1
|
Das A, Giri S, Dey P. Cell-cell junctional proteins in cancer. Adv Clin Chem 2024; 125:93-142. [PMID: 39988409 DOI: 10.1016/bs.acc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Aparajita Das
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| | - Pubali Dey
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Chen Z, Zhu M, Liu D, Wu M, Niu P, Yu Y, Ding C, Yu S. Occludin and collagen IV degradation mediated by the T9SS effector SspA contributes to blood-brain barrier damage in ducks during Riemerella anatipestifer infection. Vet Res 2024; 55:49. [PMID: 38594770 PMCID: PMC11005161 DOI: 10.1186/s13567-024-01304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.
Collapse
Affiliation(s)
- Zongchao Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Min Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Dan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Mengsi Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Pengfei Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Yang Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China.
| | - Shengqing Yu
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China.
- Yangzhou You-Jia-Chuang Biotechnology Co., Ltd., Yangzhou, China.
| |
Collapse
|
3
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Alluri H, Peddaboina CS, Tharakan B. Evaluation of Tight Junction Integrity in Brain Endothelial Cells Using Confocal Microscopy. Methods Mol Biol 2024; 2711:257-262. [PMID: 37776464 PMCID: PMC12034389 DOI: 10.1007/978-1-0716-3429-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood-brain barrier (BBB) is a highly complex and dynamic microvascular barrier that protects the brain parenchyma from the entry of pathogens, toxins, and other macromolecules and is a critical structure that helps to maintain brain homeostasis. The BBB is formed mainly by brain capillary endothelial cells and perivascular astrocytes and pericytes. One of the primary properties of the BBB is a tight regulation of paracellular permeability due to the presence of tight junctional complexes (also, adherens and gap junctions) between the neighboring microvascular endothelial cells. Alterations in the assembly of the tight junctions impair BBB properties, particularly influenced barrier integrity and permeability. The tight junctions of the BBB are mainly composed of proteins including claudins, occludin, and zonula occludens-1 (ZO-1). Zonula occludens-1 binds to the actin cytoskeleton, and its localization provides valuable information on the status of BBB integrity and permeability. Immunofluorescence localization of ZO-1 and/or other tight junction proteins is a reliable indicator of barrier integrity and permeability in microvascular endothelial cells. In microvascular endothelial cells, f-actin stress fiber formation significantly influences the rate and size of the inter-endothelial cell gap that form as cells retract from their borders. Rhodamine phalloidin is a popular conjugate used as a fluorescent label for f-actin. Herein, we describe the procedures for ZO-1 immunofluorescence and f-actin labeling followed by confocal microscopic imaging to determine barrier integrity and tight junction organization in brain microvascular endothelial cells in vitro.
Collapse
Affiliation(s)
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Szabó K, Bolla BS, Erdei L, Balogh F, Kemény L. Are the Cutaneous Microbiota a Guardian of the Skin's Physical Barrier? The Intricate Relationship between Skin Microbes and Barrier Integrity. Int J Mol Sci 2023; 24:15962. [PMID: 37958945 PMCID: PMC10647730 DOI: 10.3390/ijms242115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The skin is a tightly regulated, balanced interface that maintains our integrity through a complex barrier comprising physical or mechanical, chemical, microbiological, and immunological components. The skin's microbiota affect various properties, one of which is the establishment and maintenance of the physical barrier. This is achieved by influencing multiple processes, including keratinocyte differentiation, stratum corneum formation, and regulation of intercellular contacts. In this review, we summarize the potential contribution of Cutibacterium acnes to these events and outline the contribution of bacterially induced barrier defects to the pathogenesis of acne vulgaris. With the combined effects of a Westernized lifestyle, microbial dysbiosis, epithelial barrier defects, and inflammation, the development of acne is very similar to that of several other multifactorial diseases of barrier organs (e.g., inflammatory bowel disease, celiac disease, asthma, atopic dermatitis, and chronic rhinosinusitis). Therefore, the management of acne requires a complex approach, which should be taken into account when designing novel treatments that address not only the inflammatory and microbial components but also the maintenance and strengthening of the cutaneous physical barrier.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Lilla Erdei
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (B.S.B.)
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| |
Collapse
|
6
|
Nakashima M, Goda N, Tenno T, Kotake A, Inotsume Y, Amaya M, Hiroaki H. Pharmacologic Comparison of High-Dose Hesperetin and Quercetin on MDCK II Cell Viability, Tight Junction Integrity, and Cell Shape. Antioxidants (Basel) 2023; 12:antiox12040952. [PMID: 37107328 PMCID: PMC10135814 DOI: 10.3390/antiox12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The modulation of tight junction (TJ) integrity with small molecules is important for drug delivery. High-dose baicalin (BLI), baicalein (BLE), quercetin (QUE), and hesperetin (HST) have been shown to open TJs in Madin-Darby canine kidney (MDCK) II cells, but the mechanisms for HST and QUE remain unclear. In this study, we compared the effects of HST and QUE on cell proliferation, morphological changes, and TJ integrity. HST and QUE were found to have opposing effects on the MDCK II cell viability, promotion, and suppression, respectively. Only QUE, but not HST, induced a morphological change in MDCK II into a slenderer cell shape. Both HST and QUE downregulated the subcellular localization of claudin (CLD)-2. However, only QUE, but not HST, downregulated CLD-2 expression. Conversely, only HST was shown to directly bind to the first PDZ domain of ZO-1, a key molecule to promote TJ biogenesis. The TGFβ pathway partially contributed to the HST-induced cell proliferation, since SB431541 ameliorated the effect. In contrast, the MEK pathway was not involved by both the flavonoids, since U0126 did not revert their TJ-opening effect. The results offer insight for using HST or QUE as naturally occurring absorption enhancers through the paracellular route.
Collapse
Affiliation(s)
- Mio Nakashima
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Minako Amaya
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Yanagito, Gifu 501-1112, Gifu, Japan
| |
Collapse
|
7
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
8
|
Lu H, Ashiqueali R, Lin CI, Walchale A, Clendaniel V, Matheson R, Fisher M, Lo EH, Selim M, Shehadah A. Histone Deacetylase 3 Inhibition Decreases Cerebral Edema and Protects the Blood–Brain Barrier After Stroke. Mol Neurobiol 2022; 60:235-246. [DOI: 10.1007/s12035-022-03083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
AbstractWe have previously shown that selective inhibition of histone deacetylase 3 (HDAC3) decreases infarct volume and improves long-term functional outcomes after stroke. In this study, we examined the effects of HDAC3 inhibition on cerebral edema and blood–brain barrier (BBB) leakage and explored its underlying mechanisms. Adult male Wistar rats were subjected to 2-h middle cerebral artery occlusion (MCAO) and randomly treated i.p. with either vehicle or a selective HDAC3 inhibitor (RGFP966) at 2 and 24 h after stroke. Modified neurological severity scores (mNSS) were calculated at 2 h, 1 day, and 3 days. H&E, Evans blue dye (EBD) assay, and fluorescein isothiocyanate (FITC)-dextran were employed to assess cerebral edema and BBB leakage. Western blot for matrix metalloproteinase-9 (MMP9), MMP-9 zymography, and immunostaining for HDAC3, GFAP, Iba-1, albumin, aquaporin-4, claudin-5, ZO-1, and NF-kB were performed. Early RGFP966 administration decreased cerebral edema (p = 0.002) and BBB leakage, as measured by EBD assay, FITC-dextran, and albumin extravasation (p < 0.01). RGFP966 significantly increased tight junction proteins (claudin-5 and ZO-1) in the peri-infarct area. RGFP966 also significantly decreased HDAC3 in GFAP + astrocytes, which correlated with better mNSS (r = 0.67, p = 0.03) and decreased cerebral edema (r = 0.64, p = 0.04). RGFP966 decreased aquaporin-4 in GFAP + astrocytes (p = 0.002), as well as, the inflammatory markers Iba-1, NF-kB, and MMP9 in the ischemic brain (p < 0.05). Early HDAC3 inhibition decreases cerebral edema and BBB leakage. BBB protection by RGFP966 is mediated in part by the upregulation of tight junction proteins, downregulation of aquaporin-4 and HDAC3 in astrocytes, and decreased neuroinflammation.
Collapse
|
9
|
Halasi M, Grinstein M, Adini A, Adini I. Fibromodulin Ablation Exacerbates the Severity of Acute Colitis. J Inflamm Res 2022; 15:4515-4526. [PMID: 35966006 PMCID: PMC9374093 DOI: 10.2147/jir.s366290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Epidemiological studies have associated pigment production with protection against certain human diseases. In contrast to African Americans, European descendants are more likely to suffer from angiogenesis-dependent and inflammatory diseases, such as wet age-related macular degeneration (ARMD) and ulcerative colitis (UC), respectively. Methods In a mouse model of dextran sulfate sodium (DSS)-induced acute colitis, the effect of fibromodulin (FMOD) depletion was examined on colitis severity. Results In this study, albino mice that produce high levels of FMOD developed less severe acute colitis compared with mice lacking in FMOD as assessed by clinical symptoms and histopathological changes. FMOD depletion affected the expression of tight junction proteins, contributing to the destruction of the epithelial barrier. Furthermore, this study revealed a stronger inflammatory response after DSS treatment in the absence of FMOD, where FMOD depletion led to an increase in activated T cells, plasmacytoid dendritic cells (pDCs), and type I interferon (IFN) production. Discussion These findings point to FMOD as a potential biomarker of disease severity in UC among light-skinned individuals of European descent.
Collapse
Affiliation(s)
- Marianna Halasi
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mor Grinstein
- Department of Medicine, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avner Adini
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Irit Adini
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wakayama E, Kuzu T, Tachibana K, Hirayama R, Okada Y, Kondoh M. Modifying the blood-brain barrier by targeting claudin-5: Safety and risks. Ann N Y Acad Sci 2022; 1514:62-69. [PMID: 35508916 DOI: 10.1111/nyas.14787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier is a major obstacle to the delivery of drugs to the central nervous system. In the blood-brain barrier, the spaces between adjacent brain microvascular endothelial cells are sealed by multiprotein complexes known as tight junctions. Among the many components of the tight junction, claudin-5 has received the most attention as a target for loosening the tight-junction seal and allowing drugs to be delivered to the brain. In mice, transient knockdown of claudin-5 and the use of claudin-5 binders have been shown to enhance the permeation of small molecules from the blood into the brain without apparent adverse effects. However, sustained knockdown of claudin-5 in mice is lethal within 40 days, and administration of an anti-claudin-5 antibody induced convulsions in a nonhuman primate. Here, we review the safety concerns of claudin-5-targeted technologies with respect to their clinical application.
Collapse
Affiliation(s)
- Erika Wakayama
- Faculty of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taiki Kuzu
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 2022; 19:101. [PMID: 35488237 PMCID: PMC9051822 DOI: 10.1186/s12974-022-02464-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes cerebral dysfunction in the short and long term and induces disruption of the blood–brain barrier (BBB), neuroinflammation, hypoperfusion, and accumulation of amyloid β (Aβ) and tau protein in the brain. White matter changes and brain atrophy can be detected using brain imaging, but unfortunately, there is no specific treatment that directly addresses the underlying mechanisms of cognitive impairments in sepsis. Here, we review the underlying mechanisms of sepsis-associated brain injury, with a focus on BBB dysfunction and Aβ and tau protein accumulation in the brain. We also describe the neurological manifestations and imaging findings of sepsis-associated brain injury, and finally, we propose potential therapeutic strategies for acute and long-term cognitive impairments associated with sepsis. In the acute phase of sepsis, we suggest using antibiotics (such as rifampicin), targeting proinflammatory cytokines, and preventing ischemic injuries and hypoperfusion. In the late phase of sepsis, we suggest targeting neuroinflammation, BBB dysfunction, Aβ and tau protein phosphorylation, glycogen synthase kinase-3 beta (GSK3β), and the receptor for advanced glycation end products (RAGE). These proposed strategies are meant to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating acute and long-term cognitive impairments in patients with sepsis.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Medicine, Translational Therapeutics Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Magdy Selim
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Li KV, Flores-Bellver M, Aparicio-Domingo S, Petrash C, Cobb H, Chen C, Canto-Soler MV, Mathias MT. A Surgical Kit for Stem Cell-Derived Retinal Pigment Epithelium Transplants: Collection, Transportation, and Subretinal Delivery. Front Cell Dev Biol 2022; 10:813538. [PMID: 35252183 PMCID: PMC8895272 DOI: 10.3389/fcell.2022.813538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Transplantation of stem cell-derived retinal pigment epithelium (RPE) cells is a promising potential therapy for currently incurable retinal degenerative diseases like advanced dry age-related macular degeneration. In this study, we designed a set of clinically applicable devices for subretinal implantation of RPE grafts, towards the overarching goal of establishing enabling technologies for cell-based therapeutic approaches to regenerate RPE cells. This RPE transplant kit includes a custom-designed trephine for the production of RPE transplants, a carrier for storage and transportation, and a surgical device for subretinal delivery of RPE transplants. Cell viability assay confirmed biocompatibility of the transplant carrier and high preservation of RPE transplants upon storage and transportation. The transplant surgical device combines foldable technology that minimizes incision size, controlled delivery speed, no fluid reflux, curved translucent tip, usability of loading and in vivo reloading, and ergonomic handle. Furthermore, the complementary design of the transplant carrier and the delivery device resulted in proper grasping, loading, and orientation of the RPE transplants into the delivery device. Proof-of-concept transplantation studies in a porcine model demonstrated no damage or structural change in RPE transplants during surgical manipulation and subretinal deployment. Post-operative assessment confirmed that RPE transplants were delivered precisely, with no damage to the host retina or choroid, and no significant structural change to the RPE transplants. Our novel surgical kit provides a comprehensive set of tools encompassing RPE graft manufacturing to surgical implantation rendering key enabling technologies for pre-clinical and clinical phases of stem cell-derived RPE regenerative therapies.
Collapse
Affiliation(s)
- Kang V. Li
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Marc T. Mathias, ; M. Valeria Canto-Soler, ; Kang V. Li,
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carson Petrash
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Hannah Cobb
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Conan Chen
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - M. Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
- Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Marc T. Mathias, ; M. Valeria Canto-Soler, ; Kang V. Li,
| | - Marc T. Mathias
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Marc T. Mathias, ; M. Valeria Canto-Soler, ; Kang V. Li,
| |
Collapse
|
13
|
Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, Gee CC, Vecchio A, Dhawan P, Kievit FM. Claudin-1-Targeted Nanoparticles for Delivery to Aging-Induced Alterations in the Blood-Brain Barrier. ACS NANO 2021; 15:18520-18531. [PMID: 34748307 PMCID: PMC9079187 DOI: 10.1021/acsnano.1c08432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aging-induced alterations to the blood-brain barrier (BBB) are increasingly being seen as a primary event in chronic progressive neurological disorders that lead to cognitive decline. With the goal of increasing delivery into the brain in hopes of effectively treating these diseases, a large focus has been placed on developing BBB permeable materials. However, these strategies have suffered from a lack of specificity toward regions of disease progression. Here, we report on the development of a nanoparticle (C1C2-NP) that targets regions of increased claudin-1 expression that reduces BBB integrity. Using dynamic contrast enhanced magnetic resonance imaging, we find that C1C2-NP accumulation and retention is significantly increased in brains from 12 month-old mice as compared to nontargeted NPs and brains from 2 month-old mice. Furthermore, we find C1C2-NP accumulation in brain endothelial cells with high claudin-1 expression, suggesting target-specific binding of the NPs, which was validated through fluorescence imaging, in vitro testing, and biophysical analyses. Our results further suggest a role of claudin-1 in reducing BBB integrity during aging and show altered expression of claudin-1 can be actively targeted with NPs. These findings could help develop strategies for longitudinal monitoring of tight junction protein expression changes during aging as well as be used as a delivery strategy for site-specific delivery of therapeutics at these early stages of disease development.
Collapse
Affiliation(s)
- Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Aria W. Tarudji
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Alex Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, NE, 68588-0664, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5527, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68198-5527, USA
- Buffet Cancer Center, Omaha, NE, 68198-5527, USA
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| |
Collapse
|
14
|
Panwar S, Sharma S, Tripathi P. Role of Barrier Integrity and Dysfunctions in Maintaining the Healthy Gut and Their Health Outcomes. Front Physiol 2021; 12:715611. [PMID: 34630140 PMCID: PMC8497706 DOI: 10.3389/fphys.2021.715611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.
Collapse
Affiliation(s)
- Shruti Panwar
- Infection and Immunology, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
15
|
Tembusu Virus entering the central nervous system caused nonsuppurative encephalitis without disrupting the blood-brain barrier. J Virol 2021; 95:JVI.02191-20. [PMID: 33472933 PMCID: PMC8092698 DOI: 10.1128/jvi.02191-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tembusu Virus (TMUV) is an emerging and re-emerging zoonotic pathogen that adversely affects poultry industry in recent years. TMUV disease is characterized by nonsuppurative encephalitis in ducklings. The duckling infection model was established to study the mechanism of TMUV crossing the blood-brain barrier (BBB) into the central nervous system (CNS). Here, we showed that no obvious clinical symptoms and enhancement of BBB permeability occurred at the early stage of infection (3∼5 dpi). While simultaneously virus particles were observed by transmission electron microscopy in the brain, inducing the accumulation of inflammatory cytokines. Neurological symptoms and disruption of BBB appeared at the intermediate stage of infection (7∼9 dpi). It was confirmed that TMUV could survive and propagate in brain microvascular endothelial cells (BMECs), but did not affect the permeability of BBB in vivo and in vitro at an early date. In conclusion, TMUV enters the CNS then causes encephalitis, and finally destruct the BBB, which may be due to the direct effect of TMUV on BMECs and the subsequent response of "inflammatory storm".IMPORTANCE The TMUV disease has caused huge losses to the poultry industry in Asia, which is potentially harmful to public health. Neurological symptoms and their sequelae are the main characters of this disease. However, the mechanism of how this virus enters the brain and causes encephalitis is unclear. In this study, we confirmed that the virus entered the CNS and then massively destroyed BBB and the BBB damage was closely associated with the subsequent outbreak of inflammation. TMUV may enter the CNS through the transcellular and "Trojan horse" pathways. These findings can fill the knowledge gap in the pathogenesis of TMUV-infected poultry and be benefit for the treatment of TMUV disease. What's more, TMUV is a representative to study the infection of avian flavivirus. Therefore, our studies have significances both for understanding of the full scope of mechanisms of TMUV and other flavivirus infection, and conceivably, for therapeutics.
Collapse
|
16
|
Voigt RM, Raeisi S, Yang J, Leurgans S, Forsyth CB, Buchman AS, Bennett DA, Keshavarzian A. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer's disease. PLoS One 2021; 16:e0240342. [PMID: 33661922 PMCID: PMC7932071 DOI: 10.1371/journal.pone.0240342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
The inflammatory hypothesis posits that sustained neuroinflammation is sufficient to induce neurodegeneration and the development of Alzheimer's disease (AD) and Alzheimer's dementia. One potential source of inflammation is the intestine which harbors pro-inflammatory microorganisms capable of promoting neuroinflammation. Systemic inflammation is robustly associated with neuroinflammation as well as low levels of brain derived neurotrophic factor (BDNF) in the systemic circulation and brain. Thus, in this pilot study, we tested the hypothesis that intestinal barrier dysfunction precedes risk of death, incident AD dementia and MCI, cognitive impairment and neuropathology. Serum BDNF was associated with changes in global cognition, working memory, and perceptual speed but not risk of death, incident AD dementia, incident MCI, or neuropathology. Neither of the markers of intestinal barrier integrity examined, including lipopolysaccharide binding protein (LBP) nor intestinal fatty acid binding protein (IFABP), were associated with risk of death, incident AD dementia, incident mild cognitive impairment (MCI), change in cognition (global or domains), or neuropathology. Taken together, the data in this pilot study suggest that intestinal barrier dysfunction does not precede diagnosis of AD or MCI, changes in cognition, or brain pathology. However, since MCI and AD are related to global cognition, the findings with BDNF and the contiguous cognitive measures suggest low power with the trichotomous cognitive status measures. Future studies with larger sample sizes are necessary to further investigate the results from this pilot study.
Collapse
Affiliation(s)
- Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohreh Raeisi
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Sue Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics 2020; 12:pharmaceutics12121236. [PMID: 33352631 PMCID: PMC7767277 DOI: 10.3390/pharmaceutics12121236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.
Collapse
|
18
|
Hisada M, Hiranuma M, Nakashima M, Goda N, Tenno T, Hiroaki H. High dose of baicalin or baicalein can reduce tight junction integrity by partly targeting the first PDZ domain of zonula occludens-1 (ZO-1). Eur J Pharmacol 2020; 887:173436. [PMID: 32745606 DOI: 10.1016/j.ejphar.2020.173436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-β (TGF-β) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Collapse
Affiliation(s)
- Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Minami Hiranuma
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mio Nakashima
- Department of Biological Sciences, Faculty of Science, Nagoya University, Japan
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; Department of Biological Sciences, Faculty of Science, Nagoya University, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan.
| |
Collapse
|
19
|
Bolla BS, Erdei L, Urbán E, Burián K, Kemény L, Szabó K. Cutibacterium acnes regulates the epidermal barrier properties of HPV-KER human immortalized keratinocyte cultures. Sci Rep 2020; 10:12815. [PMID: 32733073 PMCID: PMC7393503 DOI: 10.1038/s41598-020-69677-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Our skin provides a physical barrier to separate the internal part of our body from the environment. Maintenance of complex barrier functions is achieved through anatomical structures in the skin, the stratified squamous epithelium specialized junctional organelles, called tight junctions (TJs). Several members of our microbial communities are known to affect the differentiation state and function of the colonized organ. Whether and how interactions between skin cells and cutaneous microbes, including Cutibacterium acnes (C. acnes), modify the structure and/or function of our skin is currently only partly understood. Thus, in our studies, we investigated whether C. acnes may affect the epidermal barrier using in vitro model systems. Real-time cellular analysis showed that depending on the keratinocyte differentiation state, the applied C. acnes strains and their dose, the measured impedance values change, together with the expression of selected TJ proteins. These may reflect barrier alterations, which can be partially restored upon antibiotic–antimycotic treatment. Our findings suggest that C. acnes can actively modify the barrier properties of cultured keratinocytes, possibly through alteration of tight cell-to-cell contacts. Similar events may play important roles in our skin, in the maintenance of cutaneous homeostasis.
Collapse
Affiliation(s)
- Beáta Szilvia Bolla
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Lilla Erdei
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Edit Urbán
- Department of Public Health, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary. .,MTA-SZTE Dermatological Research Group, Szeged, Hungary.
| |
Collapse
|
20
|
Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, Iannetti I, Di Pietro C, Bolasco G, Palmieri V, Vilardo L, Panini N, Bonaventura F, Papi M, Scavizzi F, Raspa M, Leonetti C, Falcone G, Felsani A, D’Agnano I. Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers (Basel) 2020; 12:cancers12061635. [PMID: 32575666 PMCID: PMC7352810 DOI: 10.3390/cancers12061635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.
Collapse
Affiliation(s)
- Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Carla Musa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Manuela Porru
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ilaria Iannetti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Carlo Leonetti
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
- Correspondence:
| |
Collapse
|
21
|
Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020; 12:17. [PMID: 32532966 PMCID: PMC7293327 DOI: 10.1038/s41368-020-0086-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell-cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Pressure. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32207812 PMCID: PMC7401456 DOI: 10.1167/iovs.61.3.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth-factor receptors platelet-derived growth factor receptor beta and vascular endothelial growth factor receptors 1 and 2 (VEGFR-1, VEGFR-2) and of diverse intracellular proteins (β-III-tubulin, glial fibrillary acidic protein transcript variant 1, α-smooth muscle actin, vimentin, and von Willebrand factor VIII), were analyzed using immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. Results The retinal explants were well preserved when cultured in the pressure chambers used in this study. The responses to pressure elevation varied among diverse retinal cells. Under elevated pressure, the expression of ZO-1 increased in the large vessels, neuronal cells began to express VEGFR-1, and the Cdc42 expression in the optic nerve head was downregulated. Overall we found significant transcriptional downregulation of VE-cadherin, β-catenin, VEGFR-1, VEGFR-2, vimentin, Cdc42, and ACK1. Western blotting and immunohistochemistry indicated a loss of VE-cadherin with pressure elevation, whereas the protein levels of ZO-1, occludin, VEGFR-1, and ACK1 increased. Conclusions The pressure chamber used for cultivating mouse retinal explants can serve as an in vitro model system for investigating molecular alterations in glaucoma. In this system, responses of the entire retinal cells toward elevated pressure with conspicuous changes in the vasculature and the optic nerve head can be seen. In particular, our investigations indicate that changes in the blood–retina barrier and in cellular signaling are induced by pressure elevation.
Collapse
|
23
|
Branca JJV, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Effects of Cadmium on ZO-1 Tight Junction Integrity of the Blood Brain Barrier. Int J Mol Sci 2019; 20:E6010. [PMID: 31795317 PMCID: PMC6928912 DOI: 10.3390/ijms20236010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 μM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Cristina Gonnelli
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| |
Collapse
|
24
|
Tan J, Li Y, Hou DX, Wu S. The Effects and Mechanisms of Cyanidin-3-Glucoside and Its Phenolic Metabolites in Maintaining Intestinal Integrity. Antioxidants (Basel) 2019; 8:E479. [PMID: 31614770 PMCID: PMC6826635 DOI: 10.3390/antiox8100479] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cyanidin-3-glucoside (C3G) is a well-known natural anthocyanin and possesses antioxidant and anti-inflammatory properties. The catabolism of C3G in the gastrointestinal tract could produce bioactive phenolic metabolites, such as protocatechuic acid, phloroglucinaldehyde, vanillic acid, and ferulic acid, which enhance C3G bioavailability and contribute to both mucosal barrier and microbiota. To get an overview of the function and mechanisms of C3G and its phenolic metabolites, we review the accumulated data of the absorption and catabolism of C3G in the gastrointestine, and attempt to give crosstalk between the phenolic metabolites, gut microbiota, and mucosal innate immune signaling pathways.
Collapse
Affiliation(s)
- Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Yanli Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
25
|
Nunes C, Freitas V, Almeida L, Laranjinha J. Red wine extract preserves tight junctions in intestinal epithelial cells under inflammatory conditions: implications for intestinal inflammation. Food Funct 2019; 10:1364-1374. [PMID: 30735221 DOI: 10.1039/c8fo02469c] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The altered expression and subcellular distribution of tight junction (TJ) proteins, leading to a dysfunctional intestinal barrier, is a key mechanistic feature of inflammatory bowel disease (IBD). Therefore, increasing the integrity of the intestinal barrier by manipulating the TJ may constitute an innovative and effective therapeutic strategy in IBD. In this context, recent studies showed that dietary polyphenols are able to protect the intestinal TJ barrier integrity. Here, using a cellular model of intestinal inflammation, consisting of cytokine-stimulated HT-29 colon epithelial cells, we show that a polyphenolic extract obtained from Portuguese red wine (RWE) decreased the paracellular permeability across the cell monolayer compared with the control cells, even in the presence of pro-inflammatory cytokines. The beneficial effect of RWE was exerted at three complementary levels: (1) by promoting a significant increase of the mRNA of key barrier-forming TJ proteins, including occludin, claudin-5 and zonnula occludens (ZO)-1 above the levels observed in the control cells; (2) by preventing the decrease in the expression of these proteins under inflammatory conditions and (3) by averting the increase in claudin-2 mRNA, a channel-forming TJ protein induced by pro-inflammatory cytokines. Taken together, these results strongly suggest that polyphenols presented and consumed in red wine as a mixture can reinforce and protect the intestinal barrier against inflammatory stimulus by affecting the TJ protein expression and, thus, without the need for purifying individual compounds, might represent a readily available therapeutic intervention against IBD and intestinal inflammation.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | | | | | | |
Collapse
|
26
|
Bertero A, Augustyniak J, Buzanska L, Caloni F. Species-specific models in toxicology: in vitro epithelial barriers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103203. [PMID: 31176950 DOI: 10.1016/j.etap.2019.103203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Species-specific in vitro epithelial barriers represent interesting predictive tools for risk assessment evaluation in toxicological studies. Moreover, these models could be applied either as stand-alone methods for the study of absorption, bioavailability, excretion, transport, effects of xenobiotics, or through an Integrated Testing Strategy. The aim of this review is to give a comprehensive overview of in vitro species-specific epithelial barrier models from bovine, dog and swine. Bovine mammary epithelial barrier as a fundamental instrument for the evaluation of the toxicant excretion, the blood brain barrier as a useful first approach in toxicological and pharmacological studies, the porcine intestinal barrier, the canine skin barrier, and finally the pulmonary barrier from bovine and swine species are described in this review.
Collapse
Affiliation(s)
- A Bertero
- Università degli Studi di Milano, Department of Veterinary Medicine (DIMEVET) Milan, Italy
| | - J Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - L Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - F Caloni
- Università degli Studi di Milano, Department of Veterinary Medicine (DIMEVET) Milan, Italy.
| |
Collapse
|
27
|
Zhao Q, Zhang F, Yu Z, Guo S, Liu N, Jiang Y, Lo EH, Xu Y, Wang X. HDAC3 inhibition prevents blood-brain barrier permeability through Nrf2 activation in type 2 diabetes male mice. J Neuroinflammation 2019; 16:103. [PMID: 31101061 PMCID: PMC6525453 DOI: 10.1186/s12974-019-1495-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic metabolic dysfunction characterized by progressive insulin resistance and hyperglycaemia. Increased blood-brain barrier (BBB) permeability is a critical neurovascular complication of T2DM that adversely affects the central nervous system homeostasis and function. Histone deacetylase 3 (HDAC3) has been reported to be elevated in T2DM animals and may promote neuroinflammation; however, its involvement in the BBB permeability of T2DM has not been investigated. In this study, we tested our hypothesis that HDAC3 expression and activity are increased in the T2DM mouse brain. Inhibition of HDAC3 may ameliorate T2DM-induced BBB permeability through Nrf2 activation. Methods T2DM (db/db, leptin receptor-deficient), genetic non-hyperglycemic control (db/+), and wild-type male mice at the age of 16 weeks were used in this study. HDAC3 expression and activity, Nrf2 activation, and BBB permeability and junction protein expression were examined. The effects of HDAC3 activity on BBB permeability were tested using highly selective HDAC3 inhibitor RGFP966. In primary cultured human brain microvascular endothelial cells (HBMEC), hyperglycemia (25 mM glucose) plus interleukin 1 beta (20 ng/ml) (HG-IL1β) served as T2DM insult in vitro. The effects of HDAC3 on transendothelial permeability were investigated by FITC-Dextran leakage and trans-endothelial electrical resistance, and the underlying molecular mechanisms were investigated using Western blot, q-PCR, co-immunoprecipitation, and immunocytochemistry for junction protein expression, miR-200a/Keap1/Nrf2 pathway regulation. Results HDAC3 expression and activity were significantly increased in the hippocampus and cortex of db/db mice. Specific HDAC3 inhibition significantly ameliorated BBB permeability and junction protein downregulation in db/db mice. In cultured HBMEC, HG-IL1β insult significantly increased transendothelial permeability and reduced junction protein expression. HDAC3 inhibition significantly attenuated the transendothelial permeability and junction protein downregulation. Moreover, we demonstrated the underlying mechanism was at least in part attributed by HDAC3 inhibition-mediated miR-200a/Keap1/Nrf2 signaling pathway and downstream targeting junction protein expression in T2DM db/db mice. Conclusions Our experimental results show that HDAC3 might be a new therapeutic target for BBB damage in T2DM. Electronic supplementary material The online version of this article (10.1186/s12974-019-1495-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Ning Liu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China.,The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China.
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 2401, Charlestown, Boston, MA, 02129, USA.
| |
Collapse
|
28
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Zhao Q, Yu Z, Zhang F, Huang L, Xing C, Liu N, Xu Y, Wang X. HDAC3 inhibition prevents oxygen glucose deprivation/reoxygenation-induced transendothelial permeability by elevating PPARγ activity in vitro. J Neurochem 2018; 149:298-310. [PMID: 30347434 DOI: 10.1111/jnc.14619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
Histone deacetylase 3 (HDAC3), a member of class I HDAC, regulates a wide variety of normal and abnormal physiological functions. Recent experimental studies suggested that inhibition of HDAC3 may increase acetylation of certain key signaling regulating proteins such as peroxisome proliferator-activated receptor γ (PPARγ), which plays a crucial role in modulating cerebrovascular function and integrity. However, the role of HDAC3 inhibition in cerebrovascular endothelium function under pathological condition has not been fully investigated. In this study, we tested the hypothesis that inhibition of HDAC3 by RGFP966, a highly selective HDAC3 inhibitor, promotes PPARγ activation by enhancing its protein acetylation, resulting in protection of oxygen glucose deprivation and reoxygenation (OGD/R)-induced increase of transendothelial cell permeability. In cultured primary human brain microvascular endothelial cells, our experimental results show that OGD/R increases transendothelial cell permeability and down-regulates junction protein expression. While we also detected HDAC3 activity increase and PPARγ activity decline after OGD/R. However, treatment with RGFP966 significantly attenuated the OGD/R-induced increase of transendothelial cell permeability and down-regulation of tight junction protein Claudin-5. These effects were observed to be dependent on HDAC3 activity inhibition-mediated PPARγ protein acetylation/activation. Lastly, HDAC3 small interfering RNA mimics the protective effects of RGFP966 on human brain microvascular endothelial cells. Taken together, our data indicate that HDAC3 inhibition might comprise a new therapeutic target for reducing blood-brain barrier integrity disruption and vascular dysfunctions in neurological disorders.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fang Zhang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Changhong Xing
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ning Liu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoying Wang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Kikuchi Y, Kimizuka R, Kato T, Okuda K, Kokubu E, Ishihara K. Treponema denticola Induces Epithelial Barrier Dysfunction in Polarized Epithelial Cells. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 59:265-275. [PMID: 30333370 DOI: 10.2209/tdcpublication.2017-0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Treponema denticola, an anaerobic spirochete found mainly in the oral cavity, is associated with periodontal disease and has a variety of virulence factors. Although in vitro studies have shown that T. denticola is able to penetrate epithelial cell monolayers, its effect on the epithelial barrier junction is not known. Human gingival epithelial cells are closely associated with adjacent membranes, forming barriers in the presence of tight junction proteins, including zonula occludens-1 (ZO-1), claudin-1, and occludin. Tight junction proteins are also expressed by Madin-Darby canine kidney (MDCK) cells in culture. In this study, the MDCK cell profile was investigated following infection with T. denticola (ATCC 35405) wild-type, as well as with its dentilisin-deficient mutant, K1. Basolateral exposure of MDCK cell monolayers to T. denticola at a multiplicity of infection (MOI) of 104 resulted in a decrease in transepithelial electrical resistance (TER). Transepithelial electrical resistance in MDCK cell monolayers also decreased following apical exposure to T. denticola (MOI=104), although this took longer with basolateral exposure. The effect on the TER was time-dependent and required the presence of live bacteria. Meanwhile, MDCK cell viability showed a decrease with either basolateral or apical exposure. Immunofluorescence analysis demonstrated decreases in the amounts of immunoreactive ZO-1 and claudin-1 in association with disruption of cell-cell junctions in MDCK cells exposed apically or basolaterally to T. denticola. Western blot analysis demonstrated degradation of ZO-1 and claudin-1 in culture lysates derived from T. denticola-exposed MDCK cells, suggesting a bacteria-induced protease capable of cleaving these tight junction proteins.
Collapse
Affiliation(s)
- Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | | | - Tetsuo Kato
- Laboratory of Chemistry, Tokyo Dental College
| | | | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
31
|
Saadane A, Mast N, Trichonas G, Chakraborty D, Hammer S, Busik JV, Grant MB, Pikuleva IA. Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1-Mediated Cholesterol Removal. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:405-425. [PMID: 30448403 DOI: 10.1016/j.ajpath.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrβ was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - George Trichonas
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | | | - Sandra Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
32
|
Yu K, Ma Y, Zhang Z, Fan X, Li T, Li L, Xiao W, Cai Y, Sun L, Xu P, Yu M, Yang H. AhR activation protects intestinal epithelial barrier function through regulation of Par-6. J Mol Histol 2018; 49:449-458. [DOI: 10.1007/s10735-018-9784-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
|
33
|
Branca JJV, Maresca M, Morucci G, Becatti M, Paternostro F, Gulisano M, Ghelardini C, Salvemini D, Di Cesare Mannelli L, Pacini A. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018; 9:23426-23438. [PMID: 29805744 PMCID: PMC5955120 DOI: 10.18632/oncotarget.25193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer. Despite its beneficial effects in tumor reduction, the most prevalent side-effect of oxaliplatin treatment is a chemotherapy-induced neuropathy that frequently forces to discontinue the therapy. Indeed, along with direct damage to peripheral nerves, the chemotherapy-related neurotoxicity involves also the central nervous system (CNS) as demonstrated by pain chronicity and cognitive impairment (also known as chemobrain), a newly described pharmacological side effect. The presence of the blood brain barrier (BBB) is instrumental in preventing the entry of the drug into the CNS; here we tested the hypothesis that oxaliplatin might enter the endothelial cells of the BBB vessels and trigger a signaling pathway that induce the disassembly of the tight junctions, the critical components of the BBB integrity. By using a rat brain endothelial cell line (RBE4) we investigated the signaling pathway that ensued the entry of oxaliplatin within the cell. We found that the administration of 10 μM oxaliplatin for 8 and 16 h induced alterations of the tight junction (TJs) proteins zonula occludens-1 (ZO-1) and of F-actin, thus highlighting BBB alteration. Furthermore, we reported that intracellular oxaliplatin rapidly induced increased levels of reactive oxygen species and endoplasmic reticulum stress, assessed by the evaluation of glucose-regulated protein GRP78 expression levels. These events were accompanied by activation of caspase-3 that led to extracellular ATP release. These findings suggested a possible novel mechanism of action for oxaliplatin toxicity that could explain, at least in part, the chemotherapy-related central effects.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology Saint Louis University, Saint Louis, Missouri, United States
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Monoclonal Antibodies against Occludin Completely Prevented Hepatitis C Virus Infection in a Mouse Model. J Virol 2018; 92:JVI.02258-17. [PMID: 29437969 DOI: 10.1128/jvi.02258-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in in vitro cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening. These four MAbs bound to human OCLN with a very high affinity (antibody dissociation constant of <1 nM). One MAb recognized the second loop of human and mouse OCLN, whereas the three other MAbs recognized the first loop of human OCLN. All MAbs inhibited HCV infection in Huh7.5.1-8 cells in a dose-dependent manner without apparent cytotoxicity. Additionally, the anti-OCLN MAbs prevented both cell-free HCV infection and cell-to-cell HCV transmission. Kinetic studies with anti-OCLN and anti-claudin-1 (CLDN1) MAbs demonstrated that OCLN interacts with HCV after CLDN1 in the internalization step. Two selected MAbs completely inhibited HCV infection in human liver chimeric mice without apparent adverse effects. Therefore, OCLN would be an appropriate host target for anti-HCV entry inhibitors, and anti-OCLN MAbs may be promising candidates for novel anti-HCV agents, particularly in combination with direct-acting HCV antiviral agents.IMPORTANCE HCV entry into host cells is thought to be a very complex process involving various host entry factors, such as the tight junction proteins claudin-1 and OCLN. In this study, we developed novel functional MAbs that recognize intact extracellular domains of OCLN, which is essential for HCV entry into host cells. The established MAbs against OCLN, which had very high affinity and selectivity for intact OCLN, strongly inhibited HCV infection both in vitro and in vivo Using these anti-OCLN MAbs, we found that OCLN is necessary for the later stages of HCV entry. These anti-OCLN MAbs are likely to be very useful for understanding the OCLN-mediated HCV entry mechanism and might be promising candidates for novel HCV entry inhibitors.
Collapse
|
35
|
Li W, Chen Z, Chin I, Chen Z, Dai H. The Role of VE-cadherin in Blood-brain Barrier Integrity Under Central Nervous System Pathological Conditions. Curr Neuropharmacol 2018; 16:1375-1384. [PMID: 29473514 PMCID: PMC6251046 DOI: 10.2174/1570159x16666180222164809] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
The blood-brain barrier (BBB) is a layer between the blood circulation and neural tissue. It plays a pivotal role in maintaining the vulnerable extracellular microenvironment in the neuronal parenchyma. Neuroinflammatory events can result in BBB dysregulation by disturbing adherens junctions (AJs) and tight junctions (TJs). VE-cadherin, as one of the most important components of the vascular system, is specifically responsible for the assembly of AJs and BBB architecture. Here, we present a review, which highlights recently available insights into the relationship between the neuroinflammation and BBB dysregulation. We then explore the specific interaction between VE-cadherin and BBB. Finally, we discuss the changes of VE-cadherin with different neurological diseases from both experimental and clinical studies. An understanding of VE-cadherin in BBB regulation may indicate that VE-cadherin can partially be a biomarker of neuroinflammation disease and lead to novel approaches for abating BBB dysregulation under pathological conditions and the opening of the BBB following central nervous system (CNS) drug delivery.
Collapse
Affiliation(s)
| | | | | | - Zhong Chen
- Address correspondence to these authors at the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, P.R. China; Tel/Fax: +86-571-87783891; E-mail: ; and Depart-ment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; E-mail:
| | - Haibin Dai
- Address correspondence to these authors at the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, P.R. China; Tel/Fax: +86-571-87783891; E-mail: ; and Depart-ment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; E-mail:
| |
Collapse
|
36
|
Yang B, Du S, Lu Y, Jia S, Zhao M, Bai J, Li P, Wu H. Influence of paeoniflorin and menthol on puerarin transport across MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. J Pharm Pharmacol 2017; 70:349-360. [DOI: 10.1111/jphp.12853] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Abstract
Objective
Our objective of this research was (1) to investigate the transport characteristics of puerarin through MDCK-MDR1 and MDCK cells and (2) to evaluate the effects of paeoniflorin and menthol on puerarin transport so as to (3) explore the enhancement mechanism.
Methods
The cytotoxicity of drugs on MDCK and MDCK-MDR1 was evaluated by the MTT assay, and the transport studies were performed in both directions. The membrane fluidity was evaluated by fluorescence recovery after photobleaching, and the membrane potential was estimated by the accumulation of DiBAC4(3) in the cells.
Key findings
Puerarin showed relatively poor absorption and purely passive diffusion. However, the efflux ratio of puerarin was <2 in MDCK-MDR1 models, which suggested puerarin was not P-gp substrates so as to the P-glycoprotein activity determination of puerarin. With the existence of menthol, the transcellular transport of puerarin increased and puerarin transport significantly increased when co-administrated with paeoniflorin and menthol.
Conclusions
The enhancing effect of paeoniflorin and menthol may be attributed to the significant enhancement on cell membrane fluidity, the decrease in membrane potential. Immunostaining results indicated that menthol behaved as transport enhancer by disassembly effect on tight junction integrity.
Collapse
Affiliation(s)
- Bing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengdi Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv 2017; 24:1037-1044. [PMID: 28687052 PMCID: PMC8241164 DOI: 10.1080/10717544.2017.1346002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
The clinical application of central nervous system (CNS) drugs is limited by their poor bioavailability due to the blood-brain barrier (BBB). Borneol is a naturally occurring compound in a class of 'orifice-opening' agents often used for resuscitative purposes in traditional Chinese medicine. A growing body of evidence confirms that the 'orifice-opening' effect of borneol is principally derived from opening the BBB. Borneol is therefore believed to be an effective adjuvant that can improve drug delivery to the brain. The purpose of this paper is to provide a comprehensive review of information accumulated over the past two decades on borneol's chemical features, sources, toxic and kinetic profiles, enhancing effects on BBB permeability and their putative mechanisms, improvements in CNS drug delivery, and pharmaceutical forms. The BBB-opening effect of borneol is a reversible physiological process characterized by rapid and transient penetration of the BBB and highly specific brain regional distribution. Borneol also protects the structural integrity of the BBB against pathological damage. The enhancement of the BBB permeability is associated with the modulation of multiple ATP-binding cassette transporters, including P-glycoprotein; tight junction proteins; and predominant enhancement of vasodilatory neurotransmitters. Systemic co-administration with borneol improves drug delivery to the brain in a region-, dose- and time-dependent manner. Several pharmaceutical forms of borneol have been developed to improve the kinetic and toxic profiles of co-administered drugs and enhance their delivery to the brain. Borneol is a promising novel agent that deserves further development as a BBB permeation enhancer for CNS drug delivery.
Collapse
Affiliation(s)
- Qun-Lin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, NY, USA
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Xu H, Xiong J, Xu J, Li S, Zhou Y, Chen D, Cai X, Ping J, Deng M, Chen J. Mosapride Stabilizes Intestinal Microbiota to Reduce Bacterial Translocation and Endotoxemia in CCl 4-Induced Cirrhotic Rats. Dig Dis Sci 2017; 62:2801-2811. [PMID: 28815345 DOI: 10.1007/s10620-017-4704-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Impaired intestinal motility may lead to the disruption of gut microbiota equilibrium, which in turn facilitates bacterial translocation (BT) and endotoxemia in cirrhosis. We evaluated the influence of mosapride, a prokinetic agent, on BT and DNA fingerprints of gut microbiota in cirrhotic rats. METHODS A rat model of cirrhosis was set up via subcutaneous injection of carbon tetrachloride (CCl4). The portal pressure, liver and intestinal damage, plasma endotoxin, BT, and intestinal transit rate (ITR) of cirrhotic rats were determined. Fecal DNA fingerprints were obtained by ERIC-PCR. The expressions of tight junction proteins were evaluated by western blotting. RESULTS Mosapride treatment to cirrhotic rats significantly reduced the plasma endotoxin level and incidence of BT, accompanied by increased ITR. Cirrhotic rats (including those treated with mosapride) suffered from BT exhibited significantly lower ITR than those who are free of BT. Pearson coefficient indicated a significant and negative correlation between the plasma endotoxin level and ITR. The genomic fingerprints of intestinal microbiota from the three groups fell into three distinctive clusters. In the mosapride-treated group, Shannon's index was remarkably increased compared to the model group. Significantly positive correlation was detected between Shannon's index and ITR. Mosapride did not improve hepatic and intestinal damages and ileal expressions of occludin and ZO-1. CONCLUSIONS Mosapride significantly increases intestinal motility in cirrhotic rats, thus to recover the disordered intestinal microbiota, finally resulting in decreased plasma endotoxin and BT.
Collapse
Affiliation(s)
- Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Jianjun Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, China
| | - Shuiming Li
- Key Laboratory of Marine Bioresources and Ecology, College of Life Science, Shenzhen University, Shenzhen, China
| | - Yang Zhou
- Liver Cirrhosis Section, Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, China
| | - Xinjun Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Jian Ping
- Liver Cirrhosis Section, Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Deng
- Department of Emergency, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, China.
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, China.
| |
Collapse
|
39
|
Jariwala R, Mandal H, Bagchi T. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins. MICROBIOLOGY-SGM 2017; 163:1263-1272. [PMID: 28771130 DOI: 10.1099/mic.0.000507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.
Collapse
Affiliation(s)
- Ruchi Jariwala
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Hemanti Mandal
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Tamishraha Bagchi
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India.,Present address: Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| |
Collapse
|
40
|
Maugeri G, D'Amico AG, Rasà DM, La Cognata V, Saccone S, Federico C, Cavallaro S, D'Agata V. Caffeine Prevents Blood Retinal Barrier Damage in a Model, In Vitro, of Diabetic Macular Edema. J Cell Biochem 2017; 118:2371-2379. [PMID: 28106278 DOI: 10.1002/jcb.25899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
Abstract
Diabetic macular edema (DME) is the major cause of vision loss in patients affected by diabetic retinopathy. Hyperglycemia and hypoxia represent the key elements in the progression of these pathologies, leading to breakdown of the blood-retinal barrier (BRB). Caffeine, a psychoactive substance largely consumed in the world, is a nonselective antagonist of adenosine receptors (AR) and it possesses a protective effect in various diseases, including eye pathologies. Here, we have investigated the effect of this substance on BRB integrity following exposure to hyperglycemic/hypoxic insult. Retinal pigmented epithelial cells, ARPE-19, have been grown on semi-permeable supports mimicking an experimental model, in vitro, of outer BRB. Caffeine treatment has reduced cell monolayer permeability after exposure to high glucose and desferoxamine as shown by TEER and FITC-dextran permeability assays. This effect is also mediated through the restoration of membrane's tight junction expression, ZO-1. Moreover, we have demonstrated that caffeine is able to prevent outer BRB damage by inhibiting apoptotic cell death induced by hyperglycemic/hypoxic insult since it downregulates the proapoptotic Bax and upregulates the anti-apoptotic Bcl-2 genes. Although further studies are needed to better comprise the beneficial effect of caffeine, we can speculate that it might be used as an innovative drug for DME treatment. J. Cell. Biochem. 118: 2371-2379, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,San Raffaele Telematic University of Rome, Rome, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valentina La Cognata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Takasu C, Yismaw WG, Kurita N, Yoshikawa K, Kashihara H, Kono T, Shimada M. TU-100 exerts a protective effect against bacterial translocation by maintaining the tight junction. Surg Today 2017; 47:1287-1294. [PMID: 28421347 DOI: 10.1007/s00595-017-1518-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE We previously reported that TU-100 suppresses irinotecan hydrochloride (CPT-11)-induced inflammatory cytokines and apoptosis. However, the mechanism underlying this effect has not been fully elucidated. The aim of this study was to further clarify the mechanism of CPT-11-induced bacterial translocation (BT) and the effect of TU-100 on BT. METHODS Cell cytotoxicity was assessed in vitro by a WST-8 assay. For the in vivo experiments, rats were randomly divided into 3 groups: the control group, the CPT-11 group (250 mg/kg i.p. for 2 days), and the CPT-11 and TU-100 co-treated group (1000 mg/kg, p.o. for 5 days). All of the rats were sacrificed on day 6 and their tissues were collected. RESULTS CPT-11 and TU-100 co-treatment improved CPT-11 the related cytotoxicity in vitro. All CPT-11-treated rats developed different grades of diarrhea and BT was observed in 80% of the rats. CPT-11 caused a significant increase in the expression of TLR4, IL-6, TNF-α, IL-1β and caspase-3 mRNAs in the large intestine. The expression of tight junction (TJ) marker mRNAs (occludin, claudin-1 and 4, and ZO-1) was significantly decreased in comparison to the control group. TU-100 co-treatment significantly reversed diarrhea, BT, and the expression of TLR2, IL-6, TNF-α, IL-1β and caspase-3, and improved the expression of occludin, claudin-4 and ZO-1. CONCLUSIONS TU-100 can suppress the adverse effects associated with CPT-11 and improve the function of the TJ. It is possible that this occurs through the TLR pathway.
Collapse
Affiliation(s)
- Chie Takasu
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan.
| | - Wubetu Gizachew Yismaw
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Nobuhiro Kurita
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Kozo Yoshikawa
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Hideya Kashihara
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Hisgashi Tokushukai Hospital, Hokkaido, Japan
| | - Mitsuo Shimada
- Departments of Surgery, Institute of Health Biosciences, Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| |
Collapse
|
42
|
Zhao M, Xu F, Wu F, Yu D, Su N, Zhang Y, Cheng L, Xu P. iTRAQ-Based Membrane Proteomics Reveals Plasma Membrane Proteins Change During HepaRG Cell Differentiation. J Proteome Res 2016; 15:4245-4257. [PMID: 27790907 DOI: 10.1021/acs.jproteome.6b00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HepaRG cell, a stabilized bipotent liver progenitor cell line, exhibits hepatocyte functions only after differentiation. However, the mechanism of transition from nondifferentiated to differentiated states, accompanied by proliferation migration and differentiation, remains poorly understood, particularly those proteins residing in the plasma membrane. In this study, the membrane protein expression change of HepaRG cell during differentiation were systematically analyzed using an iTRAQ labeled quantitative membrane proteomics approach. A total of 70 membrane proteins were identified to be differentially expressed among 849 quantified membrane proteins. Function and disease clustering analysis proved that 11 of these proteins are involved in proliferation, migration, and differentiation. Two key factors (MMP-14 and OCLN) were validated by qRT-PCR and Western blot. Blockade of MMP-14 further demonstrated its important function during tumor cell migration. The data sets have been uploaded to ProteomeXchange with the identifier PXD004752.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Debin Yu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, P. R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , Beijing 100850, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University , Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, P. R. China
| |
Collapse
|
43
|
Ohura K, Nishiyama H, Saco S, Kurokawa K, Imai T. Establishment and Characterization of a Novel Caco-2 Subclone with a Similar Low Expression Level of Human Carboxylesterase 1 to Human Small Intestine. Drug Metab Dispos 2016; 44:1890-1898. [PMID: 27638507 DOI: 10.1124/dmd.116.072736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Caco-2 cells predominantly express human carboxylesterase 1 (hCE1), unlike the human intestine that predominantly expresses human carboxylesterase 2 (hCE2). Transport experiments using Caco-2 cell monolayers often lead to misestimation of the intestinal absorption of prodrugs because of this difference, as prodrugs designed to increase the bioavailability of parent drugs are made to be resistant to hCE2 in the intestine, so that they can be hydrolyzed by hCE1 in the liver. In the present study, we tried to establish a new Caco-2 subclone, with a similar pattern of carboxylase expression to human intestine, to enable a more accurate estimation of the intestinal absorption of prodrugs. Although no subclone could be identified with high expression levels of only hCE2, two subclones, #45 and #78, with extremely low expression levels of hCE1 were subcloned from parental Caco-2 cells by the limiting dilution technique. Unfortunately, subclone #45 did not form enterocyte-like cell monolayers due to low expression of claudins and β-actin. However, subclone #78 formed polarized cell monolayers over 4 weeks and showed similar paracellular and transcellular transport properties to parental Caco-2 cell monolayers. In addition, the intestinal transport of oseltamivir, a hCE1 substrate, could be evaluated in subclone #78 cell monolayers, including P-glycoprotein-mediated efflux under nonhydrolysis conditions, unlike parental Caco-2 cells. Consequently, it is proposed that subclone #78 may provide a more effective system in which to evaluate the intestinal absorption of prodrugs that are intended to be hydrolyzed by hCE1.
Collapse
Affiliation(s)
- Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Saco
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kurokawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
44
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
45
|
Suzuki R, Nakamura Y, Chiba S, Mizuno T, Abe K, Horii Y, Nagashima H, Tanita T, Yamauchi K. Mitigation of tight junction protein dysfunction in lung microvascular endothelial cells with pitavastatin. Pulm Pharmacol Ther 2016; 38:27-35. [PMID: 27179426 DOI: 10.1016/j.pupt.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Statin use in individuals with chronic obstructive pulmonary disease (COPD) with coexisting cardiovascular disease is associated with a reduced risk of exacerbations. The mechanisms by which statin plays a role in the pathophysiology of COPD have not been defined. To explore the mechanisms involved, we investigated the effect of statin on endothelial cell function, especially endothelial cell tight junctions. METHOD We primarily assessed whether pitavastatin could help mitigate the development of emphysema induced by continuous cigarette smoking (CS) exposure. We also investigated the activation of liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling, which plays a role in maintaining endothelial functions, important tight junction proteins, zonula occludens (ZO)-1 and claudin-5 expression, and lung microvascular endothelial cell permeability. RESULTS We found that pitavastatin prevented the CS-induced decrease in angiomotin-like protein 1 (AmotL1)-positive vessels via the activation of LKB1/AMPK signaling and IFN-γ-induced hyperpermeability of cultured human lung microvascular endothelial cells by maintaining the levels of AmotL1, ZO-1, and claudin-5 expression at the tight junctions. CONCLUSION Our results indicate that the maintenance of lung microvascular endothelial cells by pitavastatin prevents tight junction protein dysfunctions induced by CS. These findings may ultimately lead to new and novel therapeutic targets for patients with COPD.
Collapse
Affiliation(s)
- Rioto Suzuki
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Yutaka Nakamura
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Shinji Chiba
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Tomoki Mizuno
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Kazuyuki Abe
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Yosuke Horii
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Hiromi Nagashima
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Tatsuo Tanita
- Department of Thoracic Surgery, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 0208505, Japan.
| |
Collapse
|
46
|
Atrian F, Lelièvre SA. Mining the epigenetic landscape of tissue polarity in search of new targets for cancer therapy. Epigenomics 2015; 7:1313-25. [PMID: 26646365 DOI: 10.2217/epi.15.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| |
Collapse
|
47
|
Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 2015; 33:1-7. [PMID: 27260462 DOI: 10.1016/j.jnutbio.2015.11.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.
Collapse
Affiliation(s)
- Carina Almeida Morais
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Débora Estadella
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| |
Collapse
|
48
|
Yu M, Yang S, Qiu Y, Chen G, Wang W, Xu C, Cai W, Sun L, Xiao W, Yang H. Par-3 modulates intestinal epithelial barrier function through regulating intracellular trafficking of occludin and myosin light chain phosphorylation. J Gastroenterol 2015; 50:1103-13. [PMID: 25820151 DOI: 10.1007/s00535-015-1066-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/12/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Tight junctions play a critical role in the maintenance of intestinal barrier function. Partitioning-defective protein 3 (Par-3) can regulate intestinal barrier function through the modulation of tight junction assembly and cell polarity. However, the mechanisms are still not fully understood. METHODS Adult C57BL/6 mice were treated with dextran sulfate sodium for 7 days, and segments of colon were harvested for immunofluorescent staining of Par-3. Caco-2 intestinal epithelial cells were treated with tumor necrosis factor α (TNF-α) for 24 h, and Par-3 expression was detected by Western blot analysis and immunofluorescence. Additionally, Caco-2 cells were treated with Par-3 small interfering RNA, and altered expression and subcellular localization of tight junction proteins were studied by Western blot analysis and immunofluorescence. Furthermore, the interaction between Par-3 and myosin light chain (MLC) was detected by immunoprecipitation. RESULTS Par-3 was downregulated in murine dextran sulfate sodium induced acute inflammation and TNF-α-treated Caco-2 cells. Depletion of Par-3 expression by small interfering RNA delayed intestinal epithelial barrier development in Caco-2 cells. This regulation was due to the redistribution of the tight junction protein occludin rather than the altered total levels of tight junction proteins. Par-3 silencing blocked the trafficking of occludin from or through the Golgi complex to the cell surface, and dramatically induced occludin accumulated at the Golgi complex. Importantly, Par-3 can interact with MLC, and loss of Par-3 upregulated MLC kinase expression and MLC phosphorylation, which contributed to intestinal epithelial barrier dysfunction. CONCLUSIONS These results indicate that Par-3 plays an important role in the modulation of intestinal barrier function by regulating delivery of occludin as well as suppression of MLC phosphorylation.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Songwei Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chao Xu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wenqiang Cai
- Center of Medical Experiment and Technology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
49
|
Morais CA, Oyama LM, de Moura Conrado R, de Rosso VV, do Nascimento CO, Pisani LP. Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV. PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathol 2015; 130:731-50. [PMID: 26385474 DOI: 10.1007/s00401-015-1479-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/25/2022]
Abstract
Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein-protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.
Collapse
|