1
|
Kotera Y, Asai Y, Okano S, Tokutake Y, Hosomi A, Saito K, Yonekura S, Katou S. Peroxisomal Localization of Benzyl Alcohol O-Benzoyltransferase HSR201 is Mediated by a Non-canonical Peroxisomal Targeting Signal and Required for Salicylic Acid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:2054-2065. [PMID: 39471420 DOI: 10.1093/pcp/pcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
The phytohormone salicylic acid (SA) regulates plant responses to various types of environmental stress, particularly pathogen infections. We previously revealed that the benzyl alcohol O-benzoyltransferase HSR201 was required for pathogen signal-induced SA synthesis, and its overexpression together with NtCNL, encoding a cinnamate-coenzyme A ligase, was sufficient for the production of significant amounts of SA in tobacco. We herein examined the subcellular localization of HSR201 and found that it fused to a yellow fluorescent protein localized in peroxisomes. Most peroxisomal matrix proteins possess peroxisomal targeting signal type-1 (PTS1) located at the extreme C-terminus or PTS2 located at the N-terminus; however, a bioinformatics analysis failed to identify similar signals for HSR201. Deletion and mutation analyses of HSR201 identified one essential (extreme C-terminal Leu460) and three important (Ile455, Ile456 and Ala459) amino acid residues for its peroxisomal localization. The virus-induced gene silencing (VIGS) of PEX5, a PTS1 receptor, but not PEX7, a PTS2 receptor, compromised the peroxisomal targeting of HSR201 in Nicotiana benthamiana. When overexpressed with NtCNL, HSR201 mutants with reduced or non-peroxisomal targeting induced lower SA levels than the wild type; however, these mutations did not affect the protein stability or activity of HSR201. VIGS of the HSR201 homolog compromised pathogen signal-induced SA accumulation in N. benthamiana, which was complemented by the HSR201 wild type, but not the mutant with non-peroxisomal targeting. These results suggest that the peroxisomal localization of HSR201 is mediated by a non-canonical PTS1 and required for SA biosynthesis.
Collapse
Affiliation(s)
- Yu Kotera
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Yoshika Asai
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shutaro Okano
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Yukako Tokutake
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Akira Hosomi
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Katsuharu Saito
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shinichi Yonekura
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| |
Collapse
|
2
|
Fedoreyeva LI. ROS as Signaling Molecules to Initiate the Process of Plant Acclimatization to Abiotic Stress. Int J Mol Sci 2024; 25:11820. [PMID: 39519373 PMCID: PMC11546855 DOI: 10.3390/ijms252111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
During their life cycle, plants constantly respond to environmental changes. Abiotic stressors affect the photosynthetic and respiratory processes of plants. Reactive oxygen species (ROS) are produced during aerobic metabolism and play an important role as regulatory mediators in signaling processes, activating the plant's protective response to abiotic stress and restoring "oxidation-reduction homeostasis". Cells develop normally if the rates of ROS production and the ability to neutralize them are balanced. To implement oxidation-reduction signaling, this balance must be disrupted either by an increase in ROS concentration or a decrease in the activity of one or more antioxidant systems. Under abiotic stress, plants accumulate excessive amounts of ROS, and if the ROS content exceeds the threshold amount dangerous for living organisms, it can lead to damage to all major cellular components. Adaptive resistance of plants to abiotic stressors depends on a set of mechanisms of adaptation to them. The accumulation of ROS in the cell depends on the type of abiotic stress, the strength of its impact on the plant, the duration of its impact, and the recovery period. The aim of this review is to provide a general understanding of the processes occurring during ROS homeostasis in plants, oxidation-reduction processes in cellular compartments in response to abiotic stress, and the participation of ROS in signaling processes activating adaptation processes to abiotic stress.
Collapse
|
3
|
Ye C, Hong H, Gao J, Li M, Gou Y, Gao D, Dong C, Huang L, Xu Z, Lian J. Characterization and engineering of peroxisome targeting sequences for compartmentalization engineering in Pichia pastoris. Biotechnol Bioeng 2024; 121:2091-2105. [PMID: 38568751 DOI: 10.1002/bit.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on β-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haosen Hong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
5
|
Liu M, Liu S, Song C, Zhu H, Wu B, Zhang A, Zhao H, Wen Z, Gao J. Pre-meiotic deletion of PEX5 causes spermatogenesis failure and infertility in mice. Cell Prolif 2023; 56:e13365. [PMID: 36433756 PMCID: PMC9977671 DOI: 10.1111/cpr.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Peroxisomes are involved in the regulation of various pathological processes. Peroxisomal biogenesis factor 5 (PEX5), which plays an essential role in peroxisomal biogenesis, is critical for reactive oxygen species (ROS) accumulation. However, its underlying functions in spermatogenesis have not yet been identified. Pex5 was deleted by crossing Stra8-Cre mice with Pex5flox/flox mice before the onset of meiosis. The morphology of testes and epididymides, spermatogenesis function, and fertility in both wild type (WT) and Pex5-/- mice were analysed by haematoxylin and eosin (HE) and immunofluorescent staining. Mechanism of PEX5 affecting peroxisomes and spermatogenesis were validated by Western blot and transmission electron microscopy (TEM). Transcriptome RNA sequencing (RNA-seq) was used to profile the dysregulated genes in testes from WT and Pex5-/- mice on postnatal day (P) 35. The adult Pex5 knockout male mice were completely sterile with no mature sperm production. Loss of Pex5 in spermatocytes resulted in multinucleated giant cell formation, meiotic arrest, abnormal tubulin expression, and deformed acrosome formation. Furthermore, Pex5 deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene stage. Impaired peroxisome function in Pex5 knockout mice induced ROS redundancy, which in turn led to an increase in germ cell apoptosis and a decline in autophagy. Pex5 regulates ROS during meiosis and is essential for spermatogenesis and male fertility in mice.
Collapse
Affiliation(s)
- Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Shuangyuan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Chenyang Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Samanta I, Roy PC, Das E, Mishra S, Chowdhary G. Plant Peroxisomal Polyamine Oxidase: A Ubiquitous Enzyme Involved in Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:652. [PMID: 36771734 PMCID: PMC9919379 DOI: 10.3390/plants12030652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Polyamines (PAs) are positively charged amines that are present in all organisms. In addition to their functions specific to growth and development, they are involved in responding to various biotic and abiotic stress tolerance functions. The appropriate concentration of PA in the cell is maintained by a delicate balance between the catabolism and anabolism of PAs, which is primarily driven by two enzymes, namely diamine oxidase and polyamine oxidase (PAO). PAOs have been found to be localized in multiple subcellular locations, including peroxisomes. This paper presents a holistic account of peroxisomal PAOs. PAOs are flavin adenine dinucleotide-dependent enzymes with varying degrees of substrate specificity. They are expressed differentially upon various abiotic stress conditions, namely heat, cold, salinity, and dehydration. It has also been observed that in a particular species, the various PAO isoforms are expressed differentially with a spatial and temporal distinction. PAOs are targeted to peroxisome via a peroxisomal targeting signal (PTS) type 1. We conducted an extensive bioinformatics analysis of PTS1s present in various peroxisomal PAOs and present a consensus peroxisome targeting signal present in PAOs. Furthermore, we also propose an evolutionary perspective of peroxisomal PAOs. PAOs localized in plant peroxisomes are of potential importance in abiotic stress tolerance since peroxisomes are one of the nodal centers of reactive oxygen species (ROS) homeostasis and an increase in ROS is a major indicator of the plant being in stress conditions; hence, in the future, PAO enzymes could be used as a key candidate for generating abiotic stress tolerant crops.
Collapse
Affiliation(s)
- Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Pamela Chanda Roy
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Eshani Das
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| | - Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar 751024, India
| |
Collapse
|
8
|
Kunze M. Computational Evaluation of Peroxisomal Targeting Signals in Metazoa. Methods Mol Biol 2023; 2643:391-404. [PMID: 36952201 DOI: 10.1007/978-1-0716-3048-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Most soluble proteins enclosed in peroxisomes encode either type-1 or type-2 peroxisomal targeting signals (PTS1 or PTS2), which act as postal codes and define the proteins' intracellular destination. Thus, various computational programs have been developed to evaluate the probability of specific peptide sequences for being a functional PTS or to scan the primary sequence of proteins for such signals. Among these prediction algorithms the PTS1-predictor ( https://mendel.imp.ac.at/pts1/ ) has been amply used, but the research logic of this and other PTS1 prediction tools is occasionally misjudged giving rise to characteristic pitfalls. Here, a proper utilization of the PTS1-predictor is introduced together with a framework of additional tests to increase the validity of the interpretation of results. Moreover, a list of possible causes for a mismatch between results of such predictions and experimental outcomes is provided. However, the foundational arguments apply to other prediction tools for PTS1 motifs as well.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Tarafdar S, Chowdhary G. Translating the Arabidopsis thaliana Peroxisome Proteome Insights to Solanum lycopersicum: Consensus Versus Diversity. Front Cell Dev Biol 2022; 10:909604. [PMID: 35912119 PMCID: PMC9328179 DOI: 10.3389/fcell.2022.909604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Peroxisomes are small, single-membrane specialized organelles present in all eukaryotic organisms. The peroxisome is one of the nodal centers of reactive oxygen species homeostasis in plants, which are generated in a high amount due to various stress conditions. Over the past decade, there has been extensive study on peroxisomal proteins and their signaling pathways in the model plant Arabidopsis thaliana, and a lot has been deciphered. However, not much impetus has been given to studying the peroxisome proteome of economically important crops. Owing to the significance of peroxisomes in the physiology of plants during normal and stress conditions, understating its proteome is of much importance. Hence, in this paper, we have made a snapshot of putative peroxisomal matrix proteins in the economically important vegetable crop tomato (Solanum lycopersicum, (L.) family Solanaceae). First, a reference peroxisomal matrix proteome map was generated for Arabidopsis thaliana using the available proteomic and localization studies, and proteins were categorized into various groups as per their annotations. This was used to create the putative peroxisomal matrix proteome map for S. lycopersicum. The putative peroxisome proteome in S. lycopersicum retains the basic framework: the bulk of proteins had peroxisomal targeting signal (PTS) type 1, a minor group had PTS2, and the catalase family retained its characteristic internal PTS. Apart from these, a considerable number of S. lycopersicum orthologs did not contain any "obvious" PTS. The number of PTS2 isoforms was found to be reduced in S. lycopersicum. We further investigated the PTS1s in the case of both the plant species and generated a pattern for canonical and non-canonical PTS1s. The number of canonical PTS1 proteins was comparatively lesser in S. lycopersicum. The non-canonical PTS1s were found to be comparable in both the plant species; however, S. lycopersicum showed greater diversity in the composition of the signal tripeptide. Finally, we have tried to address the lacunas and probable strategies to fill those gaps.
Collapse
Affiliation(s)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT, Bhubaneswar, India
| |
Collapse
|
10
|
Deng Q, Li H, Feng Y, Xu R, Li W, Zhu R, Akhter D, Shen X, Hu J, Jiang H, Pan R. Defining upstream enhancing and inhibiting sequence patterns for plant peroxisome targeting signal type 1 using large-scale in silico and in vivo analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:567-582. [PMID: 35603488 PMCID: PMC9542071 DOI: 10.1111/tpj.15840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.
Collapse
Affiliation(s)
- Qianwen Deng
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| | - He Li
- Center for Data ScienceZhejiang UniversityHangzhou310058China
| | - Yanlei Feng
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| | - Ruonan Xu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Weiran Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Rui Zhu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Delara Akhter
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- Department of Genetics and Plant BreedingSylhet Agricultural UniversitySylhet3100Bangladesh
| | - Xingxing Shen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology DepartmentMichigan State UniversityEast LansingMichigan48824USA
| | - Hangjin Jiang
- Center for Data ScienceZhejiang UniversityHangzhou310058China
| | - Ronghui Pan
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou310027China
| |
Collapse
|
11
|
Vasilev J, Mix AK, Heimerl T, Maier UG, Moog D. Inferred Subcellular Localization of Peroxisomal Matrix Proteins of Guillardia theta Suggests an Important Role of Peroxisomes in Cryptophytes. FRONTIERS IN PLANT SCIENCE 2022; 13:889662. [PMID: 35783940 PMCID: PMC9244630 DOI: 10.3389/fpls.2022.889662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes participate in several important metabolic processes in eukaryotic cells, such as the detoxification of reactive oxygen species (ROS) or the degradation of fatty acids by β-oxidation. Recently, the presence of peroxisomes in the cryptophyte Guillardia theta and other "chromalveolates" was revealed by identifying proteins for peroxisomal biogenesis. Here, we investigated the subcellular localization of candidate proteins of G. theta in the diatom Phaeodactylum tricornutum, either possessing a putative peroxisomal targeting signal type 1 (PTS1) sequence or factors lacking a peroxisomal targeting signal but known to be involved in β-oxidation. Our results indicate important contributions of the peroxisomes of G. theta to the carbohydrate, ether phospholipid, nucleotide, vitamin K, ROS, amino acid, and amine metabolisms. Moreover, our results suggest that in contrast to many other organisms, the peroxisomes of G. theta are not involved in the β-oxidation of fatty acids, which exclusively seems to occur in the cryptophyte's mitochondria.
Collapse
Affiliation(s)
- Jana Vasilev
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ann-Kathrin Mix
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Uwe G. Maier
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Daniel Moog
- Laboratory for Cell Biology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
13
|
González-Gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper ( Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:893376. [PMID: 35615143 PMCID: PMC9125320 DOI: 10.3389/fpls.2022.893376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/05/2023]
Abstract
Peroxisomes are ubiquitous organelles from eukaryotic cells characterized by an active nitro-oxidative metabolism. They have a relevant metabolic plasticity depending on the organism, tissue, developmental stage, or physiological/stress/environmental conditions. Our knowledge of peroxisomal metabolism from fruits is very limited but its proteome is even less known. Using sweet pepper (Capsicum annuum L.) fruits at two ripening stages (immature green and ripe red), it was analyzed the proteomic peroxisomal composition by quantitative isobaric tags for relative and absolute quantitation (iTRAQ)-based protein profiling. For this aim, it was accomplished a comparative analysis of the pepper fruit whole proteome obtained by iTRAQ versus the identified peroxisomal protein profile from Arabidopsis thaliana. This allowed identifying 57 peroxisomal proteins. Among these proteins, 49 were located in the peroxisomal matrix, 36 proteins had a peroxisomal targeting signal type 1 (PTS1), 8 had a PTS type 2, 5 lacked this type of peptide signal, and 8 proteins were associated with the membrane of this organelle. Furthermore, 34 proteins showed significant differences during the ripening of the fruits, 19 being overexpressed and 15 repressed. Based on previous biochemical studies using purified peroxisomes from pepper fruits, it could be said that some of the identified peroxisomal proteins were corroborated as part of the pepper fruit antioxidant metabolism (catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductaseglutathione reductase, 6-phosphogluconate dehydrogenase and NADP-isocitrate dehydrogenase), the β-oxidation pathway (acyl-coenzyme A oxidase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase), while other identified proteins could be considered "new" or "unexpected" in fruit peroxisomes like urate oxidase (UO), sulfite oxidase (SO), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase (METE1), 12-oxophytodienoate reductase 3 (OPR3) or 4-coumarate-CoA ligase (4CL), which participate in different metabolic pathways such as purine, sulfur, L-methionine, jasmonic acid (JA) or phenylpropanoid metabolisms. In summary, the present data provide new insights into the complex metabolic machinery of peroxisomes in fruit and open new windows of research into the peroxisomal functions during fruit ripening.
Collapse
|
14
|
Piacentini D, Della Rovere F, Bertoldi I, Massimi L, Sofo A, Altamura MM, Falasca G. Peroxisomal PEX7 Receptor Affects Cadmium-Induced ROS and Auxin Homeostasis in Arabidopsis Root System. Antioxidants (Basel) 2021; 10:antiox10091494. [PMID: 34573126 PMCID: PMC8471170 DOI: 10.3390/antiox10091494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are important in plant physiological functions and stress responses. Through the production of reactive oxygen and nitrogen species (ROS and RNS), and antioxidant defense enzymes, peroxisomes control cellular redox homeostasis. Peroxin (PEX) proteins, such as PEX7 and PEX5, recognize peroxisome targeting signals (PTS1/PTS2) important for transporting proteins from cytosol to peroxisomal matrix. pex7-1 mutant displays reduced PTS2 protein import and altered peroxisomal metabolism. In this research we analyzed the role of PEX7 in the Arabidopsis thaliana root system exposed to 30 or 60 μM CdSO4. Cd uptake and translocation, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) levels, and reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels and catalase activity were analyzed in pex7-1 mutant primary and lateral roots in comparison with the wild type (wt). The peroxisomal defect due to PEX7 mutation did not reduce Cd-uptake but reduced its translocation to the shoot and the root cell peroxisomal signal detected by 8-(4-Nitrophenyl) Bodipy (N-BODIPY) probe. The trend of nitric oxide (NO) and peroxynitrite in pex7-1 roots, exposed/not exposed to Cd, was as in wt, with the higher Cd-concentration inducing higher levels of these RNS. By contrast, PEX7 mutation caused changes in Cd-induced hydrogen peroxide (H2O2) and superoxide anion (O2●-) levels in the roots, delaying ROS-scavenging. Results show that PEX7 is involved in counteracting Cd toxicity in Arabidopsis root system by controlling ROS metabolism and affecting auxin levels. These results add further information to the important role of peroxisomes in plant responses to Cd.
Collapse
Affiliation(s)
- Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Federica Della Rovere
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Ilaria Bertoldi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, and Cultural Heritage (DICEM), University of Basilicata, Via San Rocco 3, 75100 Matera, Italy;
| | - Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
- Correspondence: ; Tel.: +39-(0)6-4992-2839
| |
Collapse
|
15
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
16
|
Louriki S, Rehman S, El Hanafi S, Bouhouch Y, Al-Jaboobi M, Amri A, Douira A, Tadesse W. Identification of Resistance Sources and Genome-Wide Association Mapping of Septoria Tritici Blotch Resistance in Spring Bread Wheat Germplasm of ICARDA. FRONTIERS IN PLANT SCIENCE 2021; 12:600176. [PMID: 34113358 PMCID: PMC8185176 DOI: 10.3389/fpls.2021.600176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Septoria tritici blotch (STB) of wheat, caused by the ascomycete Zymoseptoria tritici (formerly Mycosphaerella graminicola), is one of the most important foliar diseases of wheat. In Morocco, STB is a devastating disease in temperate wheat-growing regions, and the yield losses can exceed up to 50% under favorable conditions. The aims of this study were to identify sources of resistance to STB in Septoria Association Mapping Panel (SAMP), which is composed of 377 advanced breeding lines (ABLs) from spring bread wheat breeding program of ICARDA, and to identify loci associated with resistance to STB at seedling (SRT) as well as at the adult plant (APS) stages using genome-wide association mapping (GWAM). Seedling resistance was evaluated under controlled conditions with two virulent isolates of STB (SAT-2 and 71-R3) from Morocco, whereas adult plant resistance was assessed at two hot spot locations in Morocco (Sidi Allal Tazi, Marchouch) under artificial inoculation with a mixture of STB isolates. At seedling stage, 45 and 32 ABLs were found to be resistant to 71-R3 and SAT-2 isolates of STB, respectively. At adult plant stage, 50 ABLs were found to be resistant at hot spot locations in Morocco. Furthermore, 10 genotypes showed resistance in both locations during two cropping seasons. GWAM was conducted with 9,988 SNP markers using phenotypic data for seedling and the adult plant stage. MLM model was employed in TASSEL 5 (v 5.2.53) using principal component analysis and Kinship Matrix as covariates. The GWAM analysis indicated 14 quantitative trait loci (QTL) at the seedling stage (8 for isolate SAT-2 and 6 for isolate 71-R3), while 23 QTL were detected at the adult plant stage resistance (4 at MCH-17, 16 at SAT-17, and 3 at SAT-18). SRT QTL explained together 33.3% of the phenotypic variance for seedling resistance to STB isolate SAT-2 and 28.3% for 71-R3, respectively. QTL for adult plant stage resistance explained together 13.1, 68.6, and 11.9% of the phenotypic variance for MCH-17, SAT-17, and SAT-18, respectively. Identification of STB-resistant spring bread wheat germplasm in combination with QTL detected both at SRT and APS stage will serve as an important resource in STB resistance breeding efforts.
Collapse
Affiliation(s)
- Sara Louriki
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Samira El Hanafi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Physiology Plant Biotechnology Unit, Bio-bio Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Yassine Bouhouch
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Muamar Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Allal Douira
- Laboratoire de Productions Végétales, Animales et Agro-industrie, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Wuletaw Tadesse
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
17
|
Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021; 22:2444. [PMID: 33671021 PMCID: PMC7957770 DOI: 10.3390/ijms22052444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The peroxisome is a single-membrane subcellular compartment present in almost all eukaryotic cells from simple protists and fungi to complex organisms such as higher plants and animals. Historically, the name of the peroxisome came from a subcellular structure that contained high levels of hydrogen peroxide (H2O2) and the antioxidant enzyme catalase, which indicated that this organelle had basically an oxidative metabolism. During the last 20 years, it has been shown that plant peroxisomes also contain nitric oxide (NO), a radical molecule than leads to a family of derived molecules designated as reactive nitrogen species (RNS). These reactive species can mediate post-translational modifications (PTMs) of proteins, such as S-nitrosation and tyrosine nitration, thus affecting their function. This review aims to provide a comprehensive overview of how NO could affect peroxisomal metabolism and its internal protein-protein interactions (PPIs). Remarkably, many of the identified NO-target proteins in plant peroxisomes are involved in the metabolism of reactive oxygen species (ROS), either in its generation or its scavenging. Therefore, it is proposed that NO is a molecule with signaling properties with the capacity to modulate the peroxisomal protein-protein network and consequently the peroxisomal functions, especially under adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco J. Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, E-18008 Granada, Spain; (S.G.-G.); (J.M.P.)
| | | | | |
Collapse
|
18
|
Kechasov D, de Grahl I, Endries P, Reumann S. Evolutionary Maintenance of the PTS2 Protein Import Pathway in the Stramenopile Alga Nannochloropsis. Front Cell Dev Biol 2020; 8:593922. [PMID: 33330478 PMCID: PMC7710942 DOI: 10.3389/fcell.2020.593922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Collapse
Affiliation(s)
- Dmitry Kechasov
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Pierre Endries
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Plant Biochemistry and Infection Biology, Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Hochreiter B, Chong CS, Hartig A, Maurer-Stroh S, Berger J, Schmid JA, Kunze M. A Novel FRET Approach Quantifies the Interaction Strength of Peroxisomal Targeting Signals and Their Receptor in Living Cells. Cells 2020; 9:E2381. [PMID: 33143123 PMCID: PMC7693011 DOI: 10.3390/cells9112381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/02/2023] Open
Abstract
Measuring Förster-resonance-energy-transfer (FRET) efficiency allows the investigation of protein-protein interactions (PPI), but extracting quantitative measures of affinity necessitates highly advanced technical equipment or isolated proteins. We demonstrate the validity of a recently suggested novel approach to quantitatively analyze FRET-based experiments in living mammalian cells using standard equipment using the interaction between different type-1 peroxisomal targeting signals (PTS1) and their soluble receptor peroxin 5 (PEX5) as a model system. Large data sets were obtained by flow cytometry coupled FRET measurements of cells expressing PTS1-tagged EGFP together with mCherry fused to the PTS1-binding domain of PEX5, and were subjected to a fitting algorithm extracting a quantitative measure of the interaction strength. This measure correlates with results obtained by in vitro techniques and a two-hybrid assay, but is unaffected by the distance between the fluorophores. Moreover, we introduce a live cell competition assay based on this approach, capable of depicting dose- and affinity-dependent modulation of the PPI. Using this system, we demonstrate the relevance of a sequence element next to the core tripeptide in PTS1 motifs for the interaction strength between PTS1 and PEX5, which is supported by a structure-based computational prediction of the binding energy indicating a direct involvement of this sequence in the interaction.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Cheng-Shoong Chong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Andreas Hartig
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria;
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Johannes Berger
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Markus Kunze
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
20
|
Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants (Basel) 2020; 9:antiox9080681. [PMID: 32751256 PMCID: PMC7465626 DOI: 10.3390/antiox9080681] [Citation(s) in RCA: 960] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.
Collapse
|
21
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
22
|
Wen J, Xiong K, Aili A, Wang H, Zhu Y, Yu Z, Yao X, Jiang P, Xue L, Wang J. PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/β-catenin signaling and homologous recombination. Am J Cancer Res 2020; 10:5322-5340. [PMID: 32373215 PMCID: PMC7196300 DOI: 10.7150/thno.42371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/22/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, with high recurrence and metastasis rates. Although radiation is an effective treatment for tumors, it is often limited by intrinsic radioresistance in HCC. The contributions of dysregulated microRNAs, including miR-31-5p, to HCC progression have been recently reported. However, the role of miR-31-5p in the radiation response of HCC is unknown. In this study, we aimed to investigate the impact of miR-31-5p on HCC radiosensitivity. Methods: miR-31-5p expression in HCC tissues, paired adjacent tissues, and HCC cell lines was measured using quantitative real-time polymerase chain reaction and in situ hybridization. Bioinformatic analyses, gain- and loss-of-function experiments, and luciferase reporter assays were performed to validate peroxisomal biogenesis factor 5 (PEX5) as a direct target of miR-31-5p. The biofunctions of PEX5 and miR-31-5p in HCC were determined by Transwell, wound-healing, and Cell Counting Kit-8 (CCK8) assays. A colony formation assay was used to evaluate the radiosensitivity of HCC cells. The interaction among PEX5, β-catenin, Rac1, and JNK-2 was confirmed by coimmunoprecipitation. A xenograft tumor model was established to validate the effects of miR-31-5p and PEX5 on HCC progression and radiosensitivity in vivo. Results: Low expression of miR-31-5p in HCC specimens, as observed in this study, predicted a poor clinical outcome. However, the expression pattern of PEX5, as a direct target of miR-31-5p, was opposite that of miR-31-5p, and high PEX5 expression indicated poor prognosis in HCC patients. Ectopic expression of PEX5 increased the proliferation, migration, and invasion abilities and enhanced the radioresistance of HCC cells in vitro and in vivo; however, these phenotypes were inhibited by miR-31-5p. Mechanistically, PEX5 stabilized cytoplasmic β-catenin and facilitated β-catenin nuclear translocation to activate Wnt/β-catenin signaling. Moreover, upon radiation exposure, PEX5 reduced excessive reactive oxygen species (ROS) accumulation and activated the homologous recombination (HR) pathway, which protected HCC cells from radiation-induced damage. Conclusions: Our findings demonstrated a novel role for PEX5 as a miR-31-5p target and a mediator of the Wnt/β-catenin signaling and HR pathways, providing new insights into studying HCC radiation responses and implicating PEX5 and miR-31-5p as potential therapeutic targets in HCC.
Collapse
|
23
|
Lansing H, Doering L, Fischer K, Baune MC, Schaewen AV. Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:823-836. [PMID: 31641750 DOI: 10.1093/jxb/erz473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.
Collapse
Affiliation(s)
- Hannes Lansing
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Lennart Doering
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Kerstin Fischer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Marie-Christin Baune
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Antje Von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| |
Collapse
|
24
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
25
|
Falter C, Thu NBA, Pokhrel S, Reumann S. New guidelines for fluorophore application in peroxisome targeting analyses in transient plant expression systems. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:884-899. [PMID: 30791204 DOI: 10.1111/jipb.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Peroxisome research has been revolutionized by proteome studies combined with in vivo subcellular targeting analyses. Yellow and cyan fluorescent protein (YFP and CFP) are the classical fluorophores of plant peroxisome research. In the new transient expression system of Arabidopsis seedlings co-cultivated with Agrobacterium we detected the YFP fusion of one candidate protein in peroxisomes, but only upon co-transformation with the peroxisome marker, CFP-PTS1. The data suggested that the YFP fusion was directed to peroxisomes due to its weak heterodimerization ability with CFP-PTS1, allowing piggy-back import into peroxisomes. Indeed, if co-expressed with monomeric Cerulean-PTS1 (mCer-PTS1), the YFP fusion was no longer matrix localized. We systematically investigated the occurrence and extent of dimerization-based piggy-back import for different fluorophore combinations in five major transient plant expression systems. In Arabidopsis seedlings and tobacco leaves both untagged YFP and monomeric Venus were imported into peroxisomes if co-expressed with CFP-PTS1 but not with mCer-PTS1. By contrast, piggy-back import of cytosolic proteins was not observed in Arabidopsis and tobacco protoplasts or in onion epidermal cells for any fluorophore combination at any time point. Based on these important results we formulate new guidelines for fluorophore usage and experimental design to guarantee reliable identification of novel plant peroxisomal proteins.
Collapse
Affiliation(s)
- Christian Falter
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Nguyen Binh Anh Thu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Saugat Pokhrel
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
26
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
27
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
28
|
Pan R, Reumann S, Lisik P, Tietz S, Olsen LJ, Hu J. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1028-1050. [PMID: 29877633 DOI: 10.1111/jipb.12670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosynthesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry (MS)-based proteomics has been performed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of peroxisomes from Arabidopsis leaves given a 48-h dark treatment. Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identified a total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the full function of plant peroxisomes.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sigrun Reumann
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
- Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, D-22609 Hamburg, Germany
| | - Piotr Lisik
- Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway
| | - Stefanie Tietz
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Laura J Olsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38:BSR20171492. [PMID: 30201689 PMCID: PMC6167499 DOI: 10.1042/bsr20171492] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that result from aerobic metabolism. The common forms are the superoxide anion (O2∙-) and hydrogen peroxide (H2O2) and their derived forms, hydroxyl radical (HO∙) and hydroperoxyl radical (HOO∙). Their production sites in mitochondria are reviewed. Even though being highly toxic products, ROS seem important in transducing information from dysfunctional mitochondria. Evidences of signal transduction mediated by ROS in mitochondrial deficiency contexts are then presented in different organisms such as yeast, mammals or photosynthetic organisms.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| |
Collapse
|
30
|
Mix AK, Cenci U, Heimerl T, Marter P, Wirkner ML, Moog D. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates". Genome Biol Evol 2018; 10:2834-2852. [PMID: 30247558 PMCID: PMC6203080 DOI: 10.1093/gbe/evy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (β-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called “chromalveolates”) for the presence of genes encoding peroxins—factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only “chromalveolate” group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in “chromalveolates”are highlighted.
Collapse
Affiliation(s)
- Ann-Kathrin Mix
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Germany
| | - Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | | | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| |
Collapse
|
31
|
Ebeed HT, Stevenson SR, Cuming AC, Baker A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4971-4985. [PMID: 30032264 PMCID: PMC6137984 DOI: 10.1093/jxb/ery266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/09/2018] [Indexed: 05/06/2023]
Abstract
Plant peroxisomes are important components of cellular antioxidant networks, dealing with ROS generated by multiple metabolic pathways. Peroxisomes respond to environmental and cellular conditions by changing their size, number, and proteomic content. To investigate the role of peroxisomes in response to drought, dehydration and ABA treatment we took an evolutionary and comparative genomics approach. Colonisation of land required evolution of dehydration tolerance in the absence of subsequent anatomical adaptations. Therefore, the model bryophyte Physcomitrella patens, the model dicot Arabidopsis thaliana and wheat (Tricitcum aestivum), a globally important cereal crop were compared. Three sets of genes namely 'PTS1 genes' (a proxy for genes encoding peroxisome targeted proteins), PEX genes (involved in peroxisome biogenesis) and genes involved in plant antioxidant networks were identified in all 3 species and their expression compared under drought (dehydration) and ABA treatment. Genes encoding enzymes of β-oxidation and gluconeogenesis, antioxidant enzymes including catalase and glutathione reductase and PEX3 and PEX11 isoforms showed conserved up-regulation, and peroxisome proliferation was induced by ABA in moss. Interestingly, expression of some of these genes differed between drought sensitive and resistant genotypes of wheat in line with measured photosynthetic and biochemical differences. These results point to an underappreciated role for peroxisomes in drought response.
Collapse
Affiliation(s)
- Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Sean R Stevenson
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlmann J, Noel JP, Dudareva N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. NATURE PLANTS 2018; 4:721-729. [PMID: 30127411 DOI: 10.1038/s41477-018-0220-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Plant genomes encode isopentenyl phosphate kinases (IPKs) that reactivate isopentenyl phosphate (IP) via ATP-dependent phosphorylation, forming the primary metabolite isopentenyl diphosphate (IPP) used generally for isoprenoid/terpenoid biosynthesis. Therefore, the existence of IPKs in plants raises unanswered questions concerning the origin and regulatory roles of IP in plant terpenoid metabolism. Here, we provide genetic and biochemical evidence showing that IP forms during specific dephosphorylation of IPP catalysed by a subset of Nudix superfamily hydrolases. Increasing metabolically available IP by overexpression of a bacterial phosphomevalonate decarboxylase (MPD) in Nicotiana tabacum resulted in significant enhancement in both monoterpene and sesquiterpene production. These results indicate that perturbing IP metabolism results in measurable changes in terpene products derived from both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways. Moreover, the unpredicted peroxisomal localization of bacterial MPD led us to discover that the step catalysed by phosphomevalonate kinase (PMK) imposes a hidden constraint on flux through the classical MVA pathway. These complementary findings fundamentally alter conventional views of metabolic regulation of terpenoid metabolism in plants and provide new metabolic engineering targets for the production of high-value terpenes in plants.
Collapse
Affiliation(s)
- Laura K Henry
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Suzanne T Thomas
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Thomas C Davis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Sharon A Kessler
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Joseph P Noel
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
33
|
Carqueijeiro I, Dugé de Bernonville T, Lanoue A, Dang TT, Teijaro CN, Paetz C, Billet K, Mosquera A, Oudin A, Besseau S, Papon N, Glévarec G, Atehortùa L, Clastre M, Giglioli-Guivarc'h N, Schneider B, St-Pierre B, Andrade RB, O'Connor SE, Courdavault V. A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:469-484. [PMID: 29438577 DOI: 10.1111/tpj.13868] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Arnaud Lanoue
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Thu-Thuy Dang
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Christiana N Teijaro
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Christian Paetz
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Kevin Billet
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Angela Mosquera
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Audrey Oudin
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Sébastien Besseau
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Nicolas Papon
- EA3142 'Groupe d'Etude des Interactions Hôte-Pathogène', Université d'Angers, Angers, France
| | - Gaëlle Glévarec
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Lucía Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, Medellin, Colombia
| | - Marc Clastre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | | | - Bernd Schneider
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Benoit St-Pierre
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, UK
| | - Vincent Courdavault
- EA2106 'Biomolécules et Biotechnologies Végétales', Université de Tours, Tours, France
| |
Collapse
|
34
|
Abstract
Our knowledge of the proteome of plant peroxisomes is far from being complete, and the functional complexity and plasticity of this cell organelle are amazingly high particularly in plants, as exemplified by the model species Arabidopsis thaliana. Plant-specific peroxisome functions that have been uncovered only recently include, for instance, the participation of peroxisomes in phylloquinone and biotin biosynthesis. Experimental proteome studies have been proved very successful in defining the proteome of Arabidopsis peroxisomes but this approach also faces significant challenges and limitations. Complementary to experimental approaches, computational methods have emerged as important powerful tools to define the proteome of soluble matrix proteins of plant peroxisomes. Compared to other cell organelles such as mitochondria, plastids and the ER, the simultaneous operation of two major import pathways for soluble proteins in peroxisomes is rather atypical. Novel machine learning prediction approaches have been developed for peroxisome targeting signals type 1 (PTS1) and revealed high sensitivity and specificity, as validated by in vivo subcellular targeting analyses in diverse transient plant expression systems. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In contrast, the prediction of PTS2 proteins largely remains restricted to genome searches by conserved patterns contrary to more advanced machine learning methods. Here, we summarize and discuss the capabilities and accuracies of available prediction algorithms for PTS1 and PTS2 carrying proteins.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Gopal Chowdhary
- KIIT School of Biotechnology, Campus XI, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
35
|
Kunze M. Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals. Subcell Biochem 2018; 89:157-199. [PMID: 30378023 DOI: 10.1007/978-981-13-2233-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peroxisomes harbor a plethora of proteins, but the peroxisomal proteome as the entirety of all peroxisomal proteins is still unknown for mammalian species. Computational algorithms can be used to predict the subcellular localization of proteins based on their amino acid sequence and this method has been amply used to forecast the intracellular fate of individual proteins. However, when applying such algorithms systematically to all proteins of an organism the prediction of its peroxisomal proteome in silico should be possible. Therefore, a reliable detection of peroxisomal targeting signals (PTS ) acting as postal codes for the intracellular distribution of the encoding protein is crucial. Peroxisomal proteins can utilize different routes to reach their destination depending on the type of PTS. Accordingly, independent prediction algorithms have been developed for each type of PTS, but only those for type-1 motifs (PTS1) have so far reached a satisfying predictive performance. This is partially due to the low number of peroxisomal proteins limiting the power of statistical analyses and partially due to specific properties of peroxisomal protein import, which render functional PTS motifs inactive in specific contexts. Moreover, the prediction of the peroxisomal proteome is limited by the high number of proteins encoded in mammalian genomes, which causes numerous false positive predictions even when using reliable algorithms and buries the few yet unidentified peroxisomal proteins. Thus, the application of prediction algorithms to identify all peroxisomal proteins is currently ineffective as stand-alone method, but can display its full potential when combined with other methods.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:110-128. [PMID: 28742939 PMCID: PMC5605450 DOI: 10.1111/tpj.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 05/29/2023]
Abstract
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bonnie Bartel
- Corresponding author: Bonnie Bartel, Department of Biosciences, MS-140, Rice University, 6100 Main St., Houston TX, USA. Phone: 713-348-5602, Fax: 713-348-5154;
| |
Collapse
|
37
|
Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J Genet Genomics 2017; 44:395-404. [PMID: 28869112 DOI: 10.1016/j.jgg.2017.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity.
Collapse
|
38
|
An C, Gao Y, Li J, Liu X, Gao F, Gao H. Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis. PLANT CELL REPORTS 2017; 36:1027-1036. [PMID: 28352967 DOI: 10.1007/s00299-017-2131-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
A systematic analysis of the Arabidopsis genome in combination with localization experiments indicates that alternative splicing affects the peroxisomal targeting sequence of at least 71 genes in Arabidopsis. Peroxisomes are ubiquitous eukaryotic cellular organelles that play a key role in diverse metabolic functions. All peroxisome proteins are encoded by nuclear genes and target to peroxisomes mainly through two types of targeting signals: peroxisomal targeting signal type 1 (PTS1) and PTS2. Alternative splicing (AS) is a process occurring in all eukaryotes by which a single pre-mRNA can generate multiple mRNA variants, often encoding proteins with functional differences. However, the effects of AS on the PTS1 or PTS2 and the targeting of the protein were rarely studied, especially in plants. Here, we systematically analyzed the genome of Arabidopsis, and found that the C-terminal targeting sequence PTS1 of 66 genes and the N-terminal targeting sequence PTS2 of 5 genes are affected by AS. Experimental determination of the targeting of selected protein isoforms further demonstrated that AS at both the 5' and 3' region of a gene can affect the inclusion of PTS2 and PTS1, respectively. This work underscores the importance of AS on the global regulation of peroxisome protein targeting.
Collapse
Affiliation(s)
- Chuanjing An
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuefang Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinyu Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fuli Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbo Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
39
|
Wang J, Wang Y, Gao C, Jiang L, Guo D. PPero, a Computational Model for Plant PTS1 Type Peroxisomal Protein Prediction. PLoS One 2017; 12:e0168912. [PMID: 28045983 PMCID: PMC5207514 DOI: 10.1371/journal.pone.0168912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022] Open
Abstract
Well-defined motifs often make it easy to investigate protein function and localization. In plants, peroxisomal proteins are guided to peroxisomes mainly by a conserved type 1 (PTS1) or type 2 (PTS2) targeting signal, and the PTS1 motif is commonly used for peroxisome targeting protein prediction. Currently computational prediction of peroxisome targeted PTS1-type proteins are mostly based on the 3 amino acids PTS1 motif and the adjacent sequence which is less than 14 amino acid residue in length. The potential contribution of the adjacent sequences beyond this short region has never been well investigated in plants. In this work, we develop a bi-profile Bayesian SVM method to extract and learn position-based amino acid features for both PTS1 motifs and their extended adjacent sequences in plants. Our proposed model outperformed other implementations with similar applications and achieved the highest accuracy of 93.6% and 92.6% for Arabidosis and other plant species respectively. A large scale analysis for Arabidopsis, Rice, Maize, Potato, Wheat, and Soybean proteome was conducted using the proposed model and a batch of candidate PTS1 proteins were predicted. The DNA segments corresponding to the C-terminal sequences of 9 selected candidates were cloned and transformed into Arabidopsis for experimental validation, and 5 of them demonstrated peroxisome targeting.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Sciences and State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yejun Wang
- Department of Medical Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Caiji Gao
- School of Life Sciences and State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Liwen Jiang
- School of Life Sciences and State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Dianjing Guo
- School of Life Sciences and State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|
41
|
Brikis CJ, Zarei A, Trobacher CP, DeEll JR, Akama K, Mullen RT, Bozzo GG, Shelp BJ. Ancient Plant Glyoxylate/Succinic Semialdehyde Reductases: GLYR1s Are Cytosolic, Whereas GLYR2s Are Localized to Both Mitochondria and Plastids. FRONTIERS IN PLANT SCIENCE 2017; 8:601. [PMID: 28484477 PMCID: PMC5399074 DOI: 10.3389/fpls.2017.00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2) are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh.), rice (Oryza sativa L.) and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L.) suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell.
Collapse
Affiliation(s)
| | - Adel Zarei
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | - Jennifer R. DeEll
- Ontario Ministry of Agriculture Food and Rural Affairs, SimcoeON, Canada
| | - Kazuhito Akama
- Department of Biological Science, Shimane UniversityMatsue, Japan
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
- *Correspondence: Barry J. Shelp,
| |
Collapse
|
42
|
Erdmann R. Assembly, maintenance and dynamics of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:787-9. [PMID: 26851075 DOI: 10.1016/j.bbamcr.2016.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxisomes are ubiquitous organelles of eukaryotic cells, and it is becoming increasingly clear that the biogenesis of these multi-purpose organelles is more complex than initially anticipated. Along this line, peroxisomes exhibit features, which clearly distinguish them from other cellular organelles, like their ability to import folded proteins or their capability to form de novo. However, further insight into the cellular life of peroxisomes also revealed features that they share with other organelles, such as organelle fission or regulated degradation by autophagy, that are similar for peroxisomes, mitochondria and chloroplasts. This special issue highlights recent progress in the understanding of the biogenesis of peroxisomes with emphasis on the assembly, maintenance and dynamics of the organelles. In particular, it focuses on the following areas: (i) topogenesis of peroxisomal matrix proteins as well as the structure and function of peroxisomal protein import machineries. (ii) Peroxisomal targeting of membrane proteins and de novo formation of peroxisomes. (iii) Maintenance of peroxisomes in health and disease. (iv) Proliferation and regulated degradation of peroxisomes. (v) Motility and inheritance of peroxisomes. (vi) Role of peroxisomes in the cellular context.
Collapse
Affiliation(s)
- Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany..
| |
Collapse
|