1
|
Wu Q, Wang J, Tu C, Chen P, Deng Y, Yu L, Xu X, Fang X, Li W. Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats. Am J Physiol Gastrointest Liver Physiol 2025; 328:G110-G124. [PMID: 39679941 DOI: 10.1152/ajpgi.00167.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Olanzapine-induced fatty liver disease continues to pose vital therapeutic challenges in the treatment of psychiatric disorders. In addition, we observed that some patients were less prone to hepatic steatosis induced by olanzapine. Therefore, we aimed to investigate the role and the underlying mechanism of the intestinal flora in olanzapine-mediated hepatic side effects and explore the possible countermeasures. Our results showed that patients with different susceptibilities to olanzapine-induced fatty liver disease had different gut microbial diversity and composition. Furthermore, we performed fecal microbiota treatment (FMT), and confirmed that the gut microbiome of patients less prone to the fatty liver caused by olanzapine exhibited an alleviation against fatty liver disease in rats. In terms of mechanism, we revealed that the cross talk of leptin with the gut-short-chain fatty acid (SCFA)-liver axis play a critical role in olanzapine-related fatty degeneration in liver. These findings propose a promising strategy for overcoming the issues associated with olanzapine application and will hopefully inspire future in-depth research of fecal microbiota-based therapy in olanzapine-induced fatty liver disease.NEW & NOTEWORTHY Patients who were less inclined to have olanzapine-induced fatty liver had different gut microbiota profiles than did those in the susceptible cohort. Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Butyricicoccaceae, and Christensenellaceae were enriched in patients who were less prone to fatty liver disease caused by olanzapine. Fecal microbiota treatment (FMT) with these fecal samples promoted short-chain fatty acid (SCFA) production, which attenuated the circulating leptin and inhibited FASN and ACC1, thereby suppressing lipid synthesis in the liver, ultimately leading to alleviation of hepatic steatosis.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chuyue Tu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Peiru Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojin Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangming Fang
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, People's Republic of China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Li S, Fu Y, Wang W, Qiu J, Huang Y, Li X, Yang K, Yu X, Ma Y, Zhang Y, Zhang M, Li J, Li WD. Olanzapine Induces Adipogenesis and Glucose Uptake by Activating Glycolysis and Synergizing with the PI3K-AKT Pathway. Curr Neuropharmacol 2025; 23:412-425. [PMID: 39150031 DOI: 10.2174/1570159x22666240815120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Administration of olanzapine (OLA) is closely associated with obesity and glycolipid abnormalities in patients with schizophrenia (SCZ), although the exact molecular mechanisms remain elusive. OBJECTIVE We conducted comprehensive animal and molecular experiments to elucidate the mechanisms underlying OLA-induced weight gain. METHODS We investigated the mechanisms of OLA-induced adipogenesis and lipid storage by employing a real-time ATP production rate assay, glucose uptake test, and reactive oxygen species (ROS) detection in 3T3-L1 cells and AMSCs. Rodent models were treated with OLA using various intervention durations, dietary patterns (normal diets/western diets), and drug doses. We assessed body weight, epididymal and liver fat levels, and metabolic markers in both male and female mice. RESULTS OLA accelerates adipogenesis by directly activating glycolysis and its downstream PI3K signaling pathway in differentiated adipocytes. OLA promotes glucose uptake in differentiated 3T3-L1 preadipocytes. In mouse models with normal glycolipid metabolism, OLA administration failed to increase food intake and weight gain despite elevated GAPDH expression, a marker related to glycolysis and PI3K-AKT. This supports the notion that glycolysis plays a significant role in OLA-induced metabolic dysfunction. CONCLUSION OLA induces glycolysis and activates the downstream PI3K-AKT signaling pathway, thereby promoting adipogenesis.
Collapse
Affiliation(s)
- Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yun Fu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Wanyao Wang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiali Qiu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yepei Huang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xuemin Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiawen Yu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanyan Ma
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
3
|
Varalda M, Venetucci J, Nikaj H, Kankara CR, Garro G, Keivan N, Bettio V, Marzullo P, Antona A, Valente G, Gentilli S, Capello D. Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway. Cells 2024; 13:2084. [PMID: 39768174 PMCID: PMC11674800 DOI: 10.3390/cells13242084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT. While second-generation antipsychotics (SGAs) have significantly improved treatments for mental health disorders, their chronic use is associated with an increased risk of MetS. In this study, we explored the impact of SGAs on ADSCs to better understand their role in MetS and identify potential therapeutic targets. Our findings reveal that olanzapine disrupts lipid droplet formation during adipogenic differentiation, impairing insulin receptor endocytosis, turnover, and signaling. SGAs also alter the endolysosomal compartment, leading to acidic vesicle accumulation and increased lysosomal biogenesis through TFEB activation. PKCζ is crucial for the SGA-induced nuclear translocation of TFEB and acidic vesicle formation. Notably, inhibiting PKCζ restored insulin receptor tyrosine phosphorylation, normalized receptor turnover, and improved downstream signaling following olanzapine treatment. This activation of PKCζ by olanzapine is driven by increased phosphatidic acid synthesis via phospholipase D (PLD), following G protein-coupled receptor (GPCR) signaling activation. Overall, olanzapine and clozapine disrupt endolysosomal homeostasis and insulin signaling in a PKCζ-dependent manner. These findings highlight SGAs as valuable tools for uncovering cellular dysfunction in vWAT during MetS and may guide the development of new therapeutic strategies to mitigate the metabolic side effects of these drugs.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Herald Nikaj
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Chaitanya Reddy Kankara
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Giulia Garro
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nazanin Keivan
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- Pathology Unity, Ospedale “Sant’Andrea”, 13100 Vercelli, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
4
|
Emre S, Asli S, Sener M, Eker SS, Esma SG. Antipsychotic-Treated Schizophrenia Patients Develop Inflammatory and Oxidative Responses Independently From Obesity: However, Metabolic Disturbances Arise From Schizophrenia-Related Obesity. Hum Psychopharmacol 2024; 39:e2913. [PMID: 39511900 DOI: 10.1002/hup.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE To define the impact of obesity on inflammatory and oxidative disturbances in antipsychotic-treated schizophrenia patients. METHODS Several cytokines, inflammatory, metabolic, and oxidative status markers were evaluated in obese (n = 40) and non-obese (n = 40) antipsychotic-treated patients and compared with age-and BMI-matched controls (n = 80). RESULTS Schizophrenia patients had higher leptin, TNF-α, adiponectin, visfatin, resistin, P-selectin, NPY, BDNF, CD40-L, MCP-1, and malondialdehyde, and lower IL-6, ghrelin, neopterin, and vitamin E levels compared to their respective controls (p < 0.001). Total oxidant status was higher in non-obese patients compared to controls (p < 0.001), total antioxidant capacity was higher in obese compared to non-obese patients (p < 0.01), but vitamin A and paraoxonase levels were not different. High sensitive-CRP levels were higher in obsese controls relative to non-obese controls (p < 0.05) and in obese patients relative to non-obese patients (p < 0.001). Fasting glucose, insulin, HbA1c, HOMA-IR, uric acid, total cholesterol, and triglyceride concentrations were higher in obese patients compared to non-obese patients. Insulin concentrations and HOMA-IR were also higher in obese controls than in non-obese controls. CONCLUSIONS Our results suggest that inflammatory responses and oxidative stress develop independently from obesity in antipsychotic-treated schizophrenia patients. However, schizophrenia-induced obesity causes metabolic disturbances; thereby, obese schizophrenia patients are more liable to cardiovascular events and progress of metabolic syndrome than non-obese patients.
Collapse
Affiliation(s)
- Sarandol Emre
- Medical Faculty, Departments of Medical Biochemistry, Bursa Uludag Universitiy, Bursa, Turkey
| | - Sarandol Asli
- Medical Faculty, Departments of Psychiatry, Bursa Uludag Universitiy, Bursa, Turkey
| | - Mercan Sener
- Medical Faculty, Departments of Psychiatry, Bursa Uludag Universitiy, Bursa, Turkey
| | - Salih Saygin Eker
- Medical Faculty, Departments of Psychiatry, Bursa Uludag Universitiy, Bursa, Turkey
| | - Surmen-Gur Esma
- Medical Faculty, Departments of Medical Biochemistry, Bursa Uludag Universitiy, Bursa, Turkey
| |
Collapse
|
5
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
6
|
Amini K, Motallebi MJ, Bakhtiari K, Hajmiri MS, Zamanirafe M, Sharifikia M, Ranjbar A, Keshavarzi A, Mirjalili M, Mehrpooya M. Effects of atypical antipsychotics on serum asprosin level and other metabolic parameters in patients with schizophrenia. Hum Psychopharmacol 2024; 39:e2907. [PMID: 38940745 DOI: 10.1002/hup.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND In this cross-sectional study, we compared fasting serum asprosin levels and metabolic parameters between patients receiving one of three atypical antipsychotics (olanzapine, risperidone, or aripiprazole) and healthy subjects. METHODS The study population included 62 adult outpatients with schizophrenia and 22 healthy controls, matched for age and gender. Patients were in remission and had been on stable monotherapy with one of these atypical antipsychotics for over 6 months. Body Mass Index (BMI) and fasting serum levels of asprosin, glucose, HA1c, insulin, and lipid profile were compared across the investigated groups. Additionally, the number of participants meeting the insulin resistance criterion, defined as homeostasis model assessment for insulin resistance (HOMA-IR) >2.5, as well as the number of participants with elevated BMI levels (men >27 kg/m2, women >25 kg/m2) were compared among the groups. RESULTS We observed statistically significant differences in BMI and fasting serum levels of glucose, HA1c, insulin, triglyceride (TG), high-density lipoprotein cholesterol, and asprosin among patients receiving olanzapine or risperidone, as compared to those receiving aripiprazole and healthy subjects. Patients on aripiprazole exhibited values comparable to healthy subjects, whereas those on risperidone or olanzapine showed significantly higher values, with the highest observed in the olanzapine group. Additionally, the prevalence of participants meeting the insulin resistance criterion and those with elevated BMI was also greater in individuals receiving olanzapine or risperidone compared to those on aripiprazole and healthy subjects. Serum asprosin levels showed a significant positive correlation with BMI and several metabolic parameters, including HbA1c, fasting insulin, HOMA-IR, and TG. No significant differences were observed among the investigated groups in terms of serum levels of total cholesterol and low-density lipoprotein cholesterol. CONCLUSIONS Our cross-sectional study highlights the association between elevated asprosin levels, weight gain, and metabolic disorders in patients treated with olanzapine and risperidone. Given the bidirectional nature of the relationship between serum asprosin levels and these metabolic disturbances, further research is warranted to elucidate potential causative pathways.
Collapse
Affiliation(s)
- Kiumarth Amini
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Javad Motallebi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kimia Bakhtiari
- Occupational Therapist, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Minoo Sadat Hajmiri
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Zamanirafe
- Medical Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdis Sharifikia
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Keshavarzi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Yazd University of Medical Sciences, Yazd, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Waters F, Shymko G, Grace T, Hacking D, Jolly N, Parmar A, Dobson L, Kapi P. Response to 'Letter to the Editor: Weight gain and metabolic screening in young people with early psychosis on long acting injectable antipsychotic medication'. Early Interv Psychiatry 2024; 18:665-666. [PMID: 39556437 DOI: 10.1111/eip.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Flavie Waters
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
- Clinical Research Centre, North Metropolitan Health Service Mental Health, Perth, Western Australia, Australia
- South Metropolitan Health Service, Peel and Rockingham Kwinana (PaRK) Mental Health Service, Rockingham, Western Australia, Australia
| | - Gordon Shymko
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
- South Metropolitan Health Service, Peel and Rockingham Kwinana (PaRK) Mental Health Service, Rockingham, Western Australia, Australia
| | - Terina Grace
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
| | - Daniel Hacking
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
| | - Nicole Jolly
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
| | - Arti Parmar
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
- South Metropolitan Health Service, Peel and Rockingham Kwinana (PaRK) Mental Health Service, Rockingham, Western Australia, Australia
| | - Louise Dobson
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
| | - Puanna Kapi
- Black Swan Health, Headspace Early Psychosis, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
9
|
Fehsel K, Bouvier ML. Sex-Specific Effects of Long-Term Antipsychotic Drug Treatment on Adipocyte Tissue and the Crosstalk to Liver and Brain in Rats. Int J Mol Sci 2024; 25:2188. [PMID: 38396865 PMCID: PMC10889281 DOI: 10.3390/ijms25042188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629 Düsseldorf, Germany;
| | | |
Collapse
|
10
|
Horska K, Skrede S, Kucera J, Kuzminova G, Suchy P, Micale V, Ruda‐Kucerova J. Olanzapine, but not haloperidol, exerts pronounced acute metabolic effects in the methylazoxymethanol rat model. CNS Neurosci Ther 2024; 30:e14565. [PMID: 38421095 PMCID: PMC10850806 DOI: 10.1111/cns.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
AIM Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
- Section of Clinical Pharmacology, Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| | - Jan Kucera
- RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Physical Activities and Health, Faculty of Sports StudiesMasaryk UniversityBrnoCzech Republic
| | - Gabriela Kuzminova
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Pavel Suchy
- Department of Pharmacology and Toxicology, Faculty of PharmacyMasaryk UniversityBrnoCzech Republic
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of PharmacologyUniversity of CataniaCataniaItaly
| | - Jana Ruda‐Kucerova
- Department of Pharmacology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
11
|
Blandino G, Fiorani M, Canonico B, De Matteis R, Guidarelli A, Montanari M, Buffi G, Coppo L, Arnér ESJ, Cantoni O. Clozapine suppresses NADPH oxidase activation, counteracts cytosolic H 2O 2, and triggers early onset mitochondrial dysfunction during adipogenesis of human liposarcoma SW872 cells. Redox Biol 2023; 67:102915. [PMID: 37866162 PMCID: PMC10623370 DOI: 10.1016/j.redox.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein β and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.
Collapse
Affiliation(s)
- Giulia Blandino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
12
|
Sun L, Qiu Q, Ban C, Fan S, Xiao S, Li X. Decrease levels of bone morphogenetic protein 6 and noggin in chronic schizophrenia elderly. Cogn Neurodyn 2023; 17:695-701. [PMID: 37265647 PMCID: PMC10229485 DOI: 10.1007/s11571-022-09855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022] Open
Abstract
Objective Bone morphogenetic protein 6 (BMP6) and noggin both have been implicated in the pathophysiology of chronic dementia, and chronic schizophrenia (SCZ) has high risk for progressing to dementia in later life. The current study investigated the relationship between blood BMP6/noggin levels and cognitive function in chronic SCZ elderly. Methods A total of 159 chronic SCZ elderly and 171 community normal controls (NC) were involved in the present study. Blood cytokines including BMP6 and its antagonist-noggin, and cognitive function were measured in all subjects, 157 subjects among them received apolipoprotein E (APOE) genotype test, and 208 subjects received cognitive assessment at 1-year follow-up. Results Chronic SCZ elderly had decreased levels of blood BMP6 and noggin compared to healthy controls, especially in the subgroup of chronic SCZ with dementia. Blood BMP6 combing with noggin could distinguish chronic SCZ from NC elderly. APOE ε4 carriers had lower levels of BMP6 than APOE non-ε4 carriers under chronic SCZ. Conclusions There was a significant relationship of blood BMP6/noggin with cognitive performance in chronic SCZ.
Collapse
Affiliation(s)
- Lin Sun
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Chunxia Ban
- Department of Psychiatry, Jiading Mental Health Center, Shanghai, People’s Republic of China
| | - Sijia Fan
- Department of Psychiatry, Qingpu Mental Health Center, Shanghai, People’s Republic of China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Xia Li
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Horska K, Ruda-Kucerova J, Skrede S. GLP-1 agonists: superior for mind and body in antipsychotic-treated patients? Trends Endocrinol Metab 2022; 33:628-638. [PMID: 35902330 DOI: 10.1016/j.tem.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Antipsychotics (APDs) represent a core treatment for severe mental disorders (SMEs). Providing symptomatic relief, APDs do not exert therapeutic effects on another clinically significant domain of serious mental disorders, cognitive impairment. Moreover, adverse metabolic effects (diabetes, weight gain, dyslipidemia, and increased cardiovascular risk) are common during treatment with APDs. Among pharmacological candidates reversing APD-induced metabolic adverse effects, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), approved for both diabetes and recently for obesity treatment, stand out due to their favorable effects on peripheral metabolic parameters. Interestingly, GLP-1 RAs are also proposed to have pro-cognitive effects. Particularly in terms of dual therapeutic mechanisms potentially improving both central nervous system (CNS) deficits and metabolic burden, GLP-1 RAs open a new perspective and assume a clinically advantageous position.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
14
|
Li S, Chen D, Xiu M, Li J, Zhang XY. Prevalence and clinical correlates of impaired glucose tolerance in first-episode versus chronic patients with schizophrenia. Early Interv Psychiatry 2022; 16:985-993. [PMID: 34743408 DOI: 10.1111/eip.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
AIM Studies using oral glucose tolerance tests (OGTT) have shown that impaired glucose metabolism presents in the early stages of schizophrenia (SCZ). However, there is a lack of studies on changes in glucose metabolism with the stage of the disease. We first explored the features of glucose metabolic pattern at different phases of male SCZ. METHODS We recruited 83 male first episode drug-naïve patients with SCZ (FEDN-SCZ) and 64 male chronic patients with SCZ (CH-SCZ), as well as 14 male healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to assess the psychopathology of patients. OGTT, fasting plasma glucose and lipid profiles of all participants were examined. RESULTS While the impaired glucose tolerance (IGT) rate of male SCZ patients was higher than that of HC (P < .05), there was no difference in IGT prevalence between FEDN-SCZ and CH-SCZ. In male FEDN-SCZ, LDL (OR = 2.64, 95% CI = 1.11-6.29, P = .028) and PANSS total score (OR = 1.03, 95% CI = 1.00-1.06, P = .046) were positively correlated with IGT; in male CH-SCZ, BMI (OR = 1.7, 95% CI = 1.08-2.67, P = .023), PANSS total score (OR = 0.82, 95% CI = 0.70-0.96, P = .015) and positive symptoms (OR = 0.45, 95% CI = 0.20-0.99, P = .046) were significantly correlated with IGT. CONCLUSIONS Our findings reflect different glucose metabolism patterns in different stages of SCZ.
Collapse
Affiliation(s)
- Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Smith E, Singh R, Lee J, Colucci L, Graff-Guerrero A, Remington G, Hahn M, Agarwal SM. Adiposity in schizophrenia: A systematic review and meta-analysis. Acta Psychiatr Scand 2021; 144:524-536. [PMID: 34458979 DOI: 10.1111/acps.13365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although a relationship between schizophrenia (SCZ), antipsychotic (AP) medication, and metabolic dysregulation is now well established, the effect of adiposity is less well understood. By synthesizing findings from imaging techniques that measure adiposity, our systematic review and meta-analysis (PROSPERO CRD42020192977) aims to determine the adiposity-related effects of illness and treatment in this patient population. METHODS We searched MEDLINE, EMBASE, PsychINFO and Scopus for all relevant case-control and prospective longitudinal studies from inception until February 2021. Measures of adiposity including percent body fat (%BF), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) were analyzed as primary outcomes. RESULTS Our search identified 29 articles that used imaging methods to quantify adiposity among patients with SCZ spectrum disorders. Analyses revealed that patients have greater %BF (mean difference (MD) = 3.09%; 95% CI: 0.75-5.44), SAT (MD = 24.29 cm2 ; 95% CI: 2.97-45.61) and VAT (MD = 33.73 cm2 , 95% CI: 4.19-63.27) compared to healthy controls. AP treatment was found to increase SAT (MD = 31.98 cm2 ; 95% CI: 11.33-52.64) and VAT (MD = 16.30 cm2 ; 95% CI: 8.17-24.44) with no effect on %BF. However, change in %BF was higher for AP-free/AP-naïve patients compared to treated patients. CONCLUSION Our findings indicate that patients with SCZ spectrum disorders have greater adiposity than healthy controls, which is increased by AP treatment. Young, AP-naïve patients may be particularly susceptible to this effect. Future studies should explore the effect of specific APs on adiposity and its relation to overall metabolic health.
Collapse
Affiliation(s)
- Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laura Colucci
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Yuen JWY, Kim DD, Procyshyn RM, Panenka WJ, Honer WG, Barr AM. A Focused Review of the Metabolic Side-Effects of Clozapine. Front Endocrinol (Lausanne) 2021; 12:609240. [PMID: 33716966 PMCID: PMC7947876 DOI: 10.3389/fendo.2021.609240] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The second generation antipsychotic drug clozapine represents the most effective pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic drugs. However, clozapine tends to be underutilized in clinical practice due to a number of disabling and serious side-effects. These are characterized by a constellation of metabolic side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat. Many patients treated with clozapine go on to develop metabolic syndrome at a higher rate than the general population, which predisposes them for Type 2 diabetes mellitus and cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their efficacy. There is also a lack of knowledge about the underlying physiology of how clozapine exerts its metabolic effects in humans. In the current review, we focus on key studies which describe how clozapine affects each of the main symptoms of the metabolic syndrome, and cover some of the treatment options. The clinical data are then discussed in the context of preclinical studies that have been conducted to identify the key biological substrates involved, in order to provide a better integrated overview. Suggestions are provided about key areas for future research to better understand how clozapine causes metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica W. Y. Yuen
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ric M. Procyshyn
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William J. Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Alasdair M. Barr,
| |
Collapse
|
17
|
Reponen EJ, Tesli M, Dieset I, Steen NE, Vedal TSJ, Szabo A, Werner MCF, Lunding SH, Johansen IT, Rødevand LN, Andreassen OA, Ueland T. Adiponectin Is Related to Cardiovascular Risk in Severe Mental Illness Independent of Antipsychotic Treatment. Front Psychiatry 2021; 12:623192. [PMID: 34122163 PMCID: PMC8192708 DOI: 10.3389/fpsyt.2021.623192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental illnesses (SMI) associated with elevated cardiovascular disease (CVD) risk, including obesity. Leptin and adiponectin are secreted by adipose tissue, with pro- and anti-inflammatory properties, respectively. The second generation antipsychotics (AP) olanzapine, clozapine, and quetiapine have been associated with high leptin levels in SMI. However, the link between inflammatory dysregulation of leptin and adiponectin and CVD risk in SMI, and how this risk is influenced by body mass and AP medication, is still not completely understood. We investigated herein if leptin, adiponectin or their ratio (L/A ratio) could predict increased CVD risk in SCZ, BD, and in subgroups according to use of antipsychotic (AP) treatment, independent of other cardio-metabolic risk factors. Methods: We measured fasting plasma levels of leptin and adiponectin, and calculated the L/A ratio in n = 1,092 patients with SCZ and BD, in subgroups according to AP treatment, and in n = 176 healthy controls (HC). Differences in the levels of adipokines and L/A between groups were examined in multivariate analysis of covariance, and the correlations between adipokines and body mass index (BMI) with linear regression. CVD risk was defined by total cholesterol/high-density lipoprotein (TC/HDL) and triglyceride/HDL (TG/HDL) ratios. The adipokines and L/A ratios ability to discriminate individuals with TG/HDL and TC/HDL ratios above threshold levels was explored by ROC analysis, and we investigated the possible influence of other cardio-metabolic risk factors on the association in logistic regression analyses. Results: We observed higher leptin levels and L/A ratios in SMI compared with HC but found no differences in adiponectin. Both adipokines were highly correlated with BMI. The low adiponectin levels showed a fair discrimination in ROC analysis of individuals with CVD risk, with AUC between 0.7 and 0.8 for both TC/HDL and TG/HDL, in all groups examined regardless of diagnosis or AP treatment. Adiponectin remained significantly associated with an elevated TC/HDL and TG/HDL ratio in SMI, also after further adjustment with other cardio-metabolic risk factors. Conclusions: Adiponectin is not dysregulated in SMI but is associated with CVD risk regardless of AP treatment regime.
Collapse
Affiliation(s)
- Elina J Reponen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Martin Tesli
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Acute Psychiatric Department, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trude S J Vedal
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Attila Szabo
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Maren C F Werner
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Synve H Lunding
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid T Johansen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Linn N Rødevand
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
18
|
Women with Schizophrenia over the Life Span: Health Promotion, Treatment and Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155594. [PMID: 32756418 PMCID: PMC7432627 DOI: 10.3390/ijerph17155594] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Women with schizophrenia show sex-specific health needs that differ according to stage of life. The aim of this narrative review is to resolve important questions concerning the treatment of women with schizophrenia at different periods of their life—paying special attention to reproductive and post-reproductive stages. Review results suggest that menstrual cycle-dependent treatments may be a useful option for many women and that recommendations re contraceptive options need always to be part of care provision. The pregnancy and the postpartum periods—while constituting vulnerable time periods for the mother—require special attention to antipsychotic effects on the fetus and neonate. Menopause and aging are further vulnerable times, with extra challenges posed by associated health risks. Pregnancy complications, neurodevelopmental difficulties of offspring, cancer risk and cognitive defects are indirect results of the interplay of hormones and antipsychotic treatment of women over the course of the lifespan. The literature recommends that health promotion strategies need to be directed at lifestyle modifications, prevention of medical comorbidities and increased psychosocial support. Careful monitoring of pharmacological treatment has been shown to be critical during periods of hormonal transition. Not only does treatment of women with schizophrenia often need to be different than that of their male peers, but it also needs to vary over the course of life.
Collapse
|