resulting in the recruitment of ER to LD and the formation of direct ER-LD contact. Cells with defects in the NRZ/SNARE complex function showed reduced LD growth and lipid storage. Overall, our data reveal that the Rab18-NRZ-SNARE complex is critical protein machinery for tethering ER-LD and establishing ER-LD contact to promote LD growth.
Collapse
Affiliation(s)
- Dijin Xu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dongyu Zhao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinhai Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tuozhi Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1260-1272. [PMID: 28735096 PMCID: PMC5595650 DOI: 10.1016/j.bbalip.2017.07.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, United States.
| | | |
Collapse
|
27
|
Itabe H, Yamaguchi T, Nimura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis 2017; 16:83. [PMID: 28454542 PMCID: PMC5410086 DOI: 10.1186/s12944-017-0473-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
Intracellular lipid droplets (LDs) are found in a wide variety of cell types and have been recognized as organelles with unique spherical structures. Although LDs are not stable lipid-depots, they are active sites of neutral lipid metabolism, and comprise neutral lipid or cholesterol cores surrounded by phospholipid monolayers containing specialized proteins. However, sizes and protein compositions vary between cell and tissue types. Proteins of the perilipin family have been associated with surfaces of LDs and all carry a conserved 11-mer repeat motif. Accumulating evidence indicates that all perilipins are involved in LD formation and that all play roles in LD function under differing conditions. In this brief review, we summarize current knowledge of the roles of perilipins and lipid metabolizing enzymes in a variety of mammalian cell types.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Tomohiro Yamaguchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Present address: College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyaka-ku, Nagoya, 463-8521, Japan
| | - Satomi Nimura
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Hospital Pharmaceutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoko Sasabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
28
|
Kraemer FB, Shen WJ, Azhar S. SNAREs and cholesterol movement for steroidogenesis. Mol Cell Endocrinol 2017; 441:17-21. [PMID: 27477781 PMCID: PMC5235947 DOI: 10.1016/j.mce.2016.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
Steroidogenesis is a complex process through which cholesterol traffics to mitochondria and is converted via a series of enzymatic steps to steroid hormones. Although the rate-limiting step in this process is the movement of cholesterol from the outer to the inner mitochondrial membrane via the actions of StAR, a continuous supply of cholesterol must be delivered to the outer mitochondrial membrane during active steroidogenesis and this is derived from multiple sources, including lipoprotein uptake, endogenous cholesterol synthesis and release from stores within cytoplasmic lipid droplets. A number of mechanisms have been suggested to contribute to cholesterol trafficking to mitochondria; however, there is no definitive consensus and this is particularly so in regards to trafficking from cytoplasmic lipid droplets. In this paper we review experiments in which we have surveyed the expression of SNARE proteins in steroidogenic tissue and cells and examined the role of SNAREs in mediating cholesterol movement from lipid droplets to the mitochondria based on multiple studies that identified SNAREs as components of cytoplasmic lipid droplets. We established and characterized an in vitro mitochondria reconstitution assay system that enabled us to examine the impact of adding recombinant SNARE proteins specifically on the movement of cholesterol from model lipid droplets to the outer mitochondrial membrane. Using this reconstitution assay system in combination with siRNA knockdown experiments in rat primary granulosa cells or in steroidogenic cell lines, we showed that several SNARE proteins are important components in the trafficking of cholesterol from lipid droplets to the mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| |
Collapse
|
29
|
Hatano M, Migita T, Ohishi T, Shima Y, Ogawa Y, Morohashi KI, Hasegawa Y, Shibasaki F. SF-1 deficiency causes lipid accumulation in Leydig cells via suppression of STAR and CYP11A1. Endocrine 2016; 54:484-496. [PMID: 27455990 DOI: 10.1007/s12020-016-1043-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
Abstract
Genetic mutations of steroidogenic factor 1 (also known as Ad4BP or Nr5a1) have increasingly been reported in patients with 46,XY disorders of sex development (46,XY disorders of sex development). However, because the phenotype of 46,XY disorders of sex development with a steroidogenic factor 1 mutation is wide-ranging, its precise diagnosis remains a clinical problem. We previously reported the frequent occurrence of lipid accumulation in Leydig cells among patients with 46,XY disorders of sex development with a steroidogenic factor 1 mutation, an observation also reported by other authors. To address the mechanism of lipid accumulation in this disease, we examined the effects of steroidogenic factor 1 deficiency on downstream targets of steroidogenic factor 1 in in vitro and in vivo. We found that lipid accumulation in Leydig cells was enhanced after puberty in heterozygous steroidogenic factor 1 knockout mice compared with wild-type mice, and was accompanied by a significant decrease in steroidogenic acute regulatory protein and CYP11A1 expression. In mouse Leydig cell lines, steroidogenic factor 1 knockdown induced a remarkable accumulation of neutral lipids and cholesterol with reduced androgen levels. Steroidogenic factor 1 knockdown reduced the expression of steroidogenic acute regulatory protein and CYP11A1, both of which are transcriptional targets of steroidogenic factor 1 and key molecules for steroidogenesis from cholesterol in the mitochondria. Knockdown of either steroidogenic acute regulatory protein or CYP11A1 also induced lipid accumulation, and knockdown of both had an additive effect. Our data suggested that lipid accumulation in the Leydig cells of the 46,XY disorders of sex development phenotype with a steroidogenic factor 1 mutation is due, at least in part, to the suppression of steroidogenic acute regulatory protein and CYP11A1, and a resulting increase in unmetabolized cholesterol.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Migita
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Tomokazu Ohishi
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
30
|
Madekurozwa MC, Booyse D. Seasonal Changes in the Immunolocalization of Cytoskeletal Proteins and Laminin in the Testis of the Black-Backed Jackal (Canis mesomelas). Anat Histol Embryol 2016; 46:85-93. [PMID: 27477545 DOI: 10.1111/ahe.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Abstract
Manipulation of the reproductive activity of jackals is dependent on a thorough understanding of the reproductive biology of this species. This study describes seasonal morphological changes in the adult testis of the black-backed jackal in relation to the immunoexpression of the basement membrane marker, laminin and the cytoskeletal proteins, cytokeratin, smooth muscle actin and vimentin. Laminin was immunolocalized in basement membranes surrounding seminiferous tubules, as well as in basement membranes associated with Leydig, peritubular myoid and vascular smooth muscle cells. Scalloped basement membranes enclosed seminiferous tubules in regressing testes. The seminiferous epithelium and interstitial tissue in all animals studied were cytokeratin immunonegative. Smooth muscle actin was demonstrated in vascular smooth muscle cells, as well as in peritubular myoid cells encircling seminiferous tubules. Vimentin immunoreactivity was exhibited in the cytoplasm of Sertoli cells, Leydig cells, vascular endothelial cells, vascular smooth muscle cells and fibrocytes. Vimentin immunostaining in Sertoli, Leydig and peritubular myoid cells varied depending on the functional state of the testis. The results of the study have shown that dramatic seasonal histological changes occur in the testes of the jackal. In addition, the use of immunohistochemistry accentuates these morphological changes.
Collapse
Affiliation(s)
- M-C Madekurozwa
- Department of Anatomy and Physiology, University of Pretoria, Private bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - D Booyse
- Department of Anatomy and Physiology, University of Pretoria, Private bag X04, Onderstepoort, Pretoria, 0110, South Africa
| |
Collapse
|
31
|
Shen WJ, Azhar S, Kraemer FB. Lipid droplets and steroidogenic cells. Exp Cell Res 2015; 340:209-14. [PMID: 26639173 DOI: 10.1016/j.yexcr.2015.11.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) in steroidogenic tissues have a cholesteryl ester (CE) core surrounded by a phospholipid monolayer that is coated with associated proteins. Compared with other tissues, they tend to be smaller in size and more numerous in numbers. These LDs are enriched with PLIN1c, PLIN2 and PLIN3. Both CIDE A and B are found in mouse ovary. Free cholesterol (FC) released upon hormone stimulation from LDs is the preferred source of cholesterol substrate for steroidogenesis, and HSL is the major neutral cholesterol esterase mediating the conversion of CEs to FC. Through the interaction of HSL with vimentin and StAR, FC is translocated to mitochondria for steroid hormone production. Proteomic analyses of LDs isolated from loaded primary ovarian granulosa cells, mouse MLTC-1 Leydig tumor cells and mouse testes revealed LD associated proteins that are actively involved in modulating lipid homeostasis along with a number of steroidogenic enzymes. Microscopy analysis confirmed the localization of many of these proteins to LDs. These studies broaden the role of LDs to include being a platform for functional steroidogenic enzyme activity or as a port for transferring steroidogenic enzymes and/or steroid intermediates, in addition to being a storage depot for CEs.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|