1
|
Lokireddy SR, Kunchala SR, Vadde R. Advancements in Escherichia coli secretion systems for enhanced recombinant protein production. World J Microbiol Biotechnol 2025; 41:90. [PMID: 40025370 DOI: 10.1007/s11274-025-04302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Escherichia coli is inarguably one of the most studied microorganisms across the spectrum of microbiology. It is very widely used in recombinant protein production owing to its rapid growth, ease of genetic manipulation, and relatively high protein yields. Despite all of its advantages, its inability to efficiently secrete proteins naturally remains a drawback leading to protein aggregation as inclusion bodies in the cytoplasm and consequent low overall protein yield. Therefore, many approaches to mitigate this weakness and enhance extracellular secretion to increase protein yield have been devised. This review explores the natural and engineered secretion systems in E. coli, highlighting their potential for enhanced protein secretion for non-glycosylated proteins. Natural one-step (e.g., Type I and III Secretion Systems) and two-step systems (e.g., Sec and Tat pathways) are detailed alongside recent advancements in genetic engineering, mutagenesis, and synthetic biology approaches aimed at improving protein yield, folding, and secretion efficiency. Emerging technologies, such as the ESETEC® and BacSec® platforms, promise scalable and cost-effective solutions for higher protein production. Challenges, including limited cellular capabilities and protein aggregation, are addressed through innovative strategies like cell wall modification, co-expression of chaperones, and medium optimization. This review emphasizes E. coli's adaptability to industrial applications, and the promising future of recombinant protein technologies.
Collapse
Affiliation(s)
- Sudarsana Reddy Lokireddy
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Sridhar Rao Kunchala
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India.
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India.
| |
Collapse
|
2
|
Wang Y, Dai H, Jin M, Wang J, Song Z, Liu Y, Chai W, Cheng L, Zhao N, Cui D, Zhao M. Light-driven biodegradation of chloramphenicol by photosensitized Shewanella oneidensis MR-1. BIORESOURCE TECHNOLOGY 2024; 413:131508. [PMID: 39307474 DOI: 10.1016/j.biortech.2024.131508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Efficient and sustainable degradation of chloramphenicol has piqued the interest of the scientific community. This study constructed a photosensitized biohybrid system using Shewanella oneidensis MR-1 and cadmium sulfide (CdS). This system could efficiently degrade chloramphenicol with robust stability. Inhibitor experiments and transcriptome analysis revealed that reduced nicotinamide adenine dinucleotide dehydrogenase, iron-sulfur cluster, menaquinone, cytochrome b561, cytochrome c, cytochrome P450, and formate dehydrogenase/hydrogenase are involved in direct electron transfer from S. oneidensis MR-1 to photogenerated holes of CdS. The S. oneidensis MR-1/CdS biohybrid alleviated chloramphenicol-induced physiological impairments, which can be attributed to the decreased levels of extracellular polymeric substances, malondialdehyde, and extracellular membrane permeability and the increased levels of superoxide dismutase and catalase activities. The GCN5-related N-acetyltransferase, alkene reductase, and carboxymuconolactone decarboxylase promoted the inactivation and further degradation of chloramphenicol. In summary, this study demonstrated the potential applications of the S. oneidensis MR-1/CdS biohybrid in the remediation of chloramphenicol contamination.
Collapse
Affiliation(s)
- Yongqi Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Haibing Dai
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Meitong Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziheng Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Chai
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lu Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Na Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| |
Collapse
|
3
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 PMCID: PMC11577797 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J. Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Che J, Hu S, Fang Q, Liu B, Liu Z, Hu C, Wang L, Li L, Bao B. Construction and characterization of different hemolysin gene deletion strains in Vibrio parahaemolyticus (ΔhlyA, ΔhlyIII) and evaluation of their virulence. J Invertebr Pathol 2024; 207:108210. [PMID: 39343130 DOI: 10.1016/j.jip.2024.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Vibrio parahaemolyticus, a halophilic food-borne pathogen, possesses an arsenal of virulence factors. The pathogenicity of V. parahaemolyticus results from a combination of various virulence factors. HlyA and hlyIII genes are presumed to function in hemolysis, in addition to tdh and trh in V. parahaemolyticus. To confirm the hemolytic function of genes hlyA and hlyIII, ΔhlyA and ΔhlyIII strains of V. parahaemolyticus were separately constructed via homologous recombination. The cytotoxicity and pathogenicity of the ΔhlyA and ΔhlyIII strains were evaluated using a Tetrahymena-Vibrio co-culture model and an immersion challenge in Litopenaeus vannamei. Results indicated that the hemolytic activity of the ΔhlyA and ΔhlyIII strains decreased by approximately 31.4 % and 24.9 % respectively, compared to the WT strain. Both ΔhlyA and ΔhlyIII exhibited reduced cytotoxicity towards Tetrahymena. Then shrimp infection experiments showed LD50 values for ΔhlyA and ΔhlyIII of 3.06 × 108 CFU/mL and 1.23 × 108 CFU/mL, respectively, both higher than the WT strain's value of 2.57 × 107 CFU/mL. Histopathological observations revealed that hepatopancreas from shrimps challenged with ΔhlyA and ΔhlyIII exhibited mild symptoms, whereas those challenged with the WT strain displayed severe AHPND. These findings indicate that the ΔhlyA and ΔhlyIII strains are significantly less virulent than the WT strain. In conclusion, both hlyA and hlyIII are vital virulence genes involved in hemolytic and cytotoxic of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jinyuan Che
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaojie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhuochen Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Cunjie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
6
|
Flórez V, Marizcurrena J, Laviña M, Azpiroz MF. Secretion of the human parathyroid hormone through a microcin type I secretion system in Escherichia coli. Microb Cell Fact 2024; 23:273. [PMID: 39390566 PMCID: PMC11465617 DOI: 10.1186/s12934-024-02552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gram negative bacteria possess different secretion systems to export proteins to the extracellular medium. The simplest one, type I secretion system (T1SS), forms a channel across the cell envelope to export proteins in a single step. Peptides secreted by the T1SSs comprise a group of antibiotics, called class II microcins, which carry an amino terminal secretion domain that is processed concomitantly with export. Mature microcins range in size from 60 to 90 amino acids and differ in their sequences. Microcin T1SSs show a high versatility in relation to the peptides they are able to secrete, being mainly limited by the length of the substrates. Different bioactive peptides unrelated to bacteriocins could be secreted by microcin V (MccV) T1SS, while retaining their biological activity. RESULTS In this work heterologous secretion of two variants of human parathyroid hormone (PTH) by MccV T1SS was evaluated. PTH is a bioactive peptide of 84 amino acids (PTH84), which is involved in the maintenance of bone homeostasis. Currently, a drug corresponding to the active fraction of the hormone, which resides in its first 34 amino acids (PTH34), is commercially produced as a recombinant peptide in Escherichia coli. However, research continues to improve this recombinant production. Here, gene fusions encoding hybrid peptides composed of the MccV secretion domain attached to each hormone variant were constructed and expressed in the presence of microcin T1SS in E. coli cells. Both PTH peptides (PTH34 and PTH84) were recovered from the culture supernatants and could be confirmed to lack the MccV secretion domain, i.e. microcin T1SS efficiently recognised, processed and secreted both PTH variants. Furthermore, the secreted peptides were stable in the extracellular medium unlike their unprocessed counterparts present in the intracellular space. CONCLUSION The successful secretion of PTH variants using MccV T1SS could be considered as a new alternative for their production, since they would be recovered directly from the extracellular space without additional sequences. Furthermore, it would be a new example revealing the potential of microcin type I secretion systems to be conceived as a novel strategy for the production of recombinant peptides in E. coli.
Collapse
Affiliation(s)
- Valeria Flórez
- Sección Fisiología y Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| | | | - Magela Laviña
- Sección Fisiología y Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay
| | - María F Azpiroz
- Sección Fisiología y Genética Bacterianas, Facultad de Ciencias, Montevideo, Uruguay.
| |
Collapse
|
7
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
8
|
Hatakeyama S, Mino S, Mizobata M, Takada M, Tsuchiya J, Yamaki S, Ando Y, Sawabe T, Takai K. Hydrogenimonas leucolamina sp. nov., a hydrogen- and sulphur-oxidizing mesophilic chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Western Pacific Ocean. Int J Syst Evol Microbiol 2024; 74. [PMID: 39436681 DOI: 10.1099/ijsem.0.006553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
A novel mesophilic bacterium, strain SS33T, was isolated from a deep-sea hydrothermal vent chimney at Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean. The cells of strain SS33T were motile short rods with a single polar flagellum. The growth of strain SS33T was observed at the temperature range between 33 and 55 °C (optimum growth at 45 °C), at the pH range between 5.0 and 7.1 (optimum growth at pH 6.0) and in the presence of between 2.0 and 4.5% (w/v) NaCl [optimum growth at 3.5% (w/v)]. Strain SS33T was a facultative anaerobic chemolithoautotroph using molecular hydrogen and elemental sulphur as the sole electron donor. Nitrate, nitrous oxide, sulphate, elemental sulphur and molecular oxygen were capable of serving as the sole electron acceptor. Phylogenetic analysis based on 16S rRNA gene sequences placed strain SS33T in the genus Hydrogenimonas belonging to the class Epsilonproteobacteria. The closely related species of strain SS33T were Hydrogenimonas urashimensis SSM-Sur55T (95.96%), Hydrogenimonas thermophila EP1-55-1%T (95.75%) and Hydrogenimonas cancrithermarum ISO32T (95.24%). According to the taxonomic and physiological characteristics, it is proposed that strain SS33T was classified into a novel species of genus Hydrogenimonas, Hydrogenimonas leucolamina sp. nov., with SS33T (=JCM 39184T =KCTC 25253T) as the type strain. Furthermore, the genome comparison of Epsilonproteobacteria revealed that their [NiFe] hydrogenase genes belonging to Group 1b could be divided into two phylogenetic lineages and suggested that the reverse gyrase gene has been lost after division to the genus Hydrogenimonas.
Collapse
Affiliation(s)
- Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mana Mizobata
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Mako Takada
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
9
|
Graham LA, Hansen T, Yang Y, Sherik M, Ye Q, Soares BP, Kinrade B, Guo S, Davies PL. Adhesin domains responsible for binding bacteria to surfaces they colonize project outwards from companion split domains. Proteins 2024; 92:933-945. [PMID: 38591850 DOI: 10.1002/prot.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly β-sandwich extender modules, but other domains like a β-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yanzhi Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Blake P Soares
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Xing Y, Clark JR, Chang JD, Zulk JJ, Chirman DM, Piedra FA, Vaughan EE, Hernandez Santos HJ, Patras KA, Maresso AW. Progress toward a vaccine for extraintestinal pathogenic E. coli (ExPEC) II: efficacy of a toxin-autotransporter dual antigen approach. Infect Immun 2024; 92:e0044023. [PMID: 38591882 PMCID: PMC11075464 DOI: 10.1128/iai.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Haroldo J. Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Ma J, Liu P, Cai S, Wu T, Chen D, Zhu C, Li S. Discovery and Identification of a Novel Tag of HlyA60 for Protein Active Aggregate Formation in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:493-503. [PMID: 38109329 DOI: 10.1021/acs.jafc.3c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The strategy of active aggregation tag fusion expression with target proteins can solve the problems of restricted expression, inefficient purification, and laborious immobilization faced in the production of recombinant proteins in Escherichia coli. We localized a novel active aggregation peptide HlyA60 from the hemolysin A secretion system, which can effectively induce aggregate formation with satisfactory protein activities in E. coli after fusion expression with the protein of interest. Based on structural prediction and surface properties, the process of active aggregation of HlyA60 through electrostatic interactions and hydrophobic interactions was analyzed. To investigate the potential application of HlyA60 as an efficient aggregation tag, it was fused with acetyl xylan esterase and lipase A, separately. The resulting fusion proteins demonstrated active aggregation rates of 97.6 and 66.7%, respectively, leading to 1.9-fold and 1.7-fold increases in bacterial density at the end of fermentation. The AXE-HlyA60 fusion protein, which exhibited superior performance, was subjected to purification and immobilization. It was able to achieve column-free purification with an impressive 98.8% recovery and in situ immobilization; the immobilization enabled 30 cycles of reactions to take place with 85% residual activity maintained. Our findings provide a novel tool for efficiently producing recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Jiayuan Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Peiling Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongying Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
14
|
Maurya S, Arya CK, Parmar N, Sathyanarayanan N, Joshi CG, Ramanathan G. Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF. Arch Microbiol 2023; 206:6. [PMID: 38015256 DOI: 10.1007/s00203-023-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.
Collapse
Affiliation(s)
- Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Parmar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
15
|
Lloyd CJ, Guo S, Kinrade B, Zahiri H, Eves R, Ali SK, Yildiz F, Voets IK, Davies PL, Klose KE. A peptide-binding domain shared with an Antarctic bacterium facilitates Vibrio cholerae human cell binding and intestinal colonization. Proc Natl Acad Sci U S A 2023; 120:e2308238120. [PMID: 37729203 PMCID: PMC10523503 DOI: 10.1073/pnas.2308238120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.
Collapse
Affiliation(s)
- Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Hossein Zahiri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Syed Khalid Ali
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Ilja K. Voets
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven5612, the Netherlands
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| |
Collapse
|
16
|
Azam MW, Zarrilli R, Khan AU. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms 2023; 11:1901. [PMID: 37630461 PMCID: PMC10456890 DOI: 10.3390/microorganisms11081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterobacterales order is a massive group of Gram-negative bacteria comprised of pathogenic and nonpathogenic members, including beneficial commensal gut microbiota. The pathogenic members produce several pathogenic or virulence factors that enhance their pathogenic properties and increase the severity of the infection. The members of Enterobacterales can also develop resistance against the common antimicrobial agents, a phenomenon called antimicrobial resistance (AMR). Many pathogenic Enterobacterales members are known to possess antimicrobial resistance. This review discusses the virulence factors, pathogenicity, and infections caused by multidrug-resistant Enterobacterales, especially E. coli and some other bacterial species sharing similarities with the Enterobacterales members. We also discuss both conventional and modern approaches used to combat the infections caused by them. Understanding the virulence factors produced by the pathogenic bacteria will help develop novel strategies and methods to treat infections caused by them.
Collapse
Affiliation(s)
- Mohd W. Azam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
18
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
19
|
Wangwiwatsin A, Kulwong S, Phetcharaburanin J, Namwat N, Klanrit P, Loilome W, Maleewong W, Reid AJ. Toward novel treatment against filariasis: Insight into genome-wide co-evolutionary analysis of filarial nematodes and Wolbachia. Front Microbiol 2023; 14:1052352. [PMID: 37032902 PMCID: PMC10073474 DOI: 10.3389/fmicb.2023.1052352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of Wolbachia bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic Wolbachia to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide in silico screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode-Wolbachia interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both Wolbachia and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.
Collapse
Affiliation(s)
- Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Siriyakorn Kulwong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Adam J Reid
- Parasite Genomics Group, Wellcome Sanger Institute, Hinxton, United Kingdom
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Kim SY, Parker JK, Gonzalez-Magaldi M, Telford MS, Leahy DJ, Davies BW. Export of diverse and bioactive peptides through a type I secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525739. [PMID: 36747863 PMCID: PMC9900886 DOI: 10.1101/2023.01.26.525739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microcins are peptide antibiotics secreted by Gram-negative bacteria that inhibit the growth of neighboring microbes. They are exported from the cytosol to the environment in a one-step process through a specific type I secretion system (T1SS). While the rules governing export of natural or non-native substrates have been resolved for T1SSs that secrete large proteins, relatively little is known about substrate requirements for peptides exported through T1SSs that secrete microcins. Here, we investigate the prototypic microcin V T1SS from Escherichia coli and show it can export a remarkably wide range of natural and synthetic peptides. We demonstrate that secretion through this system is not affected by peptide charge or hydrophobicity and appears only constrained by peptide length. A varied range of bioactive peptides, including an antibacterial peptide, a microbial signaling factor, a protease inhibitor, and a human hormone, can all be secreted and elicit their intended biological effect. Secretion through this system is not limited to E. coli , and we demonstrate its function in additional Gram-negative species that can inhabit the gastrointestinal tract. Our findings uncover the highly promiscuous nature of peptide export thorough the microcin V T1SS, which has implications for native cargo capacity and use of Gram-negative bacteria for peptide research and delivery. Importance Microcin type I secretion systems in Gram-negative bacteria transport antibacterial peptides from the cytoplasm to the extracellular environment in single step. In nature, each microcin secretion system is generally paired with a specific peptide. We know little about the export capacity of these transporters and how peptide sequence influences secretion. Here, we investigate the microcin V type I secretion system. Remarkably, our studies show this system can export diverse peptides and is only limited by peptide length. Furthermore, we demonstrate that various bioactive peptides can be secreted, and this system can be used in Gram-negative species that colonize the gastrointestinal tract. These finding expand our understanding of secretion through type I systems and their potential uses in peptide applications.
Collapse
|
21
|
Pourhassan N. Z, Hachani E, Spitz O, Smits SHJ, Schmitt L. Investigations on the substrate binding sites of hemolysin B, an ABC transporter, of a type 1 secretion system. Front Microbiol 2022; 13:1055032. [PMID: 36532430 PMCID: PMC9751043 DOI: 10.3389/fmicb.2022.1055032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2024] Open
Abstract
The ABC transporter hemolysin B (HlyB) is the key protein of the HlyA secretion system, a paradigm of type 1 secretion systems (T1SS). T1SS catalyze the one-step substrate transport across both membranes of Gram-negative bacteria. The HlyA T1SS is composed of the ABC transporter (HlyB), the membrane fusion protein (HlyD), and the outer membrane protein TolC. HlyA is a member of the RTX (repeats in toxins) family harboring GG repeats that bind Ca2+ in the C-terminus upstream of the secretion signal. Beside the GG repeats, the presence of an amphipathic helix (AH) in the C-terminus of HlyA is essential for secretion. Here, we propose that a consensus length between the GG repeats and the AH affects the secretion efficiency of the heterologous RTX secreted by the HlyA T1SS. Our in silico studies along with mutagenesis and biochemical analysis demonstrate that there are two binding pockets in the nucleotide binding domain of HlyB for HlyA. The distances between the domains of HlyB implied to interact with HlyA indicated that simultaneous binding of the substrate to both cytosolic domains of HlyB, the NBD and CLD, is possible and required for efficient substrate secretion.
Collapse
Affiliation(s)
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
The hemolysin A secretion system is a multi-engine pump containing three ABC transporters. Cell 2022; 185:3329-3340.e13. [DOI: 10.1016/j.cell.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
|
23
|
Host–Bacterial Interactions: Outcomes of Antimicrobial Peptide Applications. MEMBRANES 2022; 12:membranes12070715. [PMID: 35877918 PMCID: PMC9317001 DOI: 10.3390/membranes12070715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
The bacterial membrane is part of a secretion system which plays an integral role to secrete proteins responsible for cell viability and pathogenicity; pathogenic bacteria, for example, secrete virulence factors and other membrane-associated proteins to invade the host cells through various types of secretion systems (Type I to Type IX). The bacterial membrane can also mediate microbial communities’ communication through quorum sensing (QS), by secreting auto-stimulants to coordinate gene expression. QS plays an important role in regulating various physiological processes, including bacterial biofilm formation while providing increased virulence, subsequently leading to antimicrobial resistance. Multi-drug resistant (MDR) bacteria have emerged as a threat to global health, and various strategies targeting QS and biofilm formation have been explored by researchers worldwide. Since the bacterial secretion systems play such a crucial role in host–bacterial interactions, this review intends to outline current understanding of bacterial membrane systems, which may provide new insights for designing approaches aimed at antimicrobials discovery. Various mechanisms pertaining interaction of the bacterial membrane with host cells and antimicrobial agents will be highlighted, as well as the evolution of bacterial membranes in evasion of antimicrobial agents. Finally, the use of antimicrobial peptides (AMPs) as a cellular device for bacterial secretion systems will be discussed as emerging potential candidates for the treatment of multidrug resistance infections.
Collapse
|
24
|
Zhu W, Wang Y, Lv L, Wang H, Shi W, Liu Z, Yang W, Zhu J, Lu H. SHTXTHHly, an extracellular secretion platform for the preparation of bioactive peptides and proteins in Escherichia coli. Microb Cell Fact 2022; 21:128. [PMID: 35761329 PMCID: PMC9235172 DOI: 10.1186/s12934-022-01856-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In previous work, we developed an E. coli extracellular secretion platform XTHHly based on the hemolysin A secretion system. It can produce bioactive peptides with simple purification procedures. However, the wider application of this platform is limited by poor secretion efficiency. RESULTS In this study, we first discovered a positive correlation between the isoelectric point (pI) value of the target protein and the secretion level of the XTHHly system. Given the extremely high secretion level of S tag, we fused it at the N-terminus and created a novel SHTXTHHly system. The SHTXTHHly system significantly increased the secretion levels of antimicrobial peptides (PEW300, LL37, and Aurein 1.2) with full bioactivities, suggesting its excellent capacity for secretory production of bioactive peptides. Furthermore, RGDS, IL-15, and alcohol dehydrogenase were successfully secreted, and their bioactivities were largely maintained in the fusion proteins, indicating the potential applications of the novel system for the rapid determination of protein bioactivities. Finally, using the SHTXTHHly system, we produced the monomeric Fc, which showed a high affinity for Fcγ Receptor I and mediated the antibody-dependent immunological effects of immune cells, demonstrating its potential applications in immunotherapies. CONCLUSIONS The SHTXTHHly system described here facilitates the secretory production of various types of proteins in E. coli. In comparison to previously reported expression systems, our work enlightens an efficient and cost-effective way to evaluate the bioactivities of target proteins or produce them.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zexin Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
25
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 478] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
26
|
Aravind L, Iyer LM, Burroughs AM. Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Principles and Biochemical Novelty. Annu Rev Biomed Data Sci 2022; 5:367-391. [PMID: 35609893 DOI: 10.1146/annurev-biodatasci-122220-101119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological replicators, from genes within a genome to whole organisms, are locked in conflicts. Comparative genomics has revealed a staggering diversity of molecular armaments and mechanisms regulating their deployment, collectively termed biological conflict systems. These encompass toxins used in inter- and intraspecific interactions, self/nonself discrimination, antiviral immune mechanisms, and counter-host effectors deployed by viruses and intragenomic selfish elements. These systems possess shared syntactical features in their organizational logic and a set of effectors targeting genetic information flow through the Central Dogma, certain membranes, and key molecules like NAD+. These principles can be exploited to discover new conflict systems through sensitive computational analyses. This has led to significant advances in our understanding of the biology of these systems and furnished new biotechnological reagents for genome editing, sequencing, and beyond. We discuss these advances using specific examples of toxins, restriction-modification, apoptosis, CRISPR/second messenger-regulated systems, and other enigmatic nucleic acid-targeting systems. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
27
|
Srikanth D, Vinayak Joshi S, Ghouse Shaik M, Pawar G, Bujji S, Kanchupalli V, Chopra S, Nanduri S. A Comprehensive Review on Potential Therapeutic Inhibitors of Nosocomial Acinetobacter baumannii Superbugs. Bioorg Chem 2022; 124:105849. [DOI: 10.1016/j.bioorg.2022.105849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
28
|
Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates. Rep Biochem Mol Biol 2022; 11:102-110. [PMID: 35765529 PMCID: PMC9208561 DOI: 10.52547/rbmb.11.1.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/19/2021] [Indexed: 01/11/2023]
Abstract
Background Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient acquisition. Methods The study include investigation of 50 isolates of MDRPA for transport secretion system and resistance for antibiotics. Molecular diagnosis using P. aeruginosa specific primer pairs, investigation of AprF, HasF, XcpQ, HxcQ, PscC, CdrB, CupB3, and Hcp using specific primer pairs by PCR were also performed. Results The results revealed high resistance to beta lactam antibiotics (78% for ceftazidime, 78% for cefepime and 46% for piperacillin) can indicate possessing of isolates for beta lactamases and this confirmed by dropping resistance to piperacillin to 16% when combined with tazobactam. Also, the results shown the ability of MDRPA for pyocyanin biosynthesis using the system of genes. Conclusion The current study conclude that all isolates of P. aeruginosa were highly virulent due to their possessing of all transport secretion system to deliver different effector proteins with possible harmful effects of these proteins.
Collapse
|
29
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
30
|
Chen Z, Zhao Z, Hui X, Zhang J, Hu Y, Chen R, Cai X, Hu Y, Wang Y. T1SEstacker: A Tri-Layer Stacking Model Effectively Predicts Bacterial Type 1 Secreted Proteins Based on C-Terminal Non-repeats-in-Toxin-Motif Sequence Features. Front Microbiol 2022; 12:813094. [PMID: 35211101 PMCID: PMC8861453 DOI: 10.3389/fmicb.2021.813094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Type 1 secretion systems play important roles in pathogenicity of Gram-negative bacteria. However, the substrate secretion mechanism remains largely unknown. In this research, we observed the sequence features of repeats-in-toxin (RTX) proteins, a major class of type 1 secreted effectors (T1SEs). We found striking non-RTX-motif amino acid composition patterns at the C termini, most typically exemplified by the enriched “[FLI][VAI]” at the most C-terminal two positions. Machine-learning models, including deep-learning ones, were trained using these sequence-based non-RTX-motif features and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a fivefold cross-validated sensitivity of ∼0.89 at the specificity of ∼0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif T1SEs, further suggesting their potential existence of common secretion signals. T1SEstacker was applied to predict T1SEs from the genomes of representative Salmonella strains, and we found that both the number and composition of T1SEs varied among strains. The number of T1SEs is estimated to reach 100 or more in each strain, much larger than what we expected. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C termini, and developed a stacking model that can predict type 1 secreted proteins accurately.
Collapse
Affiliation(s)
- Zewei Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinjie Hui
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junya Zhang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Runhong Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuxia Cai
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yueming Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
31
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
32
|
Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins (Basel) 2022; 14:toxins14020078. [PMID: 35202106 PMCID: PMC8880466 DOI: 10.3390/toxins14020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the Enterobacteriaceae family. This review provides an overview of the current state of knowledge regarding ClyA, including the prevalence of the encoding gene and its transcriptional regulation, the secretion pathway used by the protein, and the mechanism of protein assembly, and highlights potential applications of ClyA in biotechnology. ClyA expression is regulated at the transcriptional level, primarily in response to environmental stressors, and ClyA can exist stably both as a soluble monomer and as an oligomeric membrane complex. At high concentrations, ClyA induces cytolysis, whereas at low concentrations ClyA can affect intracellular signaling. ClyA is secreted in outer membrane vesicles (OMVs), which has important implications for biotechnology applications. For example, the native pore-forming ability of ClyA suggests that it could be used as a component of nanopore-based technologies, such as sequencing platforms. ClyA has also been exploited in vaccine development owing to its ability to present antigens on the OMV surface and provoke a robust immune response. In addition, ClyA alone or OMVs carrying ClyA fusion proteins have been investigated for their potential use as anti-tumor agents.
Collapse
|
33
|
Caetano BDL, Domingos MDO, da Silva MA, da Silva JCA, Polatto JM, Montoni F, Iwai LK, Pimenta DC, Vigerelli H, Vieira PCG, Ruiz RDC, Patané JS, Piazza RMF. In Silico Prediction and Design of Uropathogenic Escherichia coli Alpha-Hemolysin Generate a Soluble and Hemolytic Recombinant Toxin. Microorganisms 2022; 10:microorganisms10010172. [PMID: 35056621 PMCID: PMC8778037 DOI: 10.3390/microorganisms10010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.
Collapse
Affiliation(s)
- Bruna De Lucca Caetano
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Marta de Oliveira Domingos
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Miriam Aparecida da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Jessika Cristina Alves da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Juliana Moutinho Polatto
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Fabio Montoni
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Leo Kei Iwai
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Daniel Carvalho Pimenta
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Hugo Vigerelli
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Paulo Cesar Gomes Vieira
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Rita de Cassia Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - José Salvatore Patané
- Laboratório de Ciclo Celular, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil
- Correspondence: (J.S.P.); (R.M.F.P.)
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
- Correspondence: (J.S.P.); (R.M.F.P.)
| |
Collapse
|
34
|
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022; 10:microorganisms10010114. [PMID: 35056563 PMCID: PMC8778405 DOI: 10.3390/microorganisms10010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.
Collapse
|
35
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Belikov SI, Petrushin IS, Chernogor LI. Genome Analysis of the Janthinobacterium sp. Strain SLB01 from the Diseased Sponge of the Lubomirskia baicalensis. Curr Issues Mol Biol 2021; 43:2220-2237. [PMID: 34940130 PMCID: PMC8929069 DOI: 10.3390/cimb43030156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.
Collapse
|
37
|
Quantification and surface localization of the hemolysin A type 1 secretion system at the endogenous level and under conditions of overexpression. Appl Environ Microbiol 2021; 88:e0189621. [PMID: 34851699 DOI: 10.1128/aem.01896-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion systems are essential for Gram-negative bacteria as these nanomachineries allow a communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type one secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli (E. coli), which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC and the substrate HlyA, a member of the family of RTX (repeats in toxins) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression (T7 expression system, BL21(DE3)-BD). The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by super-resolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence the polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS cluster at the outer membrane generating domains of so far not described identity. Importance Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide representing a global burden to the healthcare system. UPEC secrete many virulence factors among these the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the super-resolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.
Collapse
|
38
|
Zhu W, Hu L, Wang Y, Lv L, Wang H, Shi W, Zhu J, Lu H. A hemolysin secretion pathway-based novel secretory expression platform for efficient manufacturing of tag peptides and anti-microbial peptides in Escherichia coli. BIORESOUR BIOPROCESS 2021; 8:115. [PMID: 38650268 PMCID: PMC10992379 DOI: 10.1186/s40643-021-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. RESULTS In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. CONCLUSIONS The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liangyin Lv
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
39
|
Sakai K, Sakurai T, De Velasco MA, Nagai T, Chikugo T, Ueshima K, Kura Y, Takahama T, Hayashi H, Nakagawa K, Kudo M, Nishio K. Intestinal Microbiota and Gene Expression Reveal Similarity and Dissimilarity Between Immune-Mediated Colitis and Ulcerative Colitis. Front Oncol 2021; 11:763468. [PMID: 34778085 PMCID: PMC8578892 DOI: 10.3389/fonc.2021.763468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become the standard of care for several cancers. However, ICI therapy has also been associated with various immune-related adverse events (irAEs). Clinical manifestations of immune-related colitis resemble those of inflammatory bowel diseases such as ulcerative colitis (UC). The composition of the bowel microflora is thought to influence the development of inflammatory bowel disease and irAE colitis. We profiled the gene expressions and microbe compositions of colonic mucosa from patients with solid cancers receiving anti-PD-L1 antibody treatment; we then compared the expression profiles associated with irAE colitis with those associated with UC. The pathway enrichment analysis revealed functional similarities between inflamed regions of irAE colitis and UC. The common enriched pathways included leukocyte extravasation and immune responses, whereas non-inflamed mucosa from patients with irAE colitis was distinct from patients with UC and was characterized by the recruitment of immune cells. A similarity between the microbiota profiles was also identified. A decreased abundance of Bacteroides species was observed in inflamed regions from both irAE colitis and UC based on a microbiota composition analysis of 16S rDNA sequencing. Pathways associated with molecule transport systems, including fatty acids, were enriched in inflamed and non-inflamed irAE colitis and inflamed UC, similar to Piphillin-inferred KEGG pathways. While UC is characterized by local regions of inflammation, ICI treatment extends to non-inflammatory regions of the colonial mucosa where immune cells are reconstituted. This analysis of the similarity and heterogeneity of irAE colitis and UC provides important information for the management of irAE colitis.
Collapse
Affiliation(s)
- Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tomoyuki Nagai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takaaki Chikugo
- Department of Diagnostic Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
40
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
41
|
Thompson DK, Sharkady SM. Genomic Insights into Drug Resistance Determinants in Cedecea neteri, A Rare Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9081741. [PMID: 34442820 PMCID: PMC8401664 DOI: 10.3390/microorganisms9081741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cedecea, a genus in the Enterobacteriaceae family, includes several opportunistic pathogens reported to cause an array of sporadic acute infections, most notably of the lung and bloodstream. One species, Cedecea neteri, is associated with cases of bacteremia in immunocompromised hosts and has documented resistance to different antibiotics, including β-lactams and colistin. Despite the potential to inflict serious infections, knowledge about drug resistance determinants in Cedecea is limited. In this study, we utilized whole-genome sequence data available for three environmental strains (SSMD04, M006, ND14a) of C. neteri and various bioinformatics tools to analyze drug resistance genes in this bacterium. All three genomes harbor multiple chromosome-encoded β-lactamase genes. A deeper analysis of β-lactamase genes in SSMD04 revealed four metallo-β-lactamases, a novel variant, and a CMY/ACT-type AmpC putatively regulated by a divergently transcribed AmpR. Homologs of known resistance-nodulation-cell division (RND)-type multidrug efflux pumps such as OqxB, AcrB, AcrD, and MdtBC were also identified. Genomic island prediction for SSMD04 indicated that tolC, involved in drug and toxin export across the outer membrane of Gram-negative bacteria, was acquired by a transposase-mediated genetic transfer mechanism. Our study provides new insights into drug resistance mechanisms of an environmental microorganism capable of behaving as a clinically relevant opportunistic pathogen.
Collapse
|
42
|
Sandri A, Haagensen JAJ, Veschetti L, Johansen HK, Molin S, Malerba G, Signoretto C, Boaretti M, Lleo MM. Adaptive Interactions of Achromobacter spp. with Pseudomonas aeruginosa in Cystic Fibrosis Chronic Lung Co-Infection. Pathogens 2021; 10:978. [PMID: 34451442 PMCID: PMC8400197 DOI: 10.3390/pathogens10080978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In the lungs of patients with cystic fibrosis (CF), the main pathogen Pseudomonas aeruginosa is often co-isolated with other microbes, likely engaging in inter-species interactions. In the case of chronic co-infections, this cohabitation can last for a long time and evolve over time, potentially contributing to the clinical outcome. Interactions involving the emerging pathogens Achromobacter spp. have only rarely been studied, reporting inhibition of P. aeruginosa biofilm formation. To evaluate the possible evolution of such interplay, we assessed the ability of Achromobacter spp. isolates to affect the biofilm formation of co-isolated P. aeruginosa strains during long-term chronic co-infections. We observed both competition and cohabitation. An Achromobacter sp. isolate secreted exoproducts interfering with the adhesion ability of a co-isolated P. aeruginosa strain and affected its biofilm formation. Conversely, a clonal Achromobacter sp. strain later isolated from the same patient, as well as two longitudinal strains from another patient, did not show similar competitive behavior against its P. aeruginosa co-isolates. Genetic variants supporting the higher virulence of the competitive Achromobacter sp. isolate were found in its genome. Our results confirm that both inter-species competition and cohabitation are represented during chronic co-infections in CF airways, and evolution of these interplays can happen even at the late stages of chronic infection.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Laura Veschetti
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Giovanni Malerba
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Maria M. Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| |
Collapse
|
43
|
Sycz G, Di Venanzio G, Distel JS, Sartorio MG, Le NH, Scott NE, Beatty WL, Feldman MF. Modern Acinetobacter baumannii clinical isolates replicate inside spacious vacuoles and egress from macrophages. PLoS Pathog 2021; 17:e1009802. [PMID: 34370792 PMCID: PMC8376066 DOI: 10.1371/journal.ppat.1009802] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/19/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections are increasing at alarming rates. Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections are urgently needed. The development of these interventions would benefit from a better understanding of this bacterium's pathobiology, which remains poorly understood. A. baumannii is regarded as an extracellular opportunistic pathogen. However, research on Acinetobacter has largely focused on common lab strains, such as ATCC 19606, that have been isolated several decades ago. These strains exhibit reduced virulence when compared to recently isolated clinical strains. In this work, we demonstrate that, unlike ATCC 19606, several modern A. baumannii clinical isolates, including the recent clinical urinary isolate UPAB1, persist and replicate inside macrophages within spacious vacuoles. We show that intracellular replication of UPAB1 is dependent on a functional type I secretion system (T1SS) and pAB5, a large conjugative plasmid that controls the expression of several chromosomally-encoded genes. Finally, we show that UPAB1 escapes from the infected macrophages by a lytic process. To our knowledge, this is the first report of intracellular growth and replication of A. baumannii. We suggest that intracellular replication within macrophages may contribute to evasion of the immune response, dissemination, and antibiotic tolerance of A. baumannii.
Collapse
Affiliation(s)
- Gabriela Sycz
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nguyen-Hung Le
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
44
|
Meningitic Escherichia coli α-hemolysin aggravates blood-brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling. Mol Brain 2021; 14:116. [PMID: 34281571 PMCID: PMC8287823 DOI: 10.1186/s13041-021-00826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood–brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.
Collapse
|
45
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
46
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
47
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
48
|
Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun 2021; 12:394. [PMID: 33452244 PMCID: PMC7810871 DOI: 10.1038/s41467-020-20533-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
Collapse
|
49
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Ruano-Gallego D, Fernández LÁ. Identification of Nanobodies Blocking Intimate Adherence of Shiga Toxin-Producing Escherichia coli to Epithelial Cells. Methods Mol Biol 2021; 2291:253-272. [PMID: 33704757 DOI: 10.1007/978-1-0716-1339-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Therapeutic antibodies (Abs) inhibiting bacterial adhesion to host epithelia are an attractive option to reduce the load of Shiga toxin-producing E. coli (STEC) in the intestine of the patient and also in the bovine reservoir, thereby minimizing the risk of STEC contamination in the food chain. Of particular interest are recombinant single-domain Ab fragments called nanobodies (Nbs) derived from the variable domain of camelid heavy chain-only antibodies (VHH). The outer membrane adhesin intimin and the translocated intimin receptor (Tir) are essential for the attachment of STEC to host epithelia. In addition, EspA filaments of the bacterial type III protein secretion system are needed for Tir translocation into the host cell. Given their importance for bacterial adhesion and colonization, we developed Nbs against intimin, Tir and EspA proteins of STEC serotype O157:H7. Here, we report the screening methods used to isolate inhibitory Nbs blocking intimin-Tir protein-protein interaction, actin-pedestal formation, and intimate adhesion of STEC to epithelial cells in vitro. First, we describe how VHH gene repertoires can be produced as Nbs secreted by E. coli using the α-hemolysin (HlyA) protein secretion system. Next, we report the methods for identification of inhibitors of intimin-Tir protein-protein interaction and of STEC intimate adhesion to HeLa cells in culture. These methods can be adapted for the screening of Nbs against different adhesin-receptor complexes to block the adhesion of other pathogens to host cells.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| |
Collapse
|