1
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
2
|
Gloor Y, Müller-Reichert T, Walch-Solimena C. Co-regulation of the arf-activation cycle and phospholipid-signaling during golgi maturation. Commun Integr Biol 2012; 5:12-5. [PMID: 22482002 DOI: 10.4161/cib.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus is the central protein sorting station inside eukaryotic cells. Although many regulators of Golgi trafficking have been identified, little is known about their crosstalk. Both the Arf activation cycle and phosphatidylinositol 4-phosphate metabolism have been recognized as key processes in the regulation of vesicular transport from this organelle. However, the mechanism ensuring the proper co-regulation of these processes has eluded our understanding thus far. We recently identified a physical interaction between the late yeast Golgi Arf activator Sec7p and the PI4-kinase Pik1p, and showed that the two proteins cooperate in the formation of clathrin-coated vesicles. This finding gives the first insight on the coordinated generation of a dual key signal by a small GTPase and a signaling phospholipid at the Golgi. In addition, it opens new perspectives for a better understanding of Golgi maturation through coordinated regulation of highly dynamic lipid and protein composition of this organelle.
Collapse
|
3
|
Kartberg F, Asp L, Dejgaard SY, Smedh M, Fernandez-Rodriguez J, Nilsson T, Presley JF. ARFGAP2 and ARFGAP3 are essential for COPI coat assembly on the Golgi membrane of living cells. J Biol Chem 2010; 285:36709-20. [PMID: 20858901 DOI: 10.1074/jbc.m110.180380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.
Collapse
Affiliation(s)
- Fredrik Kartberg
- Department of Medical and Clinical Genetics, Institute of Biomedicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
4
|
Lin CH, Jhang JF, Yang DY. One-Pot Synthesis of Coumarin-Based Oxazabicyclic and Oxazatricyclic Compounds and Their Fluorescence Redox Switching Properties. Org Lett 2009; 11:4064-7. [DOI: 10.1021/ol901505e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi-Hui Lin
- Department of Chemistry, Tunghai University, 181 Taichung-Kang Road Sec.3, Taichung 407, Taiwan
| | - Jing-Fu Jhang
- Department of Chemistry, Tunghai University, 181 Taichung-Kang Road Sec.3, Taichung 407, Taiwan
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, 181 Taichung-Kang Road Sec.3, Taichung 407, Taiwan
| |
Collapse
|
5
|
Olofsson SO, Boström P, Andersson L, Rutberg M, Perman J, Borén J. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:448-58. [PMID: 18775796 DOI: 10.1016/j.bbalip.2008.08.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/24/2008] [Accepted: 08/05/2008] [Indexed: 02/06/2023]
Abstract
Neutral lipids are stored in the cytosol in so-called lipid droplets. These are dynamic organelles with neutral lipids as the core surrounded by a monolayer of amphipathic lipids (phospholipids and cholesterol) and specific proteins (PAT proteins and proteins involved in the turnover of lipids and in the formation and trafficking of the droplets). Lipid droplets are formed at microsomal membranes as primordial droplets with a diameter of 0.1-0.4 microm and increase in size by fusion. In this article, we review the assembly and fusion of lipid droplets, and the processes involved in the secretion of triglycerides. Triglycerides are secreted from cells by two principally different processes. In the mammary gland, lipid droplets interact with specific regions of the plasma membrane and bud off with an envelope consisting of the membrane, to form milk globules. In the liver and intestine, very low-density lipoproteins (VLDL) and chylomicrons are secreted by using the secretory pathway of the cell. Finally, we briefly review the importance of lipid droplets in the development of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- Sven-Olof Olofsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Robinson DG, Langhans M, Saint-Jore-Dupas C, Hawes C. BFA effects are tissue and not just plant specific. TRENDS IN PLANT SCIENCE 2008; 13:405-8. [PMID: 18640067 DOI: 10.1016/j.tplants.2008.05.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/23/2008] [Accepted: 05/30/2008] [Indexed: 05/08/2023]
Abstract
Brefeldin A (BFA) is one of the most popular drugs used by researchers for studies on secretion and endocytosis because it interferes with specific vesicle coat proteins via action on a guanine nucleotide exchange factor. Due to its range of morphological effects on the Golgi apparatus in a variety of plant tissues, we believe that there is more to the BFA response than the primary molecular targets so far identified.
Collapse
Affiliation(s)
- David G Robinson
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
BOUCHET-MARQUIS C, STARKUVIENE V, GRABENBAUER M. Golgi apparatus studied in vitreous sections. J Microsc 2008; 230:308-16. [DOI: 10.1111/j.1365-2818.2008.01988.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
9
|
Cellular localization of Nicastrin affects amyloid β species production. FEBS Lett 2008; 582:427-33. [DOI: 10.1016/j.febslet.2008.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/20/2007] [Accepted: 01/02/2008] [Indexed: 11/23/2022]
|
10
|
Dejgaard SY, Murshid A, Dee KM, Presley JF. Confocal microscopy-based linescan methodologies for intra-Golgi localization of proteins. J Histochem Cytochem 2007; 55:709-19. [PMID: 17341478 DOI: 10.1369/jhc.6a7090.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Localization of resident Golgi proteins to earlier (cis) or later (trans) Golgi compartments has traditionally required quantitative immunocytochemistry and electron microscopy, which are inaccessible to many researchers. For this reason, light microscopy has often been used, initially for localization of Golgi glycotransferases and, more recently, for other Golgi proteins (e.g., Arf1, GBF1, Rab6). Quantitation of light microscopic intra-Golgi localization can be problematic. We describe here a novel quantitative light microscopic methodology using linescans crossing the Golgi ribbon. Our method determines a localization for the unknown protein in a one-dimensional coordinate system in which 0.0 corresponds to localization of a cis marker and 1.0 to localization of a trans marker. We also describe a variant of this methodology in which Golgi morphology is simplified by nocodazole-induced dispersal into ministacks, allowing a fully automated analysis. In our assay, beta1,4-galactosyltransferase-YFP and Golgin97 localize similarly to trans markers, whereas p115, GBF1, and p58-YFP are similarly near other cis markers. The medial Golgi protein alpha1,3-1,6-mannosidase II gives an intermediate localization in this assay. These methodologies may prove useful in instances where electron microscopy is technically difficult as well as when rapid analysis of large numbers of samples is required.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Anatomy & Cell Biology, 1/28 Strathcona Bldg., 3640 University, McGill University, Montreal, QC H3A 2B2
| | | | | | | |
Collapse
|
11
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 797] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Mogelsvang S, Howell KE. Global approaches to study Golgi function. Curr Opin Cell Biol 2006; 18:438-43. [PMID: 16781854 DOI: 10.1016/j.ceb.2006.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 06/05/2006] [Indexed: 01/07/2023]
Abstract
Enormous insights into Golgi function have been provided by yeast genetics, biochemical assays and immuno-labeling methods and the emerging picture is of a very complex organelle with multiple levels of regulation. Despite many elegant experimental approaches, it remains unclear what mechanisms transport secretory proteins and lipids through the Golgi, and even the basic structure of the organelle is debated. Recently, new, global approaches such as proteomics and functional genomics have been applied to study the Golgi and its matrix. The data produced reveals great complexity and has potential to help address major unresolved questions concerning Golgi function.
Collapse
Affiliation(s)
- Soren Mogelsvang
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
13
|
Abstract
The selective transfer of material between membrane-delimited organelles is mediated by protein-coated vesicles. In many instances, formation of membrane trafficking intermediates is regulated by the GTP-binding protein Arf. Binding and hydrolysis of GTP by Arf was originally linked to the assembly and disassembly of vesicle coats. Arf GTPase-activating proteins (GAPs), a family of proteins that induce hydrolysis of GTP bound to Arf, were therefore proposed to regulate the disassembly and dissociation of vesicle coats. Following the molecular identification of Arf GAPs, the roles for GAPs and GTP hydrolysis have been directly examined. GAPs have been found to bind cargo and known coat proteins as well as directly contribute to vesicle formation, which is consistent with the idea that GAPs function as subunits of coat proteins rather than simply Arf inactivators. In addition, GTP hydrolysis induced by GAPs occurs largely before vesicle formation and is required for sorting. These results are the primary basis for modifications to the classical model for the function of Arf in transport vesicle formation, including a recent proposal that Arf has a proofreading, rather than a structural, role.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
14
|
Duden R, Eichinger L. Vesicular trafficking: 7th Young Scientists meeting of the German Society for Cell Biology (DGZ) - Jena, September 22nd to 24th, 2005. Eur J Cell Biol 2006; 85:133-40. [PMID: 16518887 DOI: 10.1016/j.ejcb.2005.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rainer Duden
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
15
|
Simpson JC, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 2005; 17:723-37. [PMID: 16314391 PMCID: PMC1356583 DOI: 10.1091/mbc.e05-06-0580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tubular transport intermediates (TTIs) have been described as one class of transport carriers in endoplasmic reticulum (ER)-to-Golgi transport. In contrast to vesicle budding and fusion, little is known about the molecular regulation of TTI synthesis, transport and fusion with target membranes. Here we have used in vivo imaging of various kinds of GFP-tagged proteins to start to address these questions. We demonstrate that under steady-state conditions TTIs represent approximately 20% of all moving transport carriers. They increase in number and length when more transport cargo becomes available at the donor membrane, which we induced by either temperature-related transport blocks or increased expression of the respective GFP-tagged transport markers. The formation and motility of TTIs is strongly dependent on the presence of intact microtubules. Microinjection of GTPgammaS increases the frequency of TTI synthesis and the length of these carriers. When Rab proteins are removed from membranes by microinjection of recombinant Rab-GDI, the synthesis of TTIs is completely blocked. Microinjection of the cytoplasmic tails of the p23 and p24 membrane proteins also abolishes formation of p24-containing TTIs. Our data suggest that TTIs are ER-to-Golgi transport intermediates that form preferentially when transport-competent cargo exists in excess at the donor membrane. We propose a model where the interaction of the cytoplasmic tails of membrane proteins with microtubules are key determinants for TTI synthesis and may also serve as a so far unappreciated model for aspects of transport carrier formation.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Olofsson SO, Borèn J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 2005; 258:395-410. [PMID: 16238675 DOI: 10.1111/j.1365-2796.2005.01556.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apolipoprotein (apo) B exists in two forms apoB100 and apoB48. ApoB100 is present on very low-density lipoproteins (VLDL), intermediate density lipoproteins (IDL) and LDL. ApoB100 assembles VLDL particles in the liver. This process starts by the formation of a pre-VLDL, which is retained in the cell unless converted to the triglyceride-poor VLDL2. VLDL2 is secreted or converted to VLDL1 by a bulk lipidation in the Golgi apparatus. ApoB100 has a central role in the development of atherosclerosis. Two proteoglycan-binding sequences in apoB100 have been identified, which are important for retaining the lipoprotein in the intima of the artery. Retention is essential for the development of the atherosclerotic lesion.
Collapse
Affiliation(s)
- S-O Olofsson
- Wallenberg Laboratory for Cardiovascular Research, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|