1
|
Ahmed O, Shavva VS, Tarnawski L, Dai W, Borg F, Olofsson VV, Liu T, Saliba‐Gustafsson P, Simini C, Pedrelli M, Bergman O, Norata GD, Parini P, Franco‐Cereceda A, Eriksson P, Malin SG, Björck HM, Olofsson PS. Statin-associated regulation of hepatic PNPLA3 in patients without known liver disease. J Intern Med 2025; 297:47-59. [PMID: 39560367 PMCID: PMC11636427 DOI: 10.1111/joim.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Statins are used for metabolic dysfunction-associated steatotic liver disease (MASLD) (NAFLD) treatment, but their role in this context is unclear. Genetic variants of patatin-like phospholipase domain containing 3 (PNPLA3) are associated with MASLD susceptibility and statin treatment efficacy. Access to liver biopsies before established MASLD is limited, and statins and PNPLA3 in early liver steatosis are thus difficult to study. METHODS Liver biopsies were collected from 261 patients without known liver disease at surgery and stratified based on statin use and criteria for the metabolic syndrome (MS). Genotypes and transcript levels were measured using Illumina and Affymetrix arrays, and metabolic and lipoprotein profiles by clinical assays. Statin effects on PNPLA3, de novo lipogenesis (DNL), and lipid accumulation were further studied in vitro. RESULTS The PNPLA3I148M genetic variant was associated with significantly lower hepatic levels of cholesterol synthesis-associated transcripts. Patients with MS had significantly higher hepatic levels of MASLD and lipogenesis-associated transcripts than non-MS patients. Patients with MS on statin therapy had significantly higher hepatic levels of PNPLA3, acetyl-CoA carboxylase alpha, and ATP citrate lyase, and statin use was associated with higher plasma fasting glucose, insulin, and HbA1c. Exposure of hepatocyte-like HepG2 cells to atorvastatin promoted intracellular accumulation of triglycerides and lipogenesis-associated transcripts. Atorvastatin-exposure of HepG2, sterol O-acyltransferase (SOAT) 2-only-HepG2, primary human hepatic stellate, and hepatic stellate cell-like LX2 cells significantly increased levels of PNPLA3 and SREBF2-target genes, whereas knockdown of SREBF2 attenuated this effect. CONCLUSIONS Collectively, these observations suggest statin-associated regulation of PNPLA3 and DNL in liver. The potential interaction between PNPLA3 genotype and metabolic status should be considered in future studies in the context of statin therapy for MASLD.
Collapse
Affiliation(s)
- Osman Ahmed
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
- Department of Biochemistry, College of Medicine and Medical SciencesArabian Gulf UniversityManamaKingdom of Bahrain
| | - Vladimir S. Shavva
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Laura Tarnawski
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Wanmin Dai
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Filip Borg
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Viggo V. Olofsson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Ting Liu
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Peter Saliba‐Gustafsson
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at HuddingeKarolinska InstitutetStockholmSweden
- Medicine Unit of Endocrinology, Theme Inflammation and AgeingKarolinska University HospitalStockholmSweden
| | - Christian Simini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at HuddingeKarolinska InstitutetStockholmSweden
- Medicine Unit of Endocrinology, Theme Inflammation and AgeingKarolinska University HospitalStockholmSweden
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at HuddingeKarolinska InstitutetStockholmSweden
- Medicine Unit of Endocrinology, Theme Inflammation and AgeingKarolinska University HospitalStockholmSweden
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular SciencesUniversità Degli Studi di MilanoMilanItaly
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at HuddingeKarolinska InstitutetStockholmSweden
- Medicine Unit of Endocrinology, Theme Inflammation and AgeingKarolinska University HospitalStockholmSweden
| | | | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Stephen G. Malin
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
| | - Peder S. Olofsson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Cardiovascular Research Theme, Bioclinicum J8Karolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| |
Collapse
|
2
|
Meurs A, Ndoj K, van den Berg M, Marinković G, Tantucci M, Veenendaal T, Kuivenhoven JA, Klumperman J, Zelcer N. A suite of genome-engineered hepatic cells provides novel insights into the spatiotemporal metabolism of apolipoprotein B and apolipoprotein B-containing lipoprotein secretion. Cardiovasc Res 2024; 120:1253-1264. [PMID: 38833612 PMCID: PMC11416059 DOI: 10.1093/cvr/cvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Apolipoprotein B (APOB)-containing very LDL (VLDL) production, secretion, and clearance by hepatocytes is a central determinant of hepatic and circulating lipid levels. Impairment of any of the aforementioned processes is associated with the development of multiple diseases. Despite the discovery of genes and processes that govern hepatic VLDL metabolism, our understanding of the different mechanistic steps involved is far from complete. An impediment to these studies is the lack of tractable hepatocyte-based systems to interrogate and follow APOB in cells, which the current study addresses. METHODS AND RESULTS To facilitate the cellular study of VLDL metabolism, we generated human hepatic HepG2 and Huh-7 cell lines in which CRISPR/Cas9-based genome engineering was used to introduce the fluorescent protein mNeonGreen into the APOB gene locus. This results in the production of APOB100-mNeon that localizes predominantly to the endoplasmic reticulum (ER) and Golgi by immunofluorescence and electron microscopy imaging. The production and secretion of APOB100-mNeon can be quantitatively followed in medium over time and results in the production of lipoproteins that are taken up via the LDL receptor pathway. Importantly, the production and secretion of APOB-mNeon is sensitive to established pharmacological and physiological treatments and to genetic modifiers known to influence VLDL production in humans. As a showcase, we used HepG2-APOBmNeon cells to interrogate ER-associated degradation of APOB. The use of a dedicated sgRNA library targeting all established membrane-associated ER-resident E3 ubiquitin ligases led to the identification of SYNV1 as the E3 responsible for the degradation of poorly lipidated APOB in HepG2 cells. CONCLUSIONS In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.
Collapse
Affiliation(s)
- Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Goran Marinković
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Matteo Tantucci
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Tineke Veenendaal
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Alijagic A, Sinisalu L, Duberg D, Kotlyar O, Scherbak N, Engwall M, Orešič M, Hyötyläinen T. Metabolic and phenotypic changes induced by PFAS exposure in two human hepatocyte cell models. ENVIRONMENT INTERNATIONAL 2024; 190:108820. [PMID: 38906088 DOI: 10.1016/j.envint.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Daniel Duberg
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuulia Hyötyläinen
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
4
|
Berg M, Polyzos KA, Agardh H, Baumgartner R, Forteza MJ, Kareinen I, Gisterå A, Bottcher G, Hurt-Camejo E, Hansson GK, Ketelhuth DFJ. 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. Cardiovasc Res 2021; 116:1948-1957. [PMID: 31589306 PMCID: PMC7519886 DOI: 10.1093/cvr/cvz258] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/02/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Aims Atherosclerosis is a chronic inflammatory disease involving immunological and metabolic processes. Metabolism of tryptophan (Trp) via the kynurenine pathway has shown immunomodulatory properties and the ability to modulate atherosclerosis. We identified 3-hydroxyanthranilic acid (3-HAA) as a key metabolite of Trp modulating vascular inflammation and lipid metabolism. The molecular mechanisms driven by 3-HAA in atherosclerosis have not been completely elucidated. In this study, we investigated whether two major signalling pathways, activation of SREBPs and inflammasome, are associated with the 3-HAA-dependent regulation of lipoprotein synthesis and inflammation in the atherogenesis process. Moreover, we examined whether inhibition of endogenous 3-HAA degradation affects hyperlipidaemia and plaque formation. Methods and results In vitro, we showed that 3-HAA reduces SREBP-2 expression and nuclear translocation and apolipoprotein B secretion in HepG2 cell cultures, and inhibits inflammasome activation and IL-1β production by macrophages. Using Ldlr−/− mice, we showed that inhibition of 3-HAA 3,4-dioxygenase (HAAO), which increases the endogenous levels of 3-HAA, decreases plasma lipids and atherosclerosis. Notably, HAAO inhibition led to decreased hepatic SREBP-2 mRNA levels and lipid accumulation, and improved liver pathology scores. Conclusions We show that the activity of SREBP-2 and the inflammasome can be regulated by 3-HAA metabolism. Moreover, our study highlights that targeting HAAO is a promising strategy to prevent and treat hypercholesterolaemia and atherosclerosis.
Collapse
Affiliation(s)
- Martin Berg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Konstantinos A Polyzos
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Hanna Agardh
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Roland Baumgartner
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Maria J Forteza
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Ilona Kareinen
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Anton Gisterå
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Gerhard Bottcher
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, SE-43189 Gothenburg, Sweden
| | - Eva Hurt-Camejo
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
5
|
Polito R, Monaco ML, Mallardo M, Elce A, Daniele A, Nigro E. Treatment with sera from Water Polo athletes activates AMPKα and ACC proteins In HepG2 hepatoma cell line. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00742-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose
Physical activity and professional physical activity such as water polo (WP) sport, has numerous beneficial effects to fight metabolism-related disorders through several mechanisms, including the promotion of liver metabolic adaptations, and the modulation of cytokine production. The aim of this study was to investigate the effects of different types of physical activity on AMPKα and ACC, two proteins involved in liver metabolism; therefore, we treated the hepatoma cell line Hep G2 with sera from elite WP athletes and amateur (basket) players. As control, we used serum from both sedentary and obese subjects.
Methods
Help G2 cells were treated with 5% of human sera from the different subjects; after 24 h and 48 h, HepG2 cell viability was verified through MTT assay and activation status of AMPKα and ACC through western blotting. Cytokine’s serum levels were measured through ELISA assay.
Results
After 72 h, the treatment of HepG2 cells with sera from the different subjects produced no effect on cell viability. Furthermore, after 48 h of treatment, both AMPKα and ACC phosphorylation statistically increases in HepG2 cells treated with sera from WP athletes. Furthermore, IL-4, IL-6 and IL-10 levels resulted statistically increased in WP athlete’s sera than in sedentary subjects.
Conclusion
The specific activation of AMPKα and ACC by WP sera confirms that professional sport activity carried out by WP athletes can be considered as a physiological activator of these two proteins also in HepG2 liver cells. In addition, the increase of anti-inflammatory cytokines in WP sera confirms the ample evidence for multiple anti-inflammatory activities carried out by WP discipline.
Collapse
|
6
|
Gunn PJ, Pramfalk C, Millar V, Cornfield T, Hutchinson M, Johnson EM, Nagarajan SR, Troncoso‐Rey P, Mithen RF, Pinnick KE, Traka MH, Green CJ, Hodson L. Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis. Physiol Rep 2020; 8:e14482. [PMID: 32643289 PMCID: PMC7343665 DOI: 10.14814/phy2.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) begins with steatosis, where a mixed macrovesicular pattern of large and small lipid droplets (LDs) develops. Since in vitro models recapitulating this are limited, the aims of this study were to develop mixed macrovesicular steatosis in immortalized hepatocytes and investigate effects on intracellular metabolism by altering nutritional substrates. METHODS Huh7 cells were cultured in 11 mM glucose and 2% human serum (HS) for 7 days before additional sugars and fatty acids (FAs), either with 200 µM FAs (low fat low sugar; LFLS), 5.5 mM fructose + 200 µM FAs (low fat high sugar; LFHS), or 5.5 mM fructose + 800 µM FAs (high fat high sugar; HFHS), were added for 7 days. FA metabolism, lipid droplet characteristics, and transcriptomic signatures were investigated. RESULTS Between the LFLS and LFHS conditions, there were few notable differences. In the HFHS condition, intracellular triacylglycerol (TAG) was increased and the LD pattern and distribution was similar to that found in primary steatotic hepatocytes. HFHS-treated cells had lower levels of de novo-derived FAs and secreted larger, TAG-rich lipoprotein particles. RNA sequencing and gene set enrichment analysis showed changes in several pathways including those involved in metabolism and cell cycle. CONCLUSIONS Repeated doses of HFHS treatment resulted in a cellular model of NAFLD with a mixed macrovesicular LD pattern and metabolic dysfunction. Since these nutrients have been implicated in the development of NAFLD in humans, the model provides a good physiological basis for studying NAFLD development or regression in vitro.
Collapse
Affiliation(s)
- Pippa J. Gunn
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Camilla Pramfalk
- Division of Clinical ChemistryDepartment of Laboratory MedicineKarolinska Institutet at Karolinska University Hospital HuddingeStockholmSweden
| | - Val Millar
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Matthew Hutchinson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Elspeth M. Johnson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | | | - Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Charlotte J. Green
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University Hospital TrustsOxfordUK
| |
Collapse
|
7
|
Pramfalk C, Jakobsson T, Verzijl CRC, Minniti ME, Obensa C, Ripamonti F, Olin M, Pedrelli M, Eriksson M, Parini P. Generation of new hepatocyte-like in vitro models better resembling human lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158659. [PMID: 32058035 DOI: 10.1016/j.bbalip.2020.158659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/21/2022]
Abstract
In contrast to human hepatocytes in vivo, which solely express acyl-coenzyme A:cholesterol acyltransferase (ACAT) 2, both ACAT1 and ACAT2 (encoded by SOAT1 and SOAT2) are expressed in primary human hepatocytes and in human hepatoma cell lines. Here, we aimed to create hepatocyte-like cells expressing the ACAT2, but not the ACAT1, protein to generate a model that - at least in this regard - resembles the human condition in vivo and to assess the effects on lipid metabolism. Using the Clustered Regularly Interspaced Short Palindromic Repeats technology, we knocked out SOAT1 in HepG2 and Huh7.5 cells. The wild type and SOAT2-only-cells were cultured with fetal bovine or human serum and the effects on lipoprotein and lipid metabolism were studied. In SOAT2-only-HepG2 cells, increased levels of cholesterol, triglycerides, apolipoprotein B and lipoprotein(a) in the cell media were detected; this was likely dependent of the increased expression of key genes involved in lipid metabolism (e.g. MTP, APOB, HMGCR, LDLR, ACACA, and DGAT2). Opposite effects were observed in SOAT2-only-Huh7.5 cells. Our study shows that the expression of SOAT1 in hepatocyte-like cells contributes to the distorted phenotype observed in HepG2 and Huh7.5 cells. As not only parameters of lipoprotein and lipid metabolism but also some markers of differentiation/maturation increase in the SOAT2-only-HepG2 cells cultured with HS, this cellular model represent an improved model for studies of lipid metabolism.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Jakobsson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Cristy R C Verzijl
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mirko E Minniti
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Clara Obensa
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Federico Ripamonti
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Olin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mats Eriksson
- Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
8
|
Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch. Poult Sci 2020; 99:1655-1662. [PMID: 32111330 PMCID: PMC7587903 DOI: 10.1016/j.psj.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The liver is the main site of de novo lipogenesis in poultry, and hepatic lipid metabolism disorder will lead to excessive abdominal fat deposition or fatty liver disease, finally causing huge economic loss. The present study was conducted to investigate developmental changes in hepatic lipid metabolism of chicks from embryonic periods to the first week after hatching. Liver samples were collected from embryonic day 11 (E11) to the age of day 7 posthatch (D7) for lipid metabolism analysis. Hematoxylin–eosin and Oil Red O staining analysis showed that hepatic lipids increased gradually during embryonic period and declined posthatch; The sum of hepatic triglycerides and cholesterol reached the peak at E19 and D1 by ELISA analysis (P < 0.05). Acetyl-CoA carboxylase, fatty acid synthase, and acyl-CoA desaturase 1 mRNA expression in the liver were higher from E17 to D1 with the peak at E19 when compared with those at E13 and E15 (P < 0.05). Hepatic elongase of very long-chain fatty acids 6 and microsomal triglyceride transfer protein mRNA abundance were lower during embryonic periods but reached relative higher level after hatching (P < 0.05). On the contrary, hepatic carbohydrate response element binding protein (ChREBP), carnitine palmitoyltransferase 1, and peroxisome proliferators–activated receptor α expression were higher during embryonic periods but decreased posthatch (P < 0.05). The mRNA abundance of sterol-regulatory element binding protein 1c was the lowest at E13 and E15, then increased gradually from E17 to D1, while decreased from D3 to D7 little by little (P < 0.05). In summary, hepatic lipogenesis genes have different expression patterns during the embryonic periods and the first week of posthatch, which might be activated by ChREBP during embryonic periods; fatty acid oxidation was enhanced around the hatched day but declined posthatch. These findings will broaden the understanding of physiological characteristics and dynamic pattern about hepatic lipid metabolism in chicks.
Collapse
|
9
|
Härdfeldt J, Hodson L, Larsson L, Pedrelli M, Pramfalk C. Effects on hepatic lipid metabolism in human hepatoma cells following overexpression of TGFβ induced factor homeobox 1 or 2. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:756-762. [DOI: 10.1016/j.bbalip.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
|
10
|
Green CJ, Parry SA, Gunn PJ, Ceresa CDL, Rosqvist F, Piché ME, Hodson L. Studying non-alcoholic fatty liver disease: the ins and outs of in vivo, ex vivo and in vitro human models. Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.ahead-of-print/hmbci-2018-0038/hmbci-2018-0038.xml. [PMID: 30098284 DOI: 10.1515/hmbci-2018-0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing. Determining the pathogenesis and pathophysiology of human NAFLD will allow for evidence-based prevention strategies, and more targeted mechanistic investigations. Various in vivo, ex situ and in vitro models may be utilised to study NAFLD; but all come with their own specific caveats. Here, we review the human-based models and discuss their advantages and limitations in regards to studying the development and progression of NAFLD. Overall, in vivo whole-body human studies are advantageous in that they allow for investigation within the physiological setting, however, limited accessibility to the liver makes direct investigations challenging. Non-invasive imaging techniques are able to somewhat overcome this challenge, whilst the use of stable-isotope tracers enables mechanistic insight to be obtained. Recent technological advances (i.e. normothermic machine perfusion) have opened new opportunities to investigate whole-organ metabolism, thus ex situ livers can be investigated directly. Therefore, investigations that cannot be performed in vivo in humans have the potential to be undertaken. In vitro models offer the ability to perform investigations at a cellular level, aiding in elucidating the molecular mechanisms of NAFLD. However, a number of current models do not closely resemble the human condition and work is ongoing to optimise culturing parameters in order to recapitulate this. In summary, no single model currently provides insight into the development, pathophysiology and progression across the NAFLD spectrum, each experimental model has limitations, which need to be taken into consideration to ensure appropriate conclusions and extrapolation of findings are made.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Siôn A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Marie-Eve Piché
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Leanne Hodson
- University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital,Old Road Headington, Oxford OX3 7LE, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Steenbergen R, Oti M, Ter Horst R, Tat W, Neufeldt C, Belovodskiy A, Chua TT, Cho WJ, Joyce M, Dutilh BE, Tyrrell DL. Establishing normal metabolism and differentiation in hepatocellular carcinoma cells by culturing in adult human serum. Sci Rep 2018; 8:11685. [PMID: 30076349 PMCID: PMC6076254 DOI: 10.1038/s41598-018-29763-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Tissue culture medium routinely contains fetal bovine serum (FBS). Here we show that culturing human hepatoma cells in their native, adult serum (human serum, HS) results in the restoration of key morphological and metabolic features of normal liver cells. When moved to HS, these cells show differential transcription of 22–32% of the genes, stop proliferating, and assume a hepatocyte-like morphology. Metabolic analysis shows that the Warburg-like metabolic profile, typical for FBS-cultured cells, is replaced by a diverse metabolic profile consistent with in vivo hepatocytes, including the formation of large lipid and glycogen stores, increased glycogenesis, increased beta-oxidation and ketogenesis, and decreased glycolysis. Finally, organ-specific functions are restored, including xenobiotics degradation and secretion of bile, VLDL and albumin. Thus, organ-specific functions are not necessarily lost in cell cultures, but might be merely suppressed in FBS. The effect of serum is often overseen in cell culture and we provide a detailed study in the changes that occur and provide insight in some of the serum components that may play a role in the establishment of the differentiated phenotype.
Collapse
Affiliation(s)
- Rineke Steenbergen
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| | - Martin Oti
- Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rob Ter Horst
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wilson Tat
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Chris Neufeldt
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Tiing Tiing Chua
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Woo Jung Cho
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, Dept. of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Gunn PJ, Green CJ, Pramfalk C, Hodson L. In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol Rep 2018; 5:5/24/e13532. [PMID: 29263118 PMCID: PMC5742701 DOI: 10.14814/phy2.13532] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023] Open
Abstract
Human primary hepatocytes are the gold standard for investigating lipid metabolism in nonalcoholic fatty liver disease (NAFLD); however, due to limitations including availability and donor variability, the hepatoma cell lines Huh7 and HepG2 are commonly used. Culturing these cell lines in human serum (HS) has been reported to improve functionality; however, direct comparison of fatty acid (FA) metabolism in response to culturing in HS is lacking. The aim of this study was to compare FA metabolism between HepG2 and Huh7 cells in response to culturing in different sera. Both HepG2 and Huh7 cells were grown in media containing 11 mmol/L glucose and either 2% HS or 10% fetal bovine serum. After 3 days, insulin and insulin-like growth factor-1 signaling were measured. At 7 days, intracellular triacylglycerol (TAG) and media 3-hydroxybutyrate, TAG and apolipoprotein B were measured, as was the FA composition of intracellular TAG and phospholipids. Both cell lines demonstrated higher levels of polyunsaturated fatty acid content, increased insulin sensitivity, higher media TAG levels and increased FA oxidation when cultured in HS Notably, independent of serum type, Huh7 cells had higher intracellular TAG compared to HepG2 cells, which was in part attributable to a higher de novo lipogenesis. Our data demonstrate that intrahepatocellular FA metabolism is different between cell lines and influenced by culturing sera. As a result, when developing a physiologically-relevant model of FA metabolism that could be developed for the study of NAFLD, consideration of both parameters is required.
Collapse
Affiliation(s)
- Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom
| | - Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford Churchill Hospital, Oxford, United Kingdom .,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, United Kingdom
| |
Collapse
|
13
|
Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör M. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication 2017; 9:015014. [DOI: 10.1088/1758-5090/9/1/015014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|