1
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Ma J, Wang PY, Zhuang J, Son AY, Karius AK, Syed AM, Nishi M, Wu Z, Mori MP, Kim YC, Hwang PM. CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise. Cell Rep 2024; 43:113626. [PMID: 38157298 PMCID: PMC10851177 DOI: 10.1016/j.celrep.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.
Collapse
Affiliation(s)
- Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jie Zhuang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; School of Medicine, Nankai University, Tianjin 300071, China
| | - Annie Y Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Zhichao Wu
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Mateus P Mori
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
4
|
Ryan ÉB, Yan J, Miller N, Dayanidhi S, Ma YC, Deng HX, Siddique T. Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. iScience 2021; 24:102061. [PMID: 33659869 PMCID: PMC7890413 DOI: 10.1016/j.isci.2021.102061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.
Collapse
Affiliation(s)
- Éanna B. Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nimrod Miller
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongchao C. Ma
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Yatsuka Y, Kishita Y, Formosa LE, Shimura M, Nozaki F, Fujii T, Nitta KR, Ohtake A, Murayama K, Ryan MT, Okazaki Y. A homozygous variant in NDUFA8 is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clin Genet 2020; 98:155-165. [PMID: 32385911 DOI: 10.1111/cge.13773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I deficiency is caused by pathogenic variants in mitochondrial and nuclear genes associated with complex I structure and assembly. We report the case of a patient with NDUFA8-related mitochondrial disease. The patient presented with developmental delay, microcephaly, and epilepsy. His fibroblasts showed apparent biochemical defects in mitochondrial complex I. Whole-exome sequencing revealed that the patient carried a homozygous variant in NDUFA8. His fibroblasts showed a reduction in the protein expression level of not only NDUFA8, but also the other complex I subunits, consistent with assembly defects. The enzyme activity of complex I and oxygen consumption rate were restored by reintroducing wild-typeNDUFA8 cDNA into patient fibroblasts. The functional properties of the variant in NDUFA8 were also investigated using NDUFA8 knockout cells expressing wild-type or mutated NDUFA8 cDNA. These experiments further supported the pathogenicity of the variant in complex I assembly. This is the first report describing that the loss of NDUFA8, which has not previously been associated with mitochondrial disease, causes severe defect in the assembly of mitochondrial complex I, leading to progressive neurological and developmental abnormalities.
Collapse
Affiliation(s)
- Yukiko Yatsuka
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Kazuhiro R Nitta
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Pediatrics and Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
6
|
Ceh-Pavia E, Tang X, Liu Y, Heyes DJ, Zhao B, Xiao P, Lu H. Redox characterisation of Erv1, a key component for protein import and folding in yeast mitochondria. FEBS J 2019; 287:2281-2291. [PMID: 31713999 PMCID: PMC7318334 DOI: 10.1111/febs.15136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial import and assembly (MIA) pathway plays a vitally important role in import and oxidative folding of mitochondrial proteins. Erv1, a member of the FAD-dependent Erv1/ALR disulphide bond generating enzyme family, is a key player of the MIA pathway. Although considerable progress has been made, the molecular mechanism of electron transfer within Erv1 is still not fully understood. The reduction potentials of the three redox centres were previously determined to be -320 mV for the shuttle disulphide, -150 mV for the active-site disulphide and -215 mV for FAD cofactor. However, it is unknown why FAD of Erv1 has such a low potential compared with other sulfhydryl oxidases, and why the shuttle disulphide has a potential as low as many of the stable structural disulphides of the substrates of MIA pathway. In this study, the three reduction potentials of Erv1 were reassessed using the wild-type and inactive mutants of Erv1 under anaerobic conditions. Our results show that the standard potentials for the shuttle and active-site disulphides are approximately -250 mV and -215 ~ -260 mV, respectively, and the potential for FAD cofactor is -148 mV. Our results support a model that both disulphide bonds are redox-active, and electron flow in Erv1 is thermodynamically favourable. Furthermore, the redox behaviour of Erv1 was confirmed, for the first time using Mia40, the physiological electron donor of Erv1. Together with previous studies on proteins of MIA pathway, we conclude that electron flow in the MIA pathway is a thermodynamically favourable, smoothly downhill process for all steps. DATABASE: Erv1: EC 1.8.3.2.
Collapse
Affiliation(s)
- Efrain Ceh-Pavia
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Xiaofan Tang
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Derren J Heyes
- Manchester Institute of Biotechnology, University of Manchester, UK
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Ping Xiao
- School of Materials, University of Manchester, UK
| | - Hui Lu
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
7
|
Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation. Sci Rep 2019; 9:15815. [PMID: 31676852 PMCID: PMC6825195 DOI: 10.1038/s41598-019-52101-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c (Cytc) is a multifunctional protein, acting as an electron carrier in the electron transport chain (ETC), where it shuttles electrons from bc1 complex to cytochrome c oxidase (COX), and as a trigger of type II apoptosis when released from the mitochondria. We previously showed that Cytc is regulated in a highly tissue-specific manner: Cytc isolated from heart, liver, and kidney is phosphorylated on Y97, Y48, and T28, respectively. Here, we have analyzed the effect of a new Cytc phosphorylation site, threonine 58, which we mapped in rat kidney Cytc by mass spectrometry. We generated and overexpressed wild-type, phosphomimetic T58E, and two controls, T58A and T58I Cytc; the latter replacement is found in human and testis-specific Cytc. In vitro, COX activity, caspase-3 activity, and heme degradation in the presence of H2O2 were decreased with phosphomimetic Cytc compared to wild-type. Cytc-knockout cells expressing T58E or T58I Cytc showed a reduction in intact cell respiration, mitochondrial membrane potential (∆Ψm), ROS production, and apoptotic activity compared to wild-type. We propose that, under physiological conditions, Cytc is phosphorylated, which controls mitochondrial respiration and apoptosis. Under conditions of stress Cytc phosphorylations are lost leading to maximal respiration rates, ∆Ψm hyperpolarization, ROS production, and apoptosis.
Collapse
|
8
|
Vygodina TV, Mukhaleva E, Azarkina NV, Konstantinov AA. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:982-990. [DOI: 10.1016/j.bbabio.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
9
|
Rossig C, Gray J, Valdes O, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. HP30-2, a mitochondrial PRAT protein for import of signal sequence-less precursor proteins in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:535-551. [PMID: 28544763 DOI: 10.1111/jipb.12555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDC1) implicated in a respiratory complex 1-like electron transport chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable NH2 -terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity.
Collapse
Affiliation(s)
- Claudia Rossig
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - John Gray
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Oscar Valdes
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Christiane Reinbothe
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| | - Steffen Reinbothe
- Laboratory of Plant Molecular Genetics and Laboratory of Environmental and Systems Biology, Grenoble-Alpes-University, Grenoble, France
| |
Collapse
|
10
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:737-746. [DOI: 10.1016/j.bbamcr.2016.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
12
|
The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Cell Tissue Res 2016; 367:73-81. [DOI: 10.1007/s00441-016-2492-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
|
13
|
Welchen E, Gonzalez DH. Cytochrome c, a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments. PHYSIOLOGIA PLANTARUM 2016; 157:310-321. [PMID: 27080474 DOI: 10.1111/ppl.12449] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/04/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Cytochrome c (CYTc) is a soluble redox-active heme protein that transfers electrons from complex III to complex IV in the cyanide-sensitive mitochondrial respiratory pathway. CYTc biogenesis is a complex process that requires multiple steps until the mature active protein is obtained. CYTc levels and activity are finely regulated, revealing the importance of this protein not only as electron carrier but also in many other processes. In this article, we describe the role of CYTc in mitochondrial respiration, from its canonical role as electron carrier for ATP production to its involvement in protein import and the stabilization of respiratory complexes and supercomplexes. In plants, CYTc is connected to the synthesis of the antioxidant ascorbate and the detoxification of toxic compounds. Finally, CYTc is also a multi-functional signaling molecule that influences the balance between life and death, acting in energy provision for cellular functions or triggering programmed cell death. The confluence of several metabolic routes into a single protein that links redox reactions with energy producing pathways seems logical from the point of view of cellular economy, control and organization.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
14
|
Park JH, Zhuang J, Li J, Hwang PM. p53 as guardian of the mitochondrial genome. FEBS Lett 2016; 590:924-34. [PMID: 26780878 DOI: 10.1002/1873-3468.12061] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Participating in the repair of nuclear DNA is one mechanism by which p53 suppresses tumorigenesis, but there is growing evidence that p53 also helps maintain the mitochondrial genome through its translocation into mitochondria and interactions with mtDNA repair proteins. Because of the susceptibility of mtDNA to oxidative damage and replication errors, it is vital to protect mtDNA genomic stability to preserve health and fitness. Here, we focus on reviewing the evidence for the involvement of p53 in maintaining the integrity of mtDNA through its activities in both the nucleus and the mitochondria.
Collapse
Affiliation(s)
- Ji-Hoon Park
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Zhuang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Li
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul M Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Abstract
Erv1 (essential for respiration and viability 1) is a FAD-dependent sulphydryl oxidase with a tryptophan-rich catalytic domain. We show that Trp95 and Trp183 are important for stabilizing the folding, FAD-binding, and function of Erv1, whilst other four tryptophan residues are not functionally important. Erv1 is an FAD-dependent thiol oxidase of the ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) sub-family and an essential component of the mitochondrial import and assembly pathway. Erv1 contains six tryptophan residues, which are all located in the highly conserved C-terminal FAD-binding domain. Though important structural roles were predicted for the invariable Trp95, no experimental study has been reported. In the present study, we investigated the structural and functional roles of individual tryptophan residues of Erv1. Six single tryptophan-to-phenylalanine yeast mutant strains were generated and their effects on cell viability were tested at various temperatures. Then, the mutants were purified from Escherichia coli. Their effects on folding, FAD-binding and Erv1 activity were characterized. Our results showed that Erv1W95F has the strongest effect on the stability and function of Erv1 and followed by Erv1W183F. Erv1W95F results in a decrease in the Tm of Erv1 by 23°C, a significant loss of the oxidase activity and thus causing cell growth defects at both 30°C and 37°C. Erv1W183F induces changes in the oligomerization state of Erv1, along with a pronounced effect on the stability of Erv1 and its function at 37°C, whereas the other mutants had no clear effect on the function of Erv1 including the highly conserved Trp157 mutant. Finally, computational analysis indicates that Trp95 plays a key role in stabilizing the isoalloxazine ring to interact with Cys133. Taken together, the present study provided important insights into the molecular mechanism of how thiol oxidases use FAD in catalysing disulfide bond formation.
Collapse
|
17
|
Abstract
The content of mitochondrial proteome is maintained through two highly dynamic processes, the influx of newly synthesized proteins from the cytosol and the protein degradation. Mitochondrial proteins are targeted to the intermembrane space by the mitochondrial intermembrane space assembly pathway that couples their import and oxidative folding. The folding trap was proposed to be a driving mechanism for the mitochondrial accumulation of these proteins. Whether the reverse movement of unfolded proteins to the cytosol occurs across the intact outer membrane is unknown. We found that reduced, conformationally destabilized proteins are released from mitochondria in a size-limited manner. We identified the general import pore protein Tom40 as an escape gate. We propose that the mitochondrial proteome is not only regulated by the import and degradation of proteins but also by their retro-translocation to the external cytosolic location. Thus, protein release is a mechanism that contributes to the mitochondrial proteome surveillance.
Collapse
|
18
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
19
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
20
|
Fraga H, Bech-Serra JJ, Canals F, Ortega G, Millet O, Ventura S. The mitochondrial intermembrane space oxireductase Mia40 funnels the oxidative folding pathway of the cytochrome c oxidase assembly protein Cox19. J Biol Chem 2014; 289:9852-64. [PMID: 24569988 DOI: 10.1074/jbc.m114.553479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.
Collapse
Affiliation(s)
- Hugo Fraga
- From the Institut de Biotecnologia i Biomedicina and
| | | | | | | | | | | |
Collapse
|
21
|
Pinto JT, Cooper AJL. From cholesterogenesis to steroidogenesis: role of riboflavin and flavoenzymes in the biosynthesis of vitamin D. Adv Nutr 2014; 5:144-63. [PMID: 24618756 PMCID: PMC3951797 DOI: 10.3945/an.113.005181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly in the number and form of the flavin prosthetic moiety. In the type I mitochondrial system, FAD-adrenodoxin reductase interfaces with adrenodoxin before electron transfer to CYP heme proteins. In the microsomal type II system, a diflavin (FAD/FMN)-dependent cytochrome P450 oxidoreductase [NAD(P)H-cytochrome P450 reductase (CPR)] donates electrons to a multitude of heme oxygenases. Both flavoenzyme complexes exhibit a commonality of function with all CYP enzymes and are crucial for maintaining a balance of cholesterol and vitamin D metabolites. Deficits in riboflavin availability, imbalances in the intracellular ratio of FAD to FMN, and mutations that affect flavin binding domains and/or interactions with client proteins result in marked structural alterations within the skeletal and central nervous systems similar to those of disorders (inborn errors) in the biosynthetic pathways that lead to cholesterol, steroid hormones, and vitamin D and their metabolites. Studies of riboflavin deficiency during embryonic development demonstrate congenital malformations similar to those associated with genetic alterations of the flavoenzymes in these pathways. Overall, a deeper understanding of the role of riboflavin in these pathways may prove essential to targeted therapeutic designs aimed at cholesterol and vitamin D metabolism.
Collapse
|
22
|
The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013; 2013:742923. [PMID: 24348563 PMCID: PMC3848088 DOI: 10.1155/2013/742923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.
Collapse
|
23
|
Augmenter of liver regeneration, a protective factor against ROS-induced oxidative damage in muscle tissue of mitochondrial myopathy affected patients. Int J Biochem Cell Biol 2013; 45:2410-9. [DOI: 10.1016/j.biocel.2013.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 01/21/2023]
|
24
|
Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc Natl Acad Sci U S A 2013; 110:17356-61. [PMID: 24101517 DOI: 10.1073/pnas.1310908110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
p53, a critical tumor suppressor, regulates mitochondrial respiration, but how a nuclear protein can orchestrate the function of an organelle encoded by two separate genomes, both of which require p53 for their integrity, remains unclear. Here we report that the mammalian homolog of the yeast mitochondrial disulfide relay protein Mia40 (CHCHD4) is necessary for the respiratory-dependent translocation of p53 into the mitochondria. In the setting of oxidative stress, increased CHCHD4 expression partitions p53 into the mitochondria and protects its genomic integrity while decreasing p53 nuclear localization and transcriptional activity. Conversely, decreased CHCHD4 expression prevents the mitochondrial translocation of p53 while augmenting its nuclear localization and activity. Thus, the mitochondrial disulfide relay system allows p53 to regulate two spatially segregated genomes depending on oxidative metabolic activity.
Collapse
|
25
|
Kallergi E, Kalef-Ezra E, Karagouni-Dalakoura K, Tokatlidis K. Common Players in Mitochondria Biogenesis and Neuronal Protection Against Stress-Induced Apoptosis. Neurochem Res 2013; 39:546-55. [DOI: 10.1007/s11064-013-1109-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
26
|
A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 2013; 25:81-92. [PMID: 23597483 DOI: 10.1016/j.devcel.2013.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 01/29/2013] [Accepted: 03/06/2013] [Indexed: 01/08/2023]
Abstract
The mitochondrial disulfide relay system of Mia40 and Erv1/ALR facilitates import of the small translocase of the inner membrane (Tim) proteins and cysteine-rich proteins. A chemical screen identified small molecules that inhibit Erv1 oxidase activity, thereby facilitating dissection of the disulfide relay system in yeast and vertebrate mitochondria. One molecule, mitochondrial protein import blockers from the Carla Koehler laboratory (MitoBloCK-6), attenuated the import of Erv1 substrates into yeast mitochondria and inhibited oxidation of Tim13 and Cmc1 in in vitro reconstitution assays. In addition, MitoBloCK-6 revealed an unexpected role for Erv1 in the carrier import pathway, namely transferring substrates from the translocase of the outer membrane complex onto the small Tim complexes. Cardiac development was impaired in MitoBloCK-6-exposed zebrafish embryos. Finally, MitoBloCK-6 induced apoptosis via cytochrome c release in human embryonic stem cells (hESCs) but not in differentiated cells, suggesting an important role for ALR in hESC homeostasis.
Collapse
|
27
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
28
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
29
|
Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013; 14:2916-27. [PMID: 23364613 PMCID: PMC3588022 DOI: 10.3390/ijms14022916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
Collapse
Affiliation(s)
- Hugo Fraga
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| | - Salvador Ventura
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| |
Collapse
|
30
|
Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C. Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 2012; 11:1840-52. [PMID: 22984289 PMCID: PMC3518125 DOI: 10.1074/mcp.m112.021105] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Yu Z, Xu J, Liu N, Wang Y, Li X, Pallast S, van Leyen K, Wang X. Mitochondrial distribution of neuroglobin and its response to oxygen-glucose deprivation in primary-cultured mouse cortical neurons. Neuroscience 2012; 218:235-42. [PMID: 22659017 DOI: 10.1016/j.neuroscience.2012.05.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 04/23/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
Neuroglobin (Ngb) is a new member of the globin family and a novel endogenous neuroprotective molecule, but its neuroprotective mechanisms remain largely undefined. Previous studies suggest Ngb is both physically and functionally related to mitochondria, however without direct evidence. Our recent discovery has shown that Ngb can physically interact with a number of mitochondrial proteins. In this study we aimed to define the physical interaction between Ngb and mitochondria by determining whether there is a mitochondrial distribution of Ngb under both physiological-resting and pathological oxygen-glucose deprivation (OGD) conditions. Western blot for the first time revealed a small portion of Ngb was physically localized in mitochondria, and the relative mitochondrial Ngb level was significantly increased after OGD in primary-cultured mouse cortical neurons, indicating a translocation of Ngb into mitochondria. Complementary approaches including confocal imaging and immuno-electron microscopy confirmed Ngb distribution in mitochondria under both basal-resting condition and OGD. Inhibitors of mitochondria permeability transition pore (mPTP) and Voltage-Dependent Anion Channel (VDAC) blocked OGD-induced increase of mitochondrial Ngb level, demonstrating a possible role of mPTP in Ngb's mitochondrial translocation. We further found that Ngb overexpression-conferred neuroprotection was correlated with increased mitochondrial Ngb level, suggesting the mitochondria distribution of Ngb is clearly associated with and may contribute to Ngb's neuroprotection.
Collapse
Affiliation(s)
- Z Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sevier CS. Erv2 and quiescin sulfhydryl oxidases: Erv-domain enzymes associated with the secretory pathway. Antioxid Redox Signal 2012; 16:800-8. [PMID: 22142242 DOI: 10.1089/ars.2011.4450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Members of the Erv/ALR/QSOX protein family contain an Erv sequence module and catalyze protein disulfide bond formation. Erv enzymes impact protein function within and outside cells that affects both normal and malignant cell growth. This protein family is named for its founding members: Erv1 (essential for respiratory and vegetative growth 1) and ALR (augmenter of liver regeneration), homologous mitochondrial proteins from yeast and mammals, respectively, and QSOX (quiescin sulfhydryl oxidase), an oxidase secreted from quiescent cells. This review will focus on a subset of Erv proteins that are localized within the secretory pathway: Erv2-like proteins, proteins present in the endoplasmic reticulum of fungi, and QSOX proteins, proteins localized within the secretory pathway and extracellular space and present in most eukaryotes, but not fungi. RECENT ADVANCES A wealth of structural and biochemical data has been obtained for Erv2 and QSOX proteins. These data have identified a generally conserved catalytic mechanism and structure for the Erv2 and QSOX proteins with unique features for each enzyme. CRITICAL ISSUES Many fundamental questions remain about the activity for these proteins in living cells including the partners, pathways, and locations utilized by these enzymes in vivo. FUTURE DIRECTIONS A more comprehensive understanding of the cellular roles for Erv2 and QSOX enzymes will require identification of their partners and substrates. Also, determining when Erv2 and QSOX function during growth and development, and how changes in levels of active Erv2 and QSOX impact cell function, is necessary to facilitate a better understanding of these intriguing enzymes.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
34
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
35
|
Corvest V, Murrey DA, Hirasawa M, Knaff DB, Guiard B, Hamel PP. The flavoprotein Cyc2p, a mitochondrial cytochrome c assembly factor, is a NAD(P)H-dependent haem reductase. Mol Microbiol 2012; 83:968-80. [PMID: 22257001 DOI: 10.1111/j.1365-2958.2012.07981.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c assembly requires sulphydryls at the CXXCH haem binding site on the apoprotein and also chemical reduction of the haem co-factor. In yeast mitochondria, the cytochrome haem lyases (CCHL, CC(1) HL) and Cyc2p catalyse covalent haem attachment to apocytochromes c and c(1) . An in vivo indication that Cyc2p controls a reductive step in the haem attachment reaction is the finding that the requirement for its function can be bypassed by exogenous reductants. Although redox titrations of Cyc2p flavin (E(m) = -290 mV) indicate that reduction of a disulphide at the CXXCH site of apocytochrome c (E(m) = -265 mV) is a thermodynamically favourable reaction, Cyc2p does not act as an apocytochrome c or c(1) CXXCH disulphide reductase in vitro. In contrast, Cyc2p is able to catalyse the NAD(P)H-dependent reduction of hemin, an indication that the protein's role may be to control the redox state of the iron in the haem attachment reaction to apocytochromes c. Using two-hybrid analysis, we show that Cyc2p interacts with CCHL and also with apocytochromes c and c(1) . We postulate that Cyc2p, possibly in a complex with CCHL, reduces the haem iron prior to haem attachment to the apoforms of cytochrome c and c(1) .
Collapse
Affiliation(s)
- Vincent Corvest
- Departments of Molecular Genetics and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An Electron-Transfer Path through an Extended Disulfide Relay System: The Case of the Redox Protein ALR. J Am Chem Soc 2012; 134:1442-5. [DOI: 10.1021/ja209881f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Ivano Bertini
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Chiara Cefaro
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Angelo Gallo
- Magnetic Resonance Center, University of Florence, via L. Sacconi 6, Sesto Fiorentino,
Italy
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto
Fiorentino, Italy
| | - Kostas Tokatlidis
- Institute
of Molecular Biology
and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Materials Science
and Technology, University of Crete, Heraklion
71003, Crete, Greece
| |
Collapse
|
37
|
Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. THE PLANT CELL 2011; 23:4462-75. [PMID: 22209765 PMCID: PMC3269877 DOI: 10.1105/tpc.111.089680] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/15/2011] [Accepted: 12/13/2011] [Indexed: 05/18/2023]
Abstract
Here, we identify Arabidopsis thaliana Lumen Thiol Oxidoreductase1 (LTO1) as a disulfide bond-forming enzyme in the thylakoid lumen. Using topological reporters in bacteria, we deduced a lumenal location for the redox active domains of the protein. LTO1 can partially substitute for the proteins catalyzing disulfide bond formation in the bacterial periplasm, which is topologically equivalent to the plastid lumen. An insertional mutation within the LTO1 promoter is associated with a severe photoautotrophic growth defect. Measurements of the photosynthetic activity indicate that the lto1 mutant displays a limitation in the electron flow from photosystem II (PSII). In accordance with these measurements, we noted a severe depletion of the structural subunits of PSII but no change in the accumulation of the cytochrome b(6)f complex or photosystem I. In a yeast two-hybrid assay, the thioredoxin-like domain of LTO1 interacts with PsbO, a lumenal PSII subunit known to be disulfide bonded, and a recombinant form of the molecule can introduce a disulfide bond in PsbO in vitro. The documentation of a sulfhydryl-oxidizing activity in the thylakoid lumen further underscores the importance of catalyzed thiol-disulfide chemistry for the biogenesis of the thylakoid compartment.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Sara Cline
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Kevin Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
38
|
Cytochrome c signalosome in mitochondria. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1301-15. [DOI: 10.1007/s00249-011-0774-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
|
39
|
Gross DP, Burgard CA, Reddehase S, Leitch JM, Culotta VC, Hell K. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 2011; 22:3758-67. [PMID: 21865601 PMCID: PMC3192856 DOI: 10.1091/mbc.e11-04-0296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Mia40/Erv1 disulfide relay system forms a structural disulfide bond in Ccs1, an unconventional substrate of this system. Thereby it promotes import of Ccs1 into mitochondria and controls its cellular distribution. Thus this system is unexpectedly able to form single disulfide bonds in complex multidomain proteins. The copper chaperone for superoxide dismutase 1 (Ccs1) provides an important cellular function against oxidative stress. Ccs1 is present in the cytosol and in the intermembrane space (IMS) of mitochondria. Its import into the IMS depends on the Mia40/Erv1 disulfide relay system, although Ccs1 is, in contrast to typical substrates, a multidomain protein and lacks twin CxnC motifs. We report on the molecular mechanism of the mitochondrial import of Saccharomyces cerevisiae Ccs1 as the first member of a novel class of unconventional substrates of the disulfide relay system. We show that the mitochondrial form of Ccs1 contains a stable disulfide bond between cysteine residues C27 and C64. In the absence of these cysteines, the levels of Ccs1 and Sod1 in mitochondria are strongly reduced. Furthermore, C64 of Ccs1 is required for formation of a Ccs1 disulfide intermediate with Mia40. We conclude that the Mia40/Erv1 disulfide relay system introduces a structural disulfide bond in Ccs1 between the cysteine residues C27 and C64, thereby promoting mitochondrial import of this unconventional substrate. Thus the disulfide relay system is able to form, in addition to double disulfide bonds in twin CxnC motifs, single structural disulfide bonds in complex protein domains.
Collapse
Affiliation(s)
- Dominik P Gross
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Vascotto C, Bisetto E, Li M, Zeef LAH, D'Ambrosio C, Domenis R, Comelli M, Delneri D, Scaloni A, Altieri F, Mavelli I, Quadrifoglio F, Kelley MR, Tell G. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 2011; 22:3887-901. [PMID: 21865600 PMCID: PMC3192867 DOI: 10.1091/mbc.e11-05-0391] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1) protects cells from oxidative stress via the base excision repair pathway and as a redox transcriptional coactivator. It is required for tumor progression/metastasis, and its up-regulation is associated with cancer resistance. Loss of APE1 expression causes cell growth arrest, mitochondrial impairment, apoptosis, and alterations of the intracellular redox state and cytoskeletal structure. A detailed knowledge of the molecular mechanisms regulating its different activities is required to understand the APE1 function associated with cancer development and for targeting this protein in cancer therapy. To dissect these activities, we performed reconstitution experiments by using wild-type and various APE1 mutants. Our results suggest that the redox function is responsible for cell proliferation through the involvement of Cys-65 in mediating APE1 localization within mitochondria. C65S behaves as a loss-of-function mutation by affecting the in vivo folding of the protein and by causing a reduced accumulation in the intermembrane space of mitochondria, where the import protein Mia40 specifically interacts with APE1. Treatment of cells with (E)-3-(2-[5,6-dimethoxy-3-methyl-1,4-benzoquinonyl])-2-nonyl propenoic acid, a specific inhibitor of APE1 redox function through increased Cys-65 oxidation, confirm that Cys-65 controls APE1 subcellular trafficking and provides the basis for a new role for this residue.
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Anamorsin Is a [2Fe-2S] Cluster-Containing Substrate of the Mia40-Dependent Mitochondrial Protein Trapping Machinery. ACTA ACUST UNITED AC 2011; 18:794-804. [DOI: 10.1016/j.chembiol.2011.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
|
42
|
Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 PMCID: PMC3075374 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
Affiliation(s)
- Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|