1
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Wen Y, Wang E, Wang X, Qing S, Chaogetu B, Wang C, Xu Z, Zhang Z, Huang Y. Copy number variations of LRRFIP1 gene and the relationship with growth traits in four Chinese sheep. Anim Biotechnol 2023; 34:3008-3015. [PMID: 36170043 DOI: 10.1080/10495398.2022.2126981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CNVs (copy number variations) are the novel and common structural variants that could cover entire genes found in plenty of species. CNV may influence economically important traits or disease susceptibility in livestock species. Based on the whole genome resequencing results, we found that there was a CNV region on the LRRFIP1 gene. Then we used qPCR to detect the copy number type distribution in 553 individuals of four sheep breeds and used them for association analysis. The results showed that: (1) In the CKS, the sheep with gain type had a larger heart girth (p = 0.049). (2) For the HS, the CNV could significantly affect rump breadth (p = 0.037) and circumference of the cannon (p = 0.035). And the sheep with median type showed better performance in rump breadth and circumference of cannon. (3) At the STHS, the CNV was significantly correlated with chest width (p = 0.000) with loss type as the most favorable CNV type. Meanwhile, the best was the loss type, and the lowest was the median. (4) This CNV had no significant effect on the LTHS. So, the CNV of LRRFIP1 was related to the growth traits of these three sheep breeds and it may be used as a molecular marker for sheep.
Collapse
Affiliation(s)
- Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Si Qing
- Quality and Safety Inspection and Testing Center for Agricultural and Livestock Products of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Buren Chaogetu
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Chenglin Wang
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Boudreault S, Martineau CA, Faucher-Giguère L, Abou-Elela S, Lemay G, Bisaillon M. Reovirus μ2 Protein Impairs Translation to Reduce U5 snRNP Protein Levels. Int J Mol Sci 2022; 24:ijms24010727. [PMID: 36614170 PMCID: PMC9821451 DOI: 10.3390/ijms24010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection. In the present study, we investigated the mechanism by which μ2 exerts this effect on the U5 components. Our results revealed that μ2 has no impact on steady-state mRNA levels, RNA export, and protein stability of these U5 snRNP proteins. However, polysome profiling and metabolic labeling of newly synthesized proteins revealed that μ2 exerts an inhibitory effect on global translation. Moreover, we showed that μ2 mutants unable to accumulate in the nucleus retain most of the ability to reduce PRPF8 protein levels, indicating that the effect of μ2 on U5 snRNP components mainly occurs in the cytoplasm. Finally, co-expression experiments demonstrated that μ2 suppresses the expression of U5 snRNP proteins in a dose-dependent manner, and that the expression of specific U5 snRNP core components have different sensitivities to μ2's presence. Altogether, these results suggest a novel mechanism by which the μ2 protein reduces the levels of U5 core components through translation inhibition, allowing this viral protein to alter cellular AS during infection.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laurence Faucher-Giguère
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou-Elela
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Martin Bisaillon
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 75904)
| |
Collapse
|
4
|
Lee J, Pang K, Kim J, Hong E, Lee J, Cho HJ, Park J, Son M, Park S, Lee M, Ooshima A, Park KS, Yang HK, Yang KM, Kim SJ. ESRP1-regulated isoform switching of LRRFIP2 determines metastasis of gastric cancer. Nat Commun 2022; 13:6274. [PMID: 36307405 PMCID: PMC9616898 DOI: 10.1038/s41467-022-33786-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1. Surprisingly, ectopic expression of the mesenchymal isoform of LRRFIP2 (variant 3) dramatically increased liver metastasis of gastric cancer cells, whereas deletion of exon 7 of LRRFIP2 by the CRISPR/Cas9 system caused an isoform switch, leading to marked suppression of liver metastasis. Mechanistically, the epithelial LRRFIP2 isoform (variant 2) inhibited the oncogenic function of coactivator-associated arginine methyltransferase 1 (CARM1) through interaction. Taken together, our data reveals a mechanism of LRRFIP2 isoform switches in gastric cancer with important implication for cancer metastasis.
Collapse
Affiliation(s)
- Jihee Lee
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | | | - Junil Kim
- grid.263765.30000 0004 0533 3568School of Systems Biomedical Science, Soongsil University, Seoul, 06978 Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Jeeyun Lee
- grid.264381.a0000 0001 2181 989XDivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351 Korea
| | - Hee Jin Cho
- grid.258803.40000 0001 0661 1556Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 Korea ,grid.414964.a0000 0001 0640 5613Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06531 Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Sihyun Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | | | | | - Kyung-Soon Park
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | - Han-Kwang Yang
- grid.412484.f0000 0001 0302 820XDepartment of Surgery, Seoul National University Hospital, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, 03080 Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,Medpacto Inc., Seoul, 06668 Korea
| |
Collapse
|
5
|
Ma W, Bao Z, Qian Z, Zhang K, Fan W, Xu J, Ren C, Zhang Y, Jiang T. LRRFIP1, an epigenetically regulated gene, is a prognostic biomarker and predicts malignant phenotypes of glioma. CNS Neurosci Ther 2022; 28:873-883. [PMID: 35338570 PMCID: PMC9062568 DOI: 10.1111/cns.13817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/27/2022] Open
Abstract
Aims Glioblastoma (GBM) is the most common malignant brain tumor with an adverse prognosis in the central nervous system. Traditional histopathological diagnosis accompanied by subjective deviations cannot accurately reflect tumor characteristics for clinical guidance. DNA methylation plays a critical role in GBM genesis. The focus of this project was to identify an effective methylation point for the classification of gliomas, the interactions between DNA methylation and potential epigenetic targeted therapies for clinical treatments. Methods Three online (TCGA, CGGA, and REMBRANDT) databases were employed in this study. T‐test, Venn analysis, univariate cox analysis, and Pearson's correlation analysis were adopted to screen significant prognostic methylation genes. Clinical samples were collected to determine the distributions of LRRFIP1 (Leucine Rich Repeat of Flightless‐1 Interacting Protein) protein by immunohistochemistry assay. Kaplan–Meier survival and Cox analysis were adopted to evaluate the prognostic value of LRRFIP1. Nomogram model was used to construct a prediction model. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway were performed to explore functions and related mechanisms of LRRFIP1 in gliomas. Results Our results showed that 16 genes were negatively connected with their methylation level and correlated with clinical prognosis of GBM patients. Among them, LRRFIP1 expression showed the highest correlation with its methylation level. LRRFIP1 was highly expressed in WHO IV, mesenchymal, and IDH wild‐type subtype. LRRFIP1 expression was an independent risk factor for OS (overall survival) in gliomas. Conclusion LRRFIP1 is an epigenetically regulated gene and a potential prognostic biomarker for glioma. Our research may be beneficial to evaluate clinical efficacy, assess the prognosis, and provide individualized treatment for gliomas.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zhaoshi Bao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zenghui Qian
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wenhua Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Jianbao Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changyuan Ren
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
6
|
Boudreault S, Durand M, Martineau CA, Perreault JP, Lemay G, Bisaillon M. Reovirus μ2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Res 2022; 50:5263-5281. [PMID: 35489070 PMCID: PMC9122528 DOI: 10.1093/nar/gkac272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV’s ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS. Using a combination of cell biology and reverse genetics experiments, we demonstrated that the M1 gene segment, encoding the μ2 protein, is the primary determinant of MRV’s ability to alter AS, and that the amino acid at position 208 in μ2 is critical to induce these changes. Moreover, we showed that the expression of μ2 by itself is sufficient to trigger AS changes, and its ability to enter the nucleus is not required for all these changes. Moreover, we identified core components of the U5 snRNP (i.e. EFTUD2, PRPF8, and SNRNP200) as interactors of μ2 that are required for MRV modulation of AS. Finally, these U5 snRNP components are reduced at the protein level by both MRV infection and μ2 expression. Our findings identify the reduction of U5 snRNP components levels as a new mechanism by which viruses alter cellular AS.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Durand
- Plateforme de RNomique, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Martin Bisaillon
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
7
|
Dhande IS, Kneedler SC, Zhu Y, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes Immun 2020; 21:182-192. [PMID: 32300198 PMCID: PMC7274944 DOI: 10.1038/s41435-020-0097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Similar to humans, the risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study, we show the involvement of genetic variation affecting the store-operated calcium signaling gene, Stim1, in the pathogenesis of stroke in SHR. Stim1 is a key lymphocyte activation signaling molecule and contains functional variation in SHR-A3 that diverges from stroke-resistant SHR-B2. We created a SHR-A3 congenic line in which Stim1 was substituted with the corresponding genomic segment from SHR-B2. Compared with SHR-A3 rats, Stim1 congenic SHR-A3 (SHR-A3(Stim1-B2)) have reduced cerebrovascular disease in response to salt loading including lower neurological deficit scores and cerebral edema. Microbleeds and major hemorrhages occurred in over half of SHR-A3 rats. These lesions were absent in SHR-A3(Stim1-B2) rats. Loss of Stim1 function in mice and humans is associated with antibody-mediated autoimmunity due to defects in T lymphocyte helper function to B cells. We investigated autoantibody formation using a high-density protein array to detect the presence of IgG and IgM autoantibodies in SHR-A3. Autoantibodies to key cerebrovascular stress proteins were detected that were reduced in the congenic line.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sterling C Kneedler
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaming Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aniket S Joshi
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Scott E Wenderfer
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells. Infect Immun 2019; 87:IAI.00537-19. [PMID: 31405957 PMCID: PMC6803327 DOI: 10.1128/iai.00537-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia trachomatis, grow within a membrane-bound bacterium-containing vacuole (BCV). Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia trachomatis, grow within a membrane-bound bacterium-containing vacuole (BCV). Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. We used the ascorbate peroxidase (APEX2) proximity labeling system, which labels proximal proteins with biotin in vivo, to study the protein-protein interactions that occur at the chlamydial vacuolar, or inclusion, membrane. An in vivo understanding of the secreted chlamydial inclusion membrane protein (Inc) interactions (e.g., Inc-Inc and Inc-eukaryotic protein) and how these contribute to overall host-chlamydia interactions at this unique membrane is lacking. We hypothesize some Incs organize the inclusion membrane, whereas other Incs bind eukaryotic proteins to promote chlamydia-host interactions. To study this, Incs fused to APEX2 were expressed in C. trachomatis L2. Affinity purification-mass spectrometry (AP-MS) identified biotinylated proteins, which were analyzed for statistical significance using significance analysis of the interactome (SAINT). Broadly supporting both Inc-Inc and Inc-host interactions, our Inc-APEX2 constructs labeled Incs as well as known and previously unreported eukaryotic proteins localizing to the inclusion. We demonstrate, using bacterial two-hybrid and coimmunoprecipitation assays, that endogenous LRRFIP1 (LRRF1) is recruited to the inclusion by the Inc CT226. We further demonstrate interactions between CT226 and the Incs used in our study to reveal a model for inclusion membrane organization. Combined, our data highlight the utility of APEX2 to capture the complex in vivo protein-protein interactions at the chlamydial inclusion.
Collapse
|
9
|
Dhande IS, Kneedler SC, Joshi AS, Zhu Y, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Germ-line genetic variation in the immunoglobulin heavy chain creates stroke susceptibility in the spontaneously hypertensive rat. Physiol Genomics 2019; 51:578-585. [PMID: 31608789 DOI: 10.1152/physiolgenomics.00054.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study we show the involvement of SHR genetic variation that affects antibody formation and function in the pathogenesis of stroke. We have tested the involvement in susceptibility to stroke of genetic variation in IgH, the gene encoding the immunoglobulin heavy chain by congenic substitution. This gene contains functional natural variation in SHR-A3 that diverges from stroke-resistant SHR-B2. We created a SHR-A3 congenic line in which the IgH gene was substituted with the corresponding haplotype from SHR-B2. Compared with SHR-A3 rats, congenic substitution of the IgH locus [SHR-A3(IgH-B2)] markedly reduced cerebrovascular disease. Given the role in antibody formation of the IgH gene, we investigated the presence of IgG and IgM autoantibodies and their targets using a high-density protein array containing ~20,000 recombinant proteins. High titers of autoantibodies to key cerebrovascular stress proteins were detected, including FABP4, HSP70, and Wnt signaling proteins. Serum levels of these autoantibodies were reduced in the SHR-A3(IgH-B2) congenic line.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sterling C Kneedler
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Aniket S Joshi
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yaming Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston
| | - Scott E Wenderfer
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Michael C Braun
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|
11
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
12
|
Kopecki Z, Stevens NE, Yang GN, Melville E, Cowin AJ. Recombinant Leucine-Rich Repeat Flightless-Interacting Protein-1 Improves Healing of Acute Wounds through Its Effects on Proliferation Inflammation and Collagen Deposition. Int J Mol Sci 2018; 19:ijms19072014. [PMID: 29996558 PMCID: PMC6073877 DOI: 10.3390/ijms19072014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Wound healing is an increasing clinical problem involving substantial morbidity, mortality, and rising health care costs. Leucine-rich repeat flightless-interacting protein-1 (LRRFIP-1) regulates toll-like receptor (TLR)-mediated inflammation, suggesting a potential role in the healing of wounds. We sought to determine the role of LRRFIP-1 in wound repair and whether the exogenous addition of recombinant LRRFIP-1 (rLRRFIP-1) affected healing responses. Using a model of full-thickness incisional acute wounds in BALB/c mice, we investigated the effect of wounding on LRRFIP-1 expression. The effect of rLRRFIP-1 on cellular proliferation, inflammation, and collagen deposition was also investigated. LRRFIP-1 was upregulated in response to wounding, was found to directly associate with flightless I (Flii), and significantly increased cellular proliferation both in vitro and in vivo. rLRRFIP-1 reduced Flii expression in wounds in vivo and resulted in significantly improved healing with a concurrent dampening of TLR4-mediated inflammation and improved collagen deposition. Additionally, decreased levels of TGF-β1 and increased levels of TGF-β3 were observed in rLRRFIP-1-treated wounds suggesting a possible antiscarring effect of rLRRFIP-1. Further studies are required to elucidate if the mechanisms behind LRRFIP-1 action in wound repair are independent of Flii. However, these results identify rLRRFIP-1 as a possible treatment modality for improved healing of acute wounds.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Natalie E Stevens
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Gink N Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide SA 5095, Australia.
| |
Collapse
|
13
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|